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We show that the relativistic motion of a quantum system can be used to generate quantum gates.

The nonuniform acceleration of a cavity is used to generate well-known two-mode quantum gates in

continuous variables. Observable amounts of entanglement between the cavity modes are produced

through resonances that appear by repeating periodically any trajectory.
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Introduction.—Understanding how motion and gravity
affect quantum information is a key feature in the
implementation of new relativistic quantum technologies,
including quantum cryptography and teleportation, in
relativistic regimes and space-based scenarios that are
currently under investigation [1]. Recent results in relativ-
istic quantum information show that the nonuniform
motion of a cavity creates entanglement between the cavity
field modes [2,3]. In this Letter, we employ the moving
cavity scenario to show that the relativistic motion of a
quantum system can be used to implement quantum gates.
The gates can be readily implemented experimentally
thanks to cutting-edge technology in superconducting cir-
cuits where the relativistic motion of boundary conditions
has been demonstrated [4].

Finding suitable ways to store and process information in
a quantum and relativistic setting is a main goal in the field
of relativistic quantum information [5]. Moving cavities are
good candidates to store information [6–8] since confined
fields can be realized experimentally [9] and observers can
directly access their states by means of local operations.
When a cavity is accelerated for a finite time, the cavity
modes are affected by the motion. A mismatch between the
vacua at different times gives rise to the creation of particles
[10] that populate and entangle the modes.

We show that two-mode squeezing gates, which are
paradigmatic gates in continuous variable systems [11],
can be produced when the cavity follows a trajectory that
includes nonuniform acceleration. The amount of entangle-
ment generated by the quantum gate can be enhanced
through a resonance produced by repeating any trajectory
periodically. The trajectory can be, for example, a return trip
to Alpha Centauri or a short segment of uniform accelera-
tion. We show analytically that for any pair of oddly
separated modes it is possible to find a travel time where
the entanglement produced by the quantum gate increases
linearly with the number of repetitions. These resonances
appear independently of the details of the trajectory, though
the amount of entanglement generated does depend on the
trajectory itself. Our scheme is illustrated in Fig. 1.

We present a class of sample travel scenarios in which
the generated entanglement can be expressed analytically
in terms of the magnitude and direction of the acceleration.
This class includes the sinusoidal motion that is often
considered in the dynamical Casimir effect literature [12].
In brief, our main contribution is to implement quantum

processing gates in relativistic quantum field theory. This is a
step beyond the various proposed nonrelativistic implemen-
tations of continuous variable quantum gates [11,13,14].
Setup.—We consider a real scalar field � of mass m

contained within a cavity in (1þ 1)-dimensional space-
time. Boundary conditions are imposed such that the field
vanishes at the cavity walls. The massless field can be
treated as a special case of our study, and the effect of
additional transverse dimensions can be included as a
positive contribution to the mass. The cavity follows a

FIG. 1 (color online). The relativistic motion of the cavity is
used to produce a two-mode squeezing gate. The input (red) and
output (blue) states are Gaussian states. The nonuniform motion
of the cavity produces two-mode squeezing. The procedure to
enhance the effect is illustrated in the magnified green oval: by
repeating N times an arbitrary trajectory characterized by a total
proper time T (represented by the single box in the smaller oval
at the top), the degree of squeezing is linearly increased.
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worldtube that is composed of segments of inertial and
uniformly accelerated motion. We will start by describing
the field within the cavity during such segments as seen by
a comoving observer.

During segments of inertial motion, we use Minkowski
coordinates (t, x) to describe our system. The cavity walls
are placed at x ¼ xA and x ¼ xB where 0< xA < xB so
that L ¼ xB � xA is the length of the cavity. The posi-
tive frequency mode functions with respect to the time
translation Killing vector @t are

�M
k ðt; xÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
!kL

p sin

�
k�

L
ðx� xAÞ

�
e�i!kt; (1)

where !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk�=LÞ2 þm2

p
are the Minkowski frequen-

cies and k 2 N (we set c ¼ @ ¼ 1).
We employ Rindler coordinates (�, �) to describe the

field during segments of uniformly accelerated motion.
The transformations between Rindler and Minkowski

coordinates are � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

p
and � ¼ ð1=aÞarctanhðt=xÞ,

where a > 0. A uniformly accelerated observer comoving
with the cavity follows the boost Killing vector field
@� ¼ x@t þ t@x, which in Rindler coordinates takes the

form @� ¼ ð1=aÞ@�. The cavity walls are placed at � ¼
xA and � ¼ xB, and the proper time and acceleration at the
center of the cavity are given by � and a ¼ 2=ðxB þ xAÞ,
respectively.

The solutions �R
k ð�; �Þ to the Klein-Gordon equation

that are of positive frequency with respect to @� can be

expressed in terms of modified Bessel functions [15,16].
The Rindler frequencies are�k > 0 and are determined by
�R

k ð�; xBÞ ¼ 0. In the massless case, the mode functions

and the frequencies reduce to simple expressions [6].
The quantized field operators are given by �M ¼P
kð�M

k ak þ H:c:Þ and �R ¼ P
kð�R

k Ak þ H:c:Þ during

segments of inertial and accelerated motion, respectively.
The Minkowski and Rindler annihilation and creation
operators obey the standard commutation relations

½ak; ayl � ¼ �kl and ½Ak; A
y
l � ¼ �kl.

We will work in the covariance matrix formalism, which
is applicable to systems consisting of a discrete number of
bosonic modes as long as the analysis is restricted to
Gaussian states. In this framework, the state of the system
is entirely described by its first and second moments
[17,18]. The evolution of the state is given by a similarity
transformation STp�S where S is the symplectic represen-
tation of the evolution and � is the covariance matrix
encoding all information pertinent to the state. Tp denotes
matrix transposition.

Travel scenario techniques.—Changes from inertial to
accelerated motion and vice versa are implemented by the
action of Bogoliubov transformations. Consider that at
t ¼ 0 a cavity initially at rest begins to accelerate. The
inertial and accelerated cavity modes are related by the
Bogoliubov transformation �R

k ¼
P

nð�kn�
M
n þ�kn�

M�
n Þ,

where the star denotes complex conjugation and the
Bogoliubov coefficients �kl and �kl can be evaluated by
taking Klein-Gordon inner products of the two sets of
modes at t ¼ 0 [10,19,20].
We employ a perturbation expansion of the Bogoliubov

coefficients such that � ¼ Iþ h�ð1Þ þOðh2Þ and � ¼
h�ð1Þ þOðh2Þ, where h ¼ aL is a small dimensionless
expansion parameter [6,7]. For cavities of typical laboratory
sizes, the small h regime can accommodate extremely large
accelerations. There are no restrictions on the duration,
covered distance, or the achieved velocity of the motion.
During the segments of inertial or accelerated motion,

the modes undergo free evolution, which induces phase
rotations on the state of the form Uð�Þ ¼ L1

i¼1 Rð	iÞ
where Rð	iÞ is the standard 2� 2 rotation matrix of angle
	i. The angles are given by 	k ¼ !kt during coasting
segments and 	k ¼ �k� during acceleration. The Rindler
and Minkowski frequencies coincide to first order,
�kðhÞ ¼ !k þOðh2Þ.
We construct the cavity trajectories by composing these

basic transformations. The field modes of a cavity initially
at rest and the modes after any travel scenario are related
through general Bogoliubov transformations. In the covari-
ance matrix formalism, transformations are represented by
the symplectic matrix S, which can be decomposed into
2� 2 blocks skk0 of the form

skk0 ¼
ReðAkk0 � Bkk0 Þ ImðAkk0 þ Bkk0 Þ
�ImðAkk0 � Bkk0 Þ ReðAkk0 þ Bkk0 Þ

 !
; (2)

where Akk0 and Bkk0 are Bogoliubov coefficients associated
with the whole trajectory [3]. In the case of a cavity
initially at rest that begins to uniformly accelerate at
t ¼ 0, the symplectic matrix, which we denote by V ,
corresponds to Akk0 ¼ �kk0 and Bkk0 ¼ �kk0 . When the
Bogoliubov coefficients �kk0 are nonvanishing, there
is particle creation and the cavity modes become en-
tangled according to a comoving observer. The basic build-
ing block trajectory that corresponds to inertial-uniformly
accelerated-inertial motion is implemented by the action of
the symplectic matrix SB ¼ V�1ðhÞUð�ÞV ðhÞ. The
entanglement generated between the cavity modes after a
single basic building block trajectory has been analyzed in
Ref. [3] and found to be very small.
We are interested in trajectories that generate entangling

quantum gates. In particular, we will show that the entan-
glement growth can be made cumulative by repeating
trajectory segments that may individually contain any
number of subsegments of constant acceleration. We
assume the accelerations of the subsegments to be of the
form ai ¼ sia, where a is the largest acceleration and
si < 1. Assuming that h ¼ aL � 1, the Bogoliubov

coefficients can be expanded to first order in h as Akk0 ¼
Gk�kk0 þ Að1Þ

kk0 and Bkk0 ¼ Bð1Þ
kk0 , where the superscript (1)

denotes a quantity that is of first order in h, Gk ¼ ei!kT are
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the phases acquired by the state during segments of free
evolution, and T denotes the total proper time of the seg-
ment. Taking the cavity to be initially in the vacuum state,
we find that the reduced state of modes k and k0 after an
N-segment trajectory is 
N ¼ ðSN

kk0 ÞTpSNkk0 where

skk0 ¼
skk skk0

sk0k sk0k0

 !
:

Two-mode entangling gates.—We now show that the
transformation SN

kk0 corresponds to a two-mode entangling

gate known as the two-mode squeezer. We find that


N ¼ 1 Eð1Þ
N

Eð1ÞTp
N 1

0
@

1
AþOðh2Þ;

where the 2� 2 matrix Eð1Þ
N is a function of the first-order

alpha and beta coefficients only. This state is pure, bipar-
tite, and symmetric [21], and it has the form 
N ¼
RTpZTpZR of a generalized squeezed state. The symplectic
matrix is hence a two-mode squeezing gate SN

kk0 ¼ ZR

where the 4� 4 rotation matrix R ¼ Rðc kÞ � Rðc k0 Þ is a
local operation,

ZðrÞ ¼ coshr1 sinhr
z

sinhr
z coshr1

 !
;

and 
x, 
y, 
z denote the Pauli matrices. The squeezing

parameter r is proportional to h so that jrj � 1. The
entanglement produced by the gate will be quantified
in the next section. We will in particular show that the
entanglement grows linearly in the number of repetitions in
periodic motion.

The entangling power of the quantum gates.—A lower
bound on the entanglement generated by the quantum
gate can be found by calculating the smallest positive
symplectic eigenvalue ~�N of the partial transposed state
~
N ¼ P
NP [18] where P ¼ diagð1; 1; 1;�1Þ [22]. The
symplectic eigenvalues are the eigenvalues of the matrix
i�~
N , where the symplectic form � is for us given by
� ¼ �i
y � 
y. This will bound a family of entangle-

ment monotones based on the positive partial transpose
criterion [23], including the logarithmic negativity, all of
which are monotonic functions of ~�N .

When the commutator [STp
kk0 , Skk0] vanishes, the partial

transposed state after N segment repetitions is equal to the
Nth power of the partial transposed state after a single
repetition of the segment, i.e., ~
N ¼ ~
N

1 . This implies that

the first-order correction ~�ð1Þ
N to the symplectic eigenvalue

grows linearly, i.e., ~�ð1Þ
N ¼ N~�ð1Þ

1 . Any entanglement mea-

sure Eð~�NÞ that is a function of the symplectic eigenvalue

~�N then satisfies Eð~�NÞ � ~�ð1Þ
N � N~�ð1Þ

1 � NEð~�1Þ, and

therefore ½STp
kk0 ; Skk0 � ¼ 0 is a resonance condition. At the

resonance, the logarithmic negativity is given by EN ¼
N~�1, where ~�

ð1Þ
N � Bð1Þ

kk0 and B
ð1Þ
kk0 is the first-order correction

to the beta coefficients Bkk0 of the segment [3]. A lower

bound on the entanglement generated at after N segment
repetitions is hence given by the logarithmic negativity,

EN ¼ NBð1Þ
kk0 .

The commutator for an arbitrary segment, to first order

in h, is ½STp
kk0 ; Skk0 � ¼ ð 0

CTp
C
0Þ, where C ¼ ReðwÞ1�

ImðwÞ
x and w ¼ 2½ðG�
k �Gk0 ÞBð1Þ

kk0 �. This commutator

vanishes when ðG�
k �Gk0 ÞBð1Þ

kk0 ¼ 0. Recalling that the

Minkowski and Rindler frequencies coincide to first order

in h, it follows that resonances occur when Bð1Þ
kk0 � 0 and

the total proper time T takes the discrete values

Tn ¼ 2n�

!k þ!k0
; n ¼ 1; 2; . . . : (3)

We emphasize that Tn does not depend on the details of the
travel scenario; however, the total amount of entanglement

generated EN ¼ NBð1Þ
kk0 does depend on the specifics of the

trajectory thorough the Bogoliubov coefficient. We further
find that the average number of excitations hNki in a cavity
mode at resonance is proportional to ~�ð1Þ

N .
Sample travel scenario.—We now specialize to a seg-

ment in which the cavity travels with proper acceleration
a ¼ h=L for proper time �, coasts for proper time t, travels
with proper acceleration (in either the same or opposite
direction) a0 ¼ h0=L for proper time �, and finally coasts
for proper time t. The total proper time of the segment is
Tn ¼ 2ð�þ tÞ, and the symplectic transformation is

Skk0 ¼ Ukk0 ðtÞV�1
kk0 ðh0ÞUkk0 ð�ÞV kk0 ðh0ÞUkk0 ðtÞ

�V�1
kk0 ðhÞUkk0 ð�ÞV kk0 ðhÞ: (4)

The first-order correction to the beta Bogoliubov coeffi-
cient has the modulus

jBð1Þ
kk0 j ¼ ckk0 j1� g�kg

�
k0 jj1þ �yg�kg

�
k0f

�
kf

�
k0 jh; (5)

where gk ¼ expði!k�Þ, fk ¼ expði!ktÞ, a0 ¼ �ya (y > 0),
and � ¼ 1 (respectively � ¼ �1) when the two accelera-
tions have the same (opposite) direction. Specializing to a

massless field, we have ckk0 ¼
ffiffiffiffiffiffiffi
kk0

p ½1�ð�1Þk�k0 �=½�2ðkþ
k0Þ3�. At the resonance (3), the logarithmic negativity is
given by

EN ¼ Nckk0 j½1� ð�1Þneið!kþ!0
k
Þt�½1þ ð�1Þn�y�jh: (6)

Note that EN vanishes when n is even and the time of
coasting is t ¼ 2�m=ð!k þ!0

kÞ and when n is odd and

t ¼ ð2mþ 1Þ�=ð!k þ!0
kÞ withm 2 N. Taking the accel-

erations to have equal magnitude (y ¼ 1), a maximal
amount of entanglement is generated for accelerations
in the same direction when n is even and t ¼ �ð2mþ
1Þ=ð!k þ!0

kÞ and for accelerations in opposite directions

when n is odd and t ¼ 2�m=ð!k þ!0
kÞ. These maxima

are evident in Fig. 2 where we plot ~�ð1Þ
N after N ¼ 5 seg-

ment repetitions as a function of the proper time of accel-
eration � and the time of coasting t.
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Interestingly, the special case of sinusoidal motion cor-
responds to the standard dynamical Casimir setting where
the cavity oscillates periodically as a whole. A resonant
enhancement of particle creation occurs in the dynamical
Casimir effect [12], which was recently demonstrated in
the laboratory in a superconducting circuit consisting of a
coplanar transmission line with a tunable electrical length
that produces an effective moving boundary [4]. In this
setup, it is possible to introduce a second boundary condi-
tion, which, together with the first one is modulated in
such way that the system resembles a moving cavity of
constant length from the perspective of a comoving
observer. Furthermore, the onset of sudden accelerations
has already been achieved in this system. Therefore, this
setup is suitable to implement relativistic quantum gates
experimentally. In addition, in realistic scenarios cavity
losses play an important role [9]. We are currently inves-
tigating the loss of entanglement due to decoherence and
the effects on quantum gates in the relativistic scenario
considered here. We anticipate that the results will be
similar to the nonrelativistic case. Decoherence will
degrade entanglement, and quantum gates will therefore
be imperfect.

Via the equivalence principle, our results suggest that
changes of the gravitational field can produce entangle-
ment and quantum gates. For example, consider a small
cavity containing a bosonic field in its vacuum state freely
falling in the presence of a gravitational field [24].
Entanglement between the modes is generated by suddenly
holding the cavity at a fixed position against the action of
the gravitational field. If the cavity’s position changes
periodically or the gravitational field fluctuates, the entan-
glement can be enhanced. Quantifying entanglement in
situations where motion or gravitation have a significant
role can also provide guidance for theories about the
microscopic structure of spacetime, via the Hawking-
Unruh effect and its connections to thermodynamics and
statistical mechanics [25,26].

Discussion.—We have introduced a scheme for imple-
menting quantum processing gates in relativistic quantum

field theory. The relativistic nonuniform motion of a cavity
is employed to generate paradigmatic two-mode quantum
gates that produce observable amounts of entanglement.
The gates can be implemented experimentally because of a
recent breakthrough in superconducting circuits where the
relativistic motion of a boundary condition was demon-
strated [4]. Finding ways to create significant amounts of
entanglement in relativistic settings is of great interest
since entanglement is necessary for quantum communica-
tions and information processing [27]. Recent studies in
relativistic quantum information show that small amounts
of mode entanglement are created when a cavity undergoes
nonuniform motion [6,7]. We show that particle creation
and bipartite mode entanglement can be linearly enhanced
by repeating periodically any trajectory.
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