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We use the formalism of noisy Gaussian channels to derive explicit transformation laws describing how
an arbitrary multimode Gaussian state of a scalar quantum field is perceived by a number of accelerating
observers, each having access to at least one of the modes. Our work, which generalizes earlier results of
Ahmadi et al. [Phys. Rev. D 93, 124031 (2016)], is the next step towards a better understanding of the effect

of gravity on the states of quantum fields.
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I. INTRODUCTION

The paradigm of quantum field theory offers the most
accurate description of reality on a microscopical level we
currently have. It takes into account all known types of
fundamental particles and their mutual interactions. Among
these interactions, gravity has a special status [1]. While all
the other types are represented by quantum fields, gravity is
taken into account in the theory, as a classical curved
playground for the quantum dynamics of all the other fields
[2]. Moreover, the effect of gravity is believed to be locally
equivalent to the effect of noninertial motion of the
observer, and as such can still lead to nontrivial conse-
quences in the dynamics of quantum fields including decay
rates of unstable particles [3]. Therefore a simpler approach
to the effect of gravity on quantum fields has been
developed, namely, the one that considers the perspective
of uniformly accelerated observers and its relation to the
observations of inertial observers [4]. Since the discovery of
the Unruh effect, it has been known that a transformation
between different observers involves a nontrivial transforma-
tion of the state of any quantum field. This has far-reaching
consequences for the theory of quantum information
and leads to its relativistic generalization that takes into
account the mutual motion of observers performing quantum-
informational protocols such as teleportation [5].

One of the major problems in this approach lies in the
difficulty of explicitly writing the transformation laws for a
generic state of a quantum field. For a long time the only
examples of quantum states that were given an explicit
description in the uniformly accelerated reference frames
were the vacuum state as well as some simple states defined
as excitations of so-called Unruh modes [6]. Unfortunately,
the latter ones were found to be unphysical and therefore no
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solid description of quantum states other than vacuum was
known [7]. Recent progress in this field has been triggered by
an observation that it is possible to provide a relatively simple
transformation law of Gaussian states between an inertial
frame and a uniformly accelerated frame of Ref. [8]. This
resulted in an immediate application of the finding to the
study of the degradation of continuous-variable entangle-
ment due to acceleration [9] as well as continuous-variable
teleportation and dense-coding protocols carried out between
an inertial and a noninertial observer [10]. The transforma-
tion laws have been generalized to an arbitrary two-mode
Gaussian state using the language of quantum Gaussian
channels [11]. In the present work we build on the previous
results and present a generic scheme for transforming an
arbitrary, multimode Gaussian state to a number of accel-
erating frames, where each of the modes can be observed by a
different accelerated observer. We also show how our scheme
can be applied to the case, in which each of the observers
accelerates in a different direction in space [12].

The paper is organized as follows. In Sec. Il we introduce
our formalism of noisy channels representing a change
of the reference frame. In Sec. III we discuss Bogoliubov
transformations between different decompositions of the
field operator. In Sec. IV we provide a complete charac-
terization of a general, multimode Gaussian channel. In
Sec. V we give an example of how our formalism can be
used in practice. Finally, Sec. VI concludes this paper.

II. STATE TRANSFORMATION
AS A NOISY CHANNEL

The focus of this paper is on the real scalar massive
quantum field in 1 4+ 1-dimensional spacetime. Such a field
satisfies the Klein-Gordon equation, ((J + m?)¢ = 0, writ-
ten in natural units of ¢ = # = 1. The field equation can be
solved in an arbitrary coordinate system, with the only
restriction that the chosen coordinates should allow for
the decomposition of the field operator into positive- and
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negative-frequency solutions. We will investigate two such
systems: Minkowski coordinates corresponding to an
inertial observer, and Rindler coordinates representing
uniformly accelerated observers. Consider two alternative
decompositions of the field operator ) involving ortho-
normal positive-frequency solutions in the Minkowski
frame, ¢;, and orthonormal positive-frequency solutions
in the Rindler frame, y;:

b= pfit ol =Y widi vvidl. ()

with corresponding annihilation operators f” ;» and d ;> Tespec-
tively. These two families of solutions are labeled by a
discrete index i, because we will focus on scenarios in which
these orthonormal solutions consist of a countable number of
wave packets rather than a continuum of plane waves.

Out of these two infinite families of mode solutions we
will select two finite subsets {¢,},e(1.7) and {y, },e(1.2)-
We will choose them in such a way that some of these
modes will be localized within the Rindler wedge I, and the
remaining modes will be localized within the Rindler
wedge II, depicted in Fig. 1. Following the construction
introduced in Ref. [11], we will consider a generalized
scenario in which the two wedges are separated by an
arbitrary (positive or negative) distance D.

t
D>0

FIG. 1. Rindler wedges I and II in Minkowski spacetime.

Since each of the modes ¢, consists only of positive
Minkowski frequency modes, and each of the modes v,
contains only positive Rindler frequencies, and they form
orthonormal families of solutions, they must satisfy the
following conditions:

Vst (0aldl”) = (wlyl”) = 0. (2)

where the asterisk symbol in the parentheses is optional.
Similarly, creation and annihilation operators associated
with these modes must satisfy the following conditions:

Vn;ék [fnv.]?](j)] - [gn, (,z](cﬂ] =0. (3)

Our goal is to study how quantum information encoded in
Z modes ¢, by an inertial observer can be decoded by an
accelerated observer who only has access to Z modes v,
defined in his frame. We will assume that the modes of the
accelerated observer are chosen such, that each of them
corresponds to a single mode of the inertial observer and
they do not overlap with each other. Therefore we will
impose the following additional condition:

Vn;ék [fn’ 6?2”] =0. (4)

A transition between two reference frames in which a
quantum state is defined is described by a linear
Bogoliubov transformation of creation and annihilation
operators [1]. It has been noticed that such an operation
transforms Gaussian states into Gaussian states, which are
completely characterized by first and second moments of
the quadrature operators defined below. Moreover, the
whole operation of changing the reference frame can be
described as an action of a quantum Gaussian channel [11]
on the input states prepared by the inertial observer. The
output of such a channel is a Gaussian state observed in
the accelerated reference frame. Because of the simplicity
of such a description we will only be interested in
investigating Gaussian states prepared by the inertial
observer.

The quadrature operators, corresponding to a mode f;
are defined as

) _Jetfi o _Ji=1i s
qk - \/z ’ pk \/Ei . ()

Let us define a vector of quadrature operators of all of the Z
input modes:

X0 =@ pV. L ad pYT

1‘*‘? fl—ﬁ f”k+f’lf”k—f”£

ﬂ 9 ﬂi 9 9 ﬁ 9 ﬂi b 9
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The first moment X) of a quantum state is simply given
by an average value of XU [13]:

X0 = <X(f)>. (7)

The second moments that form a covariance matrix, are
given by [13]

o = (X -x;". %) - x]"}). (8)

where {-,-} is an anticommutator. An analogous construc-
tion can be carried out for the output modes cAik correspond-
ing to the accelerated observers by replacing the letter f
with the letter d in the formulas (7) and (8).

The action of a generic Gaussian channel on any
Gaussian state be completely characterized by a pair of
matrices M and N [14]:

X = pmx\),
o) = M )MT + N. 9)

For Z-mode input and output states the M and N matrices
are both 2Z x 2Z dimensional. In order to completely
characterize the effect of uniform acceleration on the
Gaussian states it is sufficient to determine these two
matrices. This analysis has been previously carried out
for the special case of two-mode input/output states [11].
Here we extend the investigation to account for a generic,
multimode Gaussian state.

III. SOLUTIONS TO THE KLEIN-GORDON
EQUATION

A commonly used orthonormal basis of solutions of the
Klein-Gordon equation in an inertial reference frame is
given in terms of Minkowski plane waves parametrized by
a wave vector k:

1
Varwy

i(kx—wyt
eilke-on),

(10)

Uup =

where @, = Vk?> + m?. The orthonormality conditions
can be expressed as (ui|u;) =6(k—1) and (up|uj) =
—6&(k — 1). We will denote annihilation operators associated
with these solutions by a;.

A similar construction can be carried out in the Rindler
reference frame, with the orthonormal solutions corre-
sponding to regions I and II, parametrized by a positive-
frequency €, of the form [15]

sinh (%2 .
Wi = 2( 4 )Kig(m;()e"g” inregionI,
mPa 'a
sinh (%< )
wig = 2( 4 )K,g(—m)()e’g” in region II. (11)
]T a a

The orthonormality conditions for these solutions take
the form (wig.wiz) =6(Q—-E), (Wig, wiz) = —6(Q - &),
(Wi, wiz) = 0, and analogously for region II. In addition,
for D > 0 when the regions I and II do not overlap, we have
(Wig. wiz) = (Wig, Wiiz) = (Wi, wiiz) = 0. The associ-
ated annihilation operators corresponding to these solutions
will be denoted by b,q, where A € {I,1I}.

All the above annihilation and creation operators satisfy
canonical commutation relations. Additionally for D > 0
we have [y, byo] = [bl,, IQ}LIQ,] = [bio. B}LIQ,] = 0. These
conditions are not satisfied for D < 0, due to a nonzero
overlap between individual Rindler regions. However, we
will still choose all the wave-packet modes such that
Yt d,, (Aiy)] = 0 for any D.

Since all of the introduced bases are appropriate for the
description of the quantum field, we can write the field
operator using any of the equivalent decompositions:

é—/hMW@+HQ

(5]

= A dQ(WIQBISZ =+ WIIQZ;HQ) +He. + (D), (12)

where ®;(D) is an additional part of the field operator
covering the additional region between regions I and II,
labeled as region III. Note that ®y;(D) # 0 even for D < 0
and vanishes only when D =0 [11]. All the results
discussed in this work are independent of the specific
details of &y;(D).

We have introduced two decompositions of the field
operator into a wave-packet basis of modes [Eq. (1)] and
into continuous frequency modes [Eq. (12)]. Since the
wave packets contain only positive-frequency modes of
their respective frames, we have

Vne(l,Z)keRQ>0(¢nv u]t) = (V/n’ W?Q)
= (Wn W) = 0.

(13)

We can also relate the associated annihilation operators via
the following identities:

0, = A 4w wio)bio + (Wmowne)bua).  (14)

7= / ™ Ak (1) . (15)

(e8]
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As a consequence, the canonical commutation relations
for the wave-packet annihilation operators lead to the
requirements

1 = A A deQ’((l//n, WIQ)(W”’WIQ’)*[];IQ, B-{Q/]

+ (W Wi) W Wiy ) [ b, Z;IIQ’]
+ (W wig) W wier)* [Puiq. EITQf]
+ (W Wita) W Wiy ) [rica. BITIQ/Dv (16)

that restrict the possible choice of the modes. When D > 0
then the above condition simplifies to

= /°° dQ(| (W, wia) P + [(wa wuo)?). - (17)
0

And for D <0 we assume that the above relation is
satisfied by the appropriate choice of the wave-
packet modes.

IV. CHARACTERIZATION OF THE MULTIMODE
GAUSSIAN CHANNEL

Let us proceed with the computation of the matrices M
and N characterizing the Gaussian channel (9). A generic
transformation describing a transition between two refer-
ence frames has the following linear form:

a?k = Zak,nfn - ﬁk.nfnT’ (18)
d" =" = piafutai fal (19)
where
Q= (l//i‘d’j)’
Pij= _(‘//i|¢}k')- (20)

We can substitute the above relations into the definition of
the first moments corresponding to the wave packets in the
accelerated frame:

d jn +Cz\nJr
X, = (e
(St

Z
= ZRe(an,n’ _ﬂn,n’)Xg}y?’_l _Im(an,n’ +ﬂn,n/)X§Q’
n'=1

(ﬂn n n,n’)fl’>

(21)

X(d) _ <d:1 - a;\nT>
2n \/El

V4

= \;_lz <Z(an,n’ + ﬂ;n’)fn’

- (ﬁn,n’ + a;,n’)fj;/>
n'=1
- ) )
= Z Im(an,n’ - ﬂn,n’)Xjn’_l + Re(an,n’ + ﬂn,n’)Xjn"

n'=1

(22)

The above expressions allow us to determine the form of
the matrix M appearing in the transformation properties
of the first moments (9). This matrix can be cast in the
following block form:

M, , M, ,
My, My,
where
M - (Re(ai.j - pij) —Im(a;; +ﬁi.j)> (24)
" Im(a;; — p; ;)  Re(a;; +pij)

Therefore the matrix M is completely characterized by the
coefficients of the Bogoliubov transformation (18).

In order to compute the matrix N characterizing the
transformation properties of the covariance matrix given by
Eq. (9) we first consider the transformation properties of the
vacuum state, whose covariance matrix is just an identity,

asfag = 1. This allows us to write the matrix N as [11]

N =0\l - MMT. (25)

Therefore in order to determine the matrix N it is sufficient to
characterize the properties of the Minkowski vacuum state in
the accelerated frame of reference. We proceed with this
calculation by considering two special cases: when the two
Rindler wedges share acommon apex, and when they do not.

By explicit calculation given in detail in Appendix A we
find the form of the covariance matrix of the vacuum state
in the Rindler frame for D = 0. Let us choose the indices

ne{l,2,....Z}, ke {n+1,n+2,...,Z}. Itfollows that
d
(Gsag)Zn—l,Zk—l = ReNIk, (26)
(Ux(/gc):)Qn—l.Zk =ImN, ;. (27)
(O-\(/gg)Zan—l = ImN,tk, (28)
d _
(0-\(/32>2n,2k = —ReN, ;. (29)
d d
(US/a)c)zn,zn—l = (US/ai)zn 1.2n

_ / 40 Im[(y,, wig) (W, Wiig)] (30)

0 smh(7) '
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(Gs'ﬁbZn,Zn =1 +A dQ(|(Wn’WIQ)’2

_8
e a

sinh(%2)
(W, wia) W, Wig)]
sinh(?) ’

+ (W, wno)|?)
o0 R
—/ Q-
0
d

(6532)211—1,%1—1 =1 +A dQ(|(l//anIQ)|2

_0
e a

sinh(%?

2)
o Rel(w,,wia) W wio)]
dQ >
T A smh(%)

+ (W wno) ) —ar

(32)

_zQ
(0 = 1 +/oo do WWWIQ>|2 + |(l//nﬂWIIQ)|2)€ ¢
vac 2n n
0

sinh(%2)

where

NE :/wdg (W wio) Wi wig) + (W, wio) (Wi wia)
k= sinh(%)

e§[<l//n’wlﬂ) (Wewie)" + (W wig) (Wi wig) ']
. sinh(22) )
(33)

Similarly, when the respective Rindler wedges do not
have a common apex, D # 0, the covariance matrix of the
vacuum state can also be computed explicitly; see the
details in Appendix B. Let us choose the indices
ne{l,2,....Z} ke{n+1,n+2,...,Z}. Then we find

12 / / 4RI 15 (. ) (W wie) (W W)’

+ (Wn’ WIIQ)(‘I/mWIQ’)*] - 2Re/o /0 dQdQ'1, (Q’ Q’)[(Wn, WIQ)(Wrw Wnsz’) + (l//mWHQ)(l//n, WISZ’)]’ (34)

(|(Wn’ WIQ) |2 + |(1//n7 WIIQ)|2)6_§

4 (o]
(GSa«)c)zn-l,Zn—l =1 +A de Sinh(?)

12 / / 4RI 15 (. ) (W wie) (W W)

+ W W) Wa, wigr )] + ZRCA A dQdQ'1, (Q, Q) [(w,. wig) W, wiar) + (Wa Wig) W, wigr)],

(35)
d o0 [e+]
(64) 20,201 = 2Im / / QAT (Q. Q) [y wig) W Wiier) + (W W) (W Wiy ). (36)
|
(@ + &5 01h)
(0vac)an-1.26-1 = ReN, (D), (37) 1(Q.Q)= Kgoo(ImD]), (41)
(d) 2may/sinhZ2sinh 2L °
(GvaC)zn—l,zk = ImN;.k(D)’ (38)
(Gs{ét):)zn,zk—l = ImN, (D), (39) eﬂ(gzzﬂ/>(1‘ﬁ)
L(Q.Q) = ——— K o (42)
d _ nh %2 qinh #42 ¢
(0Vad)an ot = —ReN7 (D). (40) 2nay/sinh 7 sinh %,
where
|
Nf.k(D) =2 [// deQ/11<Q79')[(Wn, WIQ)(ka WHQ’) + (l//m Wnsz)(‘l/b WIQ’)}
+ / do (l//n’ WIQ)(ka WIQ>* + (‘Zg’ WIIQ)(WkawllQ)*
1—ea
= // dQdQ'I5(Q, Q') (v, wig) Wi wing ) + (Wi, wig) (Wi, wigr)*] | - (43)
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The explicit form of the N matrix can be calculated via
the formula (25). The above result provides a complete
characterization of a Gaussian channel responsible for the
transformation of a generic multimode Gaussian state due
to uniformly accelerated motion of the observer. It is a
direct generalization of a special case derived in Ref. [11].
At this stage we have not discussed the possible choice of
wave-packet modes ¢,, and y,, assuming only, that each of
them is fully supported within a single Rindler wedge and
contains only positive frequencies in its respective frame.
Also, the number of accelerated observers involved in the
characterization of the quantum state is arbitrary. It only
depends on the spatial localization of all the modes. For
instance, if each of the modes is localized within the same
region of spacetime, in principle their state could be
measured by a single accelerated observer having access
to a multimode measurement device. On the other hand, if
each of the modes is localized in a different region, in
general the total number of Z accelerated observers is
needed in order to observe the overall state. In the next
section we discuss a special case of a Z-partite symmetric
Gaussian state and apply our scheme to describe its
properties in a noninertial frame.

V. APPLICATION EXAMPLE: Z-PARTITE
SYMMETRIC GAUSSIAN STATE

Let us apply our multimode quantum channel to the case
of noninertial observers accelerating in Z different direc-
tions (see Fig. 2). Although the scheme discussed in this
work involves only 1+ 1-dimensional spacetime, a gen-
eralization to the 3 + 1-dimensional case discussed in
Ref. [12] allows us to draw conclusions based on our
simplified scheme to a good approximation.

g
ﬁ%%wf‘/
A/NV

T

FIG. 2. Scheme of motion of Z noninertial observes accelerat-
ing with identical proper acceleration A.

We will consider Z noninertial observes accelerating
with identical proper acceleration. Each of these observers
accelerates in a direction forming a 27” angle with the
remaining pair of accelerated observers, so that the scheme
is completely symmetrical. As a consequence, the overlap

coefficients appearing in Eq. (24) will be the same:

i j = 5ij(l//i\¢j) =6,
ﬂi.j = —5ij(l//i|¢f) = 5ijﬂ- (44)

In order to proceed with the explicit computation of these
coefficients we will choose to work with the mode
functions introduced in Ref. [10]. For these wave packets
the calculated f coefficients are at least 8 orders of
magnitude smaller than the o’s and can be safely neglected.
For such a choice, the dependence of the a coefficient on
the proper acceleration of the observer is shown in Fig. 3.

The resulting quantum channel can be used for trans-
forming a fully symmetric Z-mode pure squeezed vacuum
state. The covariance matrix of such a state can be written
as [16,17]

p ¢ ¢
an= | e (45)
SR
¢ &P

The elements of the covariance matrix depend on the
squeezing r and number of modes Z in the following way:

IR

2(Z — 2) sinh*(2r) + Z sinh(4r)

71 = y 47
Z+\/2(Z —1)cosh(4r) + (Z-2)Z +2 “7)
iF
0.951
3
0.9
0. 0.05 0.1 0.15 0.2 0.25
A
FIG. 3. The dependence of the a coefficient on the observer’s

acceleration. The figure is from Ref. [10].
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2(Z - 2) sinh?(2r) — Z sinh(4r)
2T Z/2Z - cosh(dn) + (Z-2)Z 12 (48)
. V2(Z—T1)cosh(4r) + (Z-2)Z +2 49)

Z

Let us now investigate how the purity of the state
changes, when observed by Z symmetrically accelerated
observers. The noninertial effects are represented by the
action of the Gaussian channel we have introduced above.
A purity p of a generic Z-mode Gaussian state described by
a covariance matrix ¢ can be written as [18]

1
H =57 Jaeto

Therefore we will be interested in the relative purity of the
state defined as

(50)

Hrel = ;ﬁ "\ deto@
det o)
- ©o . (51)
det (Me’M™ + N)

The choice of modes, introduced in the previous section,
leads to a significant simplification of the M matrix. Due to
the fact that we neglected all the f coefficients and the
values of a are real we have

M = (aﬂzxz)@z,
N = [(1 = a?)I,o] P~ (52)

The resulting relative purity as a function of the proper
acceleration A of all the Z observers, as well as the initial
level of squeezing r of the symmetric Gaussian state has
been studied numerically. The results are plotted for

Forel

2. 0.1

B/=30/Z=5m7=10
FIG. 4. The dependence of u, = f‘i:z/) on the observer’s

acceleration A and squeezing parameter r for different values of Z.

different values of Z in Fig. 4. We find that the purity
of the Z-partite pure state is reduced as the acceleration
increases and the effect is stronger for the states with larger
entanglement. We also find that the degradation of the
purity is increased with the number Z of parties involved.

VI. CONCLUSIONS

In this paper, we studied the transformation of multimode
Gaussian states between an inertial frame and a uniformly
accelerated frame of reference. The formulation of the
problem was also localized, which is a crucial requisite
for any feasible theory [19]. We generalized the previous
results [11] to a generic scheme for transforming an arbitrary,
multimode Gaussian where each of the modes can be
observed by a different accelerated observer. Finally, we
applied our results to the exemplary case, where each of
the observers accelerates in a different direction in space
observing a fully symmetric Z-mode pure squeezed vacuum
state. We showed how the purity of the initial state changes
when we consider Z symmetrically accelerated observers.
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APPENDIX A: COMPUTING THE COVARIANCE
MATRIX OF THE MINKOWSKI VACUUM IN
THE ACCELERATED REFERENCE FRAME
WHEN D=0

In this appendix we derive elements of the covariance
matrix of the Minkowski vacuum state in the accelerated
reference frame when D = 0. Let us first compute the

even, diagonal elements of the matrix (aﬁ‘e{i)M". Since the
vacuum state has a vanishing mean value for all the

annihilation and creation operators cAZg,T), we have

-d d,-d
}%

\/El’\/zi

In order to proceed with the computation we will use some
of the results derived in Ref. [11], namely

Mmﬁm{

M(01oaabrar 0y =m (01530} ¢ 0)

a/dkaégcag}k =0, (A1)
A~ A " 5(Q -
w0lbrable O = [ akalyall) =225 a2
b oA Q+Q A 6(Q—-Q
M<0|bj\QbAQ’|O>M =e /dk Qk) Ez’l)c _(27297_1)’
(A3)
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5 5 N _ o [ ey Q-
M{O0lb1abugy [0)y = (011 by [0) =€ “/agkag/kdk2sinh(?)’

. PN 0 [
M<0|bngm’|0>M = M<O|bIQb;rIQ’|O>M x /dk“&“gf)k =0.

Upon substitution, we have

© (W wio) Wi, wia) + (W, wia) (Wi wig)
dQ
0 2 sinh(%2) '

(O|c3’ cAiT|0> _ /°° do (Wn’WIQ)(Wk’WIQ)* + (l//n’WHQ)(Wk’WIIQ)*
M n M — .
0

This leads to the following result:

A

d A Aa A~ Al
(63220 20 = (O A} }0)ps = (0l +

but

_Q2
e a

MM&%+%&MM—1+/<mwwmmW+Mwwa>

0 smh(%) '

Finally, an even diagonal element of the covariance matrix has the form

LA A A s Re[(‘// s wIQ)(W ’ a)IIQ)]
di0Yy = v (O{d,,. d}}|0)y — / dQ L L
0w = {O01{dy diHO = | Sinb(=2)

o € o0 Re[(y,, w Vi, W
w@mmzl+/<mmwmmW+uwwa>.—/(m ) O )]
0 sinh(Z? 0 sinh(Z?)

For odd diagonal elements the derivation is analogous. We have

g Jt

(d) dn + dn

Ovac)an—1an—1 = M{0]2| ——=—
CLOMPRIETI E

0 Re[(w,, wio) (W, wig)] NoaE A
= dQ old,d" +did |0
/O sinh(?) +M< ‘ n*n =+ n n| >M

:lfAdMWmmW+W%WM5h

N /00 40 Re[(l//n, ‘jﬁg)(éﬁn, WIIQ)]
0 sinh(%2)

Similarly, the nearest off-diagonal elements of the matrix have the following form:

o+ 4, R o Il i)
o)z = O 2 L0 — =i, (01,8, = 40 — [ an e i) o),
’ 0 sinh (%2

V2 V2i

All the remaining matrix elements are

Gad ded
: ﬂmm

(657?3)211—1.21(—1 = M<0|{ V2 ) V2
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A, +d a -
(048201 26 = (O] TR 0Ny, (A15)
N
T gt
d d d +d,
(0)nmics = <0|{ o G }|0>M, (A16)
d d
(0) 050 = wy(0]4 42— Ik~ Aoy (AL7)
\@ ﬁl

where k € {n+ 1,n+2,..., Z}. Following the same pro-
cedure as for the diagonal elements, we find

d
(65’3()3)2n—1,2k—1

= M<O|Eln21k + (anaz)* + Elna]t + (anak)* |O>M
=2Re(y;(0]d,,d;|0)p) +2Re(y (0]d,,d}0) )

e Re[(y,,. wia) Wi wia) + (W Wia) (Wi, wia)]
A dQ( sinh(%2)

+ e§ReKV/n’Wm) (Wi win)* + (V/n’WIIQ)(V/kaHQ)*]
sinh(%2) '
(A18)

and analogously for the remaining elements.

APPENDIX B: COMPUTING THE COVARIANCE
MATRIX OF THE MINKOWSKI VACUUM IN
THE ACCELERATED REFERENCE FRAME
WHEN D # 0

In this appendix we generalize the results obtained in
Appendix A for the case, when D # 0. From the equa-
tion (12) we have for A € {I,1I}

BAQ = /dk((WAQ»”k)ak + (WAQ»MI)&Z) + (WAQ,‘DHI(D))»
(B1)

but (wpq, @y(D)) =0 because the decomposition of
@ (D) contains only modes from the region between
the Rindler wedges. Therefore

hrg = / dk(aly)"ay — g ah), (B2)

where the Bogoliubov transformation coefficients are
defined as

(A)

Ao = (U, Waq), (B3)
i = —(uf w=a). (B4)

A transition from the case when D = 0 to the case when
D #0 corresponds to the following change of the
Bogoliubov coefficients [11]:

1 —i2k (1)

ag = € "agy, (BS)
o et #6)
PO ei%kpl) (B7)
ﬁg? - e_’gkﬂg(). (B8)

Therefore in the case when D # 0 we have
w (011 bugr[0)n
— ol [ ak(allal -pila)
/ Ak (@00 ap — B al) 0}y
- [ty = [ et piy
:/dkekae_§agle ”?/ag,)k e” (Qm)/dke’Dka&a(I?k

(B9)

An analogous procedure involving other quadratic mono-
5 ()

mials of the annihilation and creation operators b, and
B,g) leads to the following results:

M<0|EEQEEQ’|O>M = M<O|bT bzg’|0>M =0, (B10)
wOlbzable 0 =222 @)

W Obabar0y = 2550 iy
M<O|EIQEIIQ’|O>M =1 (Q’ Q/)’ (B13)
wOlbuabioloyy = 1,2, @), (B14)
wOBabi |0 = 11(Q.Q).,  (BIS)
w(01b bl 0) = 11(Q, ), (B16)

W OlBlybuar )y = 1@ Q)™ 1), (B17)
wOlbuoblgloy = H(@.Q),  (BI8)
wOlbobl |0 = H(@Q.Q),  (B19)
w0lB L BialOhy = (@, @)™ 178, (B20)

where

025003-9
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, e”(ﬂz_uﬂ/) _ pr(@-9))
hQQ) = K g (jmD), (B21)
2na4/sinh % sinh ”TQ ¢
2(Q+Q))

, e 2a _ pr(Q+Q) ,

L(Q,Q) = e Il 2 Kig+_g1/(|mD|) =15(Q,Q), (B22)
2may/sinh %2 sinh #££ ’
Q+Q z iDk k g+g _ﬂ(nzg’ ) -
L(Q.9) = a3 (Zkfk> - B K (D)
sinh %2 ”9 sinh 2+ ”9 k 4ma4 /sinh %2 sinh %
/ 7(Q 9’)

— 1(Q, Q)T = (@, @) ), (B23)

It is worth noticing that the integral expressions /;, I, and /5 are real valued and we can omit complex conjugations.
Moreover, the operators d,, with different indices always commute. This leads to the following results:

Mw@%mM=A(Ad&&%&@%@mewwm>umme%mmL

(B24)

* 40 (W wio) Wi wig)* + (W, wi) (Wi wia)*

MM&@MM—/

+A‘AdeMQQW%MMmeﬁ+meMWWMW

0 1-¢

—21Q
a

(B25)

The above expressions are sufficient to completely characterize all the elements of the covariance matrix in the case

when D # 0.
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