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Abstract—
We propose and discuss a complete framework for esti-

mating significant changes in the average time-frequency
density of energy of event-related signals. Addressed issues
include estimation of time-frequency energy density (match-
ing pursuit and spectrogram), choice of resampling statistics
to test the hypothesis of change in one small region (resel)
and correction for multiplicity (False Discovery Rate). We
present estimation of the significance of event-related EEG
desynchronization and synchronization (ERD/ERS) in the
time-frequency plane.

Complete software implementing all the discussed steps
is freely available from the Internet at
http://brain.fuw.edu.pl/~durka/tfstat.
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I. Introduction

EVENT-RELATED changes of energy in different EEG
frequency bands are an important indicator of the un-

derlying brain processes. Sensory processing and motor be-
havior are connected with the localized decrease of power
in certain frequency bands, particularly in the alpha band.
This phenomenon was called event related desynchronisa-
tion (ERD). The following increase in power after the event
was named event related synchronisation (ERS). These ef-
fects, particularly in the context of movement planning,
were extensively studied by Pfurtscheller [1], who also de-
fined the ERD/ERS as the change in power in particular
frequency band relative to the pre-movement epoch. The
investigation of the ERD/ERS phenomena, apart from the
clinical and scientific merits, has also technological implica-
tions: it opens the possibility of a brain-computer interface
design [2]. Therefore, the quantification of the EEG reac-
tivity to the externally or internally paced events and the
assessment of the significance of changes have broad impli-
cations.
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The classical method of quantification of event-related
desynchronization and synchronization (ERD/ERS) [1]
consists of time averaging the squared values of the sam-
ples of single trials, band-pass filtered in a priori selected
bands. In 1993 S. Makeig [3] presented event-related spec-
tral perturbation, that is time-varying spectra, estimating
the time-frequency dynamics of underlying processes. Such
an exploratory approach, free of a priori assumptions on
fixed frequency bands, is widely used in last years, c.f.
[4][5][6][7] to quote only few related works.

Different methods were used for estimating the time-
frequency density of signals energy—apart from the short-
time Fourier transform (STFT), e.g. smoothed Wigner-
Ville distributions [5][6] and continuous wavelet transforms
[8][4]. All these functions estimate the same quantity—
time-frequency energy density of the signal. However, re-
sults may vary significantly not only depending on the cho-
sen method, but also on its parameters (chosen wavelet,
smothing of Wigner-Ville distribution, etc.). This produces
an additional—apart from the unavoidable inter-subject
variability—noise in the published results and makes dif-
ficult comparison of different findings, also reducing the
value of neurophysiological conclusions drawn from these
works. On the other hand, it is hard to judge a priori
which of the estimators is “better” when analyzing signals
of unknown content, in the absence of well defined criteria.

In 2001 the application of adaptive approximations,
implemented the matching pursuit (MP) algorithm, was
proposed for ERS/ERD estimation in the time-frequency
space [9]. It proved to be a robust estimator, offering the
best time-frequency resolution and high sensitivity in the
investigation of the microstructure of ERD/ERS. It re-
vealed the detailed structure of the gamma activity and
the dependence between beta and gamma components [9].
In [10] the spatio-temporal behavior of different compo-
nents of mu and beta rhythms was studied—using MP
estimates—in the context of their functional role in move-
ment preparation. Finally, this paper provides a framework
for comparing the performance of different time-frequency
estimators in the task of detecting event-related changes
of energy (accompanying software implements MP and
STFT, extensions of the system are being developped).

Apart from the discrepancies in the approach to the very
issue of estimation of the time-frequency energy density of
signals, the question of significance of changes, indicated
by these estimators, remains an open issue. It seems to be a
crucial point, essential to any procedure which is supposed
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to bring clinical or research conclusions.
Previous approaches include e.g. [3], [4] and [5], where se-

lected time-frequency regions were compared between dif-
ferent experimental conditions. But the most common need
is to evaluate the significance of a given “burst” (time-
frequency region of visible change) in relation to a refer-
ence period. When we see e.g. “some increase” in a given
epoch and frequency, we must ask, before drawing any con-
clusions, whether this is a statistically significant effect or
just a fluctuation. In spite of this, up to now only few
works addressed this issue.

E.g. in [6] the significance of an occurence of a burst
of activity was estimated and displayed for a single fre-
quency band; the issue of multiplicity in case of several fre-
quency bands was mentioned, but not investigated. In [7]
resampling tests were performed for each frequency band
separately, and their results were displayed together on a
common time-frequency plane. A direct interpretation of
such a map of “significant changes” may lead to neglecting
the influence of multiple comparisons [11]. For testing the
hypothesis of no change in one frequency band, we assume
a significance level α, corresponding to the probability of
type I error (rejecting a true hypothesis). This is valid for
a single hypothesis, which includes a priori choice of the
frequency band of interest. But in the exploratory analy-
sis, when statistically significant results are displayed for
an array of frequencies, the probability of type I error for
the whole family of hypotheses can increase dramatically
above the significance level assumed for a single frequency
band. A region picked from such a map should not be
interpreted as significant at the claimed significance level
α.

In this paper we present and discuss a complete frame-
work for estimating significant changes in the average time-
frequency density of energy of event-related signals. The
method is presented in the context of ERD and ERS of the
brain electrical activity. It consists of the following steps:
1. Estimation of the time-frequency density of energy of
single trials (we implement matching pursuit (MP) and
compare its results with the spectrogram (STFT)).
2. Division of the time-frequency plane into resels (from
resolution elements), for which the average energy density
is calculated.
3. Choosing statistics for the null hypothesis of no change
in the given resel compared to the reference epoch in the
same frequency (we implement two resampling methods).
4. Selecting a threshold for the null hypothesis corrected
by multiple comparisons (we propose the use of False Dis-
covery Rate and compare it to the stepdown Bonferroni–
Holmes procedure).
5. Display of the energy changes in significant resels.

The following section gives a general discussion of applied
methods, and section III presents their application.

II. Methods

A. Estimation of signal’s energy density

The two methods discussed below represent the extrema
of the wide spectrum of possible time-frequency estimators:

spectrogram offers a fast algorithm and well established
properties, while MP has the highest presently available
resolution at a cost of a high computational complexity.
Both these methods offer uniform time-frequency resolu-
tion, as opposed to the time-scale approaches (wavelets).

A.1 Short time Fourier transform

Short time Fourier transform (STFT or spectrogram) di-
vides the signal into overlapping epochs. Each of these
epochs is multiplied by a window function and then sub-
jected to the Fast Fourier Transform [12], providing spec-
trum with resolution dependent on the epoch’s length. We
used Hanning windows with overlap 1/2 of its length.

A.2 Matching pursuit

Matching pursuit (MP) is an algorithm for a sub-optimal
solution of the NP-hard problem of an optimal approxima-
tion of a function in a redundant dictionary D. It was
proposed in [13] for the adaptive time-frequency approxi-
mations of signals. In each of the steps the waveform gγn

is
matched to the signal Rnf , which is the residual left after
subtracting results of previous iterations:





R0f = f
Rnf =< Rnf, gγn > gγn + Rn+1f
gγn = arg maxgγi

∈D | < Rnf, gγi > |
(1)

where arg maxgγi
∈D means the gγi giving the largest value

of the product | < Rnf, gγi > |.
Dictionaries (D) for time-frequency analysis of real sig-

nals are constructed from real Gabor functions:

gγ(t) = K(γ)e−π( t−u
s )2

sin
(
2π

ω

N
(t− u) + φ

)
(2)

N is the size of the signal, K(γ) is such that ||gγ || =
1, γ = {u, ω, s, φ} denotes parameters of the dictionary’s
functions. For these parameters no particular sampling is
a priori defined. In practical implementations we use sub-
sets of the infinite space of possible dictionary’s functions.
However, any fixed scheme of subsampling this space intro-
duces a statistical bias in the resulting parametrization. In
[14] we proposed a solution in terms of MP with stochastic
dictionaries, where the parameters of a dictionary’s atoms
are randomized before each decomposition, or drawn from
flat distributions. Results presented in this paper were ob-
tained with such a bias-free implementation.

For a complete dictionary the procedure converges to f ,
but in practice we use finite sums:

f ≈
M∑

n=0

< Rnf, gγn > gγn (3)

From this decomposition we can derive an estimate
Ef(t, ω) of the time-frequency energy density of signal f ,
by choosing only auto-terms from the Wigner distribution

Wf(t, ω) =
∫

f
(
t +

τ

2
)

f
(
t− τ

2
)

e−iωτdτ (4)
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calculated for the expansion (3). This representation will
be a priori free of cross-terms:

Ef(t, ω) =
M∑

n=0

| < Rnf, gγn > |2 Wgγn(t, ω) (5)

B. Time-frequency resolution

Time-frequency resolution of signal’s representation de-
pends on a multitude of factors, which are even more com-
plicated in the case of the averaged estimates of energy.
A general lower bound is given by the uncertainty princi-
ple, which states (c.f. [15]) that the product of the time
and frequency variances exceeds a constant, which for the
frequency defined as inverse of the period (Hz)1 equals to

1
16π2 :

σ2
t σ2

f ≥
1

16π2
(6)

It can be proved that equality in this equation is achieved
by complex Gabor functions; other functions give higher
values of this product. Since the time and frequency
spreads are proportional to the square root of the corre-
sponding variances, minimum of their product reaches 1

4π .
However, our attempts to estimate the statistical signif-

icance in small resels of area given by (6) resulted in in-
creased ”noise”, i.e., detections of isolated changes in posi-
tions inconsistent across varying other parameters. There-
fore we fixed the area of resels at 1

2 , which at least has
certain statistical justification: standard, generally used
sampling of the spectrogram gives 1

2 as the product of the
localization in time (window length less overlap) and in
frequency (interval between estimated frequencies). This
sampling is based upon statistically optimal properties,
namely independent samples for a periodogram of a Gaus-
sian random process (c.f. [16]). Other values of this param-
eter can be of course considered in practical applications:
the software accompanying this paper allows to investigate
the impact of changing this parameter.

C. Integration of MP maps

Unlike the spectrogram (STFT, section II-A.1), MP de-
composition (section II-A.2) generates a continuous map
of the energy density (5). From this decomposition a dis-
crete map must be calculated with a finite resolution. The
simplest solution is to sum for each resel the values of all
the functions from the expansion2 (3) in the center of each
resel (ti, ωi):

Epoint(ti, ωi) =
∑

n

| < Rnf, gγn > |2 Wgγn(ti, ωi) (7)

1For the angular frequency this constant would be equal to 1
4

2In practice this sum will be of course finite; in this study we used
2 different stopping criteria: for the Dataset I iterations were stopped
when 99.9% of signal’s energy was explained, which resulted in about
400-500 waveforms per trial. For the Dataset II number of iterations
was fixed at 1300. These criterions were chosen to ensure proper
repreentation of high frequency structures at a minimum computa-
tional cost (number of iterations. Details of the MP procedure can
be found in [14]

However, for certain structures or relatively large resels,
(7) may not be representative for the amount of energy con-
tained in given resel. Therefore we use the exact solution,
obtained by integrating for each resel power of all the func-
tions from expansion (3) within the ranges corresponding
to the resel’s boundaries:

Eint(ti, ωi) =
∑

n

| < Rnf, gγn
> |2

ti+
∆t
2∫

ti−∆t
2

ωi+
∆ω
2∫

ωi−∆ω
2

Wgγn(t, ω)dtdω

(8)
The difference between (7) and (8) is most significant

for structures narrow in time or frequency relative to the
dimensions of resels. In this study we used relatively large
resel’s area and the average difference in energy did not
exceed 5-7%.

D. Statistics

D.1 Reference epoch

To quantify changes of the energy density we first define
a reference epoch. Properties of the signal in this epoch
should reflect the “normal” state, i.e. “stationary” proper-
ties of the signal, in the sense that the measured changes
will be relative to these properties.

Strict assumption of stationarity of the signals in the
reference epoch would make an elegant derivation of the
applied statistics: the repetitions could be then treated as
realizations of an ergodic process. Indeed, epochs of EEG
up to 10 sec duration (recorded under constant behavioral
conditions) are usually considered stationary [17]. How-
ever, the assumption of “constant behavioral conditions”
can be probably challenged in some cases. We cannot test
this assumption directly, since the usual length of the refer-
ence epoch is too short for a standard test of stationarity.3

Nevertheless, bootstrapping the available data across the
indexes corresponding to time and repetition (number of
the trial) simultaneously does not require a strict assump-
tion of ergodicity from the purely statistical point of view.
But we must be aware that this fact does not diminish our
responsability in the choice of the reference epoch, which in
general should be long enough to represent the “reference”
properties of the signal to which the changes will be related,
and at the same time it should be distant enough from the
beginning of the recorded epoch (to avoid the influence of
border conditions in analysis) and the investigated phe-
nomenon (not to include some event-related properties in
the “reference”).

3Standard test for stationarity relies on dividing the questioned
epoch into subepochs of the length exceeding the period of the lowest
frequency present in the signal, and then applying a non-parametric
test (e.g. sign test) to statistical descriptors of these subepochs [18].
Usual length of the reference epoch does not exceed seconds, so con-
sidreing the presence of low EEG frequencies (order of few Hz) we
would have too few subepochs for a reasonable application of a low-
power non-parametric test
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D.2 Permutation test on the difference of means

The values of energy of all the N repetitions in each ques-
tioned resel will be compared to energies of resels within
the corresponding frequency of the reference epoch. Lets
denote the time indexes ti of resels belonging to the refer-
ence epoch as {ti, i ∈ ref} and their number contained in
each frequency slice (defined by the frequency width of a
resel) as #{ref}4. We have a total of N repetitions of sig-
nals and their time-frequency maps. So for each frequency
we have a total of N ·#{ref} values of energy in the corre-
sponding resels. For each resel at coordinates {ti, ωi} we’ll
compare its energy averaged over N repetitions with the
energy averaged over repetitions in resels from the refer-
ence epoch in the same frequency. Their difference can be
written as:

∆Eint(ti, ωi) =

= 1
N

N∑
k=1

Ek
int(ti, ωi)− 1

N ·#{ref}
N∑

k=1

∑
j∈ref

Ek
int(tj , ωi) =

= E(ti, ωi)− E(tref, ωi) (9)

where the superscript “k” denotes the k-th repetition (out
of N).

The values of Ek
int(ti, ωi) tend to have (especially for

the MP estimates) a highly non-normal distributions. It
is caused mainly by the adaptivity and high resolution of
the MP approximation. Namely, the areas where no coher-
ent signal’s structures are encountered by the algorithm
are left completely “blank”, which causes the appearance
of peaks around zero in histograms presented in Figure 1.
On the contrary, other estimates of energy density provide
a more uniform filling of the time-frequency plane, because
of lower resolution and cross-terms.

Given these distributions, we cannot justify an appli-
cation of a parametric test based upon the assumption of
normality. In order to preserve high power of the test we es-
timate the distributions from the data themselves by means
of resampling methods (c.f. [19]).

We are testing the null hypothesis of no difference in
means between the values {Ek

int(ti, ωi), k ∈ 1 . . . N} of the
i-th resel and all those in corresponding reference region
{Ek

int(tj , ωi), k ∈ 1 . . . N, j ∈ ref}, that is energy values
for the same frequency band for the resels falling into the
reference epochs in all the repetitions (trials). A straight-
forward application of the idea of the permutation tests for
each resel consists of:
1. mixing the values of Eint for all the repetitions of the
resel under investigation and all the resels of the corre-
sponding reference epoch,
2. drawing from this ensemble (without replacement) one
of the

(
N ·(#{ref}+1)

N

)
possible combinations (i.e. permuta-

tions not distinguishing different ordering), subdividing it
into two sets containing N and N ·#{ref} elements
3. calculating for the above sets the difference of means (9)

4#{ref} is the time length of the reference period measured in cho-
sen time widths of resels.

100 iter. MP: f=12 Hz

a)

100 iter. MP: f=30 Hz

b)

1300 iter. MP: f=12 Hz

c)

1300 iter MP: f=30 Hz

d)

STFT: f=12 Hz

e)

STFT: f=30 Hz

f)

Fig. 1. Histograms of powers in the resels from the reference epoch of
the analyzed signals (Dataset II) for two frequencies: 12 Hz (a, c and
e) and 30 Hz (b, d and f). First four plots (a–d) are for the MP esti-
mates: distribution is highly skewed toward the zero power, especially
in cases when less waveforms are used for the representation (a and
b). Lower panels (e and f) present histograms of powers estimated by
STFT for the same frequency slices. Vertical scales (number of cases)
differ, horizontal (energy) are kept constant across the subplots.

4. repeating the two above steps Nrep times and estimating
from the obtained values distribution of the statistics (9)
under the null hypothesis
5. based upon this distribution, calculating the p value for
the actual difference of means

The number of permutations giving values of (9) ex-
ceeding the observed value has a binomial distribution for
Nrep repetitions with probability α.5 Its variance equals
Nrepα(1 − α). The relative error of α will be then (c.f.
[19])

σα

α
=

√
(1− α)
αNrep

(10)

To keep this relative error at 10% for a significance level
α=5%, Nrep = 2000 is enough. Unfortunately, due to the
problem of multiple comparisons discussed in Section II-
D.5, we need to work with much smaller values of α. In
this study Nrep was set to 2 ·105 or 2 ·106, which resulted in
large computation times. Therefore we implemented also
a less computationally demanding approach, described in
the following section.

D.3 Bootstrap with pseudo-t statistics

For a large number of points in each frequency of the
reference region #{ref}, the statistics estimated in the pre-
vious section is dominated mainly by the values from the
reference region, with little influence from the current resel.

5For the brevity we omit the distinction between the exact value α
which would be estimated from all the possible repetitions, and the
actually calculated
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Estimation of its distribution only from the resels in the ref-
erence region would save a lot of computations. However,
we still want to account for the different variances of Ek

int

revealing the variability of the N repetitions. Therefore
we replace the simple difference of means by the pseudo-t
statistics:

t =
∆Eint(ti, ωi)

s∆
(11)

Where ∆Eint is defined as in Eq. (9), and s∆ is the
pooled variance of the reference epoch and the investi-
gated resel. We estimate the distribution of this magnitude
from the data in the reference epoch (for each frequency
N ·#{ref} values) by drawing with replacement two sam-
ples of sizes N and N ·#{ref} and calculating for each
such replication statistics (11). This distribution is ap-
proximated once for each frequency. Then for each resel
the actual value of (11) is compared to this distribution
yielding p for the null hypothesis.

D.4 Computational complexity

Both presented above methods are computer-intensive,
which nowadays causes no problems in standard applica-
tions. However, corrections for multiple comparisons imply
much lower effective values of cutoff probabilities pk (see
the next section II-D.5). For the analysis presented in this
study both the FDR (False Discovery Rate, see next sec-
tion) and Bonferroni-Holmes adjustments gave critical val-
ues of the order of 5 · 10−5 for the Dataset II (larger num-
ber of investigated resels, see section II-E “Experimental
Data”) and 5 · 10−4 for Dataset I. If we set this for α in
eq. (10), we obtain minimum of Nrep = 2 · 106 or 2 · 105

bootstrap or resampling repetitions to achieve 10% relative
error for α.

Comparisons on presented datasets confirmed very simi-
lar results for both these procedures, as expected from the
discussion in section II-D.3. This served as a justification
to use in practice the pseudo-t bootstrapping, which is sig-
nificantly faster.6

D.5 Adjustment for multiplicity

In the preceding two sections we estimated the achieved
significance levels p for a null hypotheses of no change of the
average energy in a single resel compared to the reference
region in the same frequency. Statistics of these tests for
different resels are not independent—neither in the time
nor in the frequency dimension, and the structure of their
correlation is hard to guess a priori.

Adjusting results for multiplicity is a very important is-
sue in case of such a large amount of potentially correlated
tests. We chose for this step the procedure assessing the
False Discovery Rate (FDR, proposed in [20]). Unlike the

6In the pseudo-t approach we estimate the distribution of the statis-
tics for the null hypothesis only once for each frequency (O(Nrep)),
and then the test for each resel is only O(1). The full resampling
estimating distributions for each resel is O(Nrep) × the number of
investigated resels.

adjustments for the family-wise error rate (FWE), it con-
trols the ratio q of the number of the true null hypotheses
rejected to all the rejected hypotheses. In our case this
is the ratio of the number of resels to which significant
changes are wrongly attributed to the total number of re-
sels revealing changes.

The main result presented in [20] requires the test statis-
tics to have positive regression dependency on each of the
test statistics corresponding to the true null hypothesis.
We use a slightly more conservative version, which con-
trols FDR for all other forms of dependency. Let’s denote
the total number of performed tests, equal to the number
of questioned resels, as m. If for m0 of them the null hy-
pothesis of no change is true, [20] proves that the following
procedure controls the FDR at the level q m0

m ≤ q:
1. Order the achieved significance levels pi, approximated
in the previous section for all the resels separately, in an
ascending series: p1 ≤ p2 ≤ · · · ≤ pm

2. Find
k = max{i : pi ≤ i

m
∑m

j=1
1
j

q} (12)

3. Reject all hypotheses for which p ≤ pk

Another, more conservative correction for multiplicity is
the step-down Bonferroni-Holmes adjustment [11]. It relies
on comparing the pi values, ordered as in point (1.) above,
to

α

m− i + 1
, where α controls the family-wise error. We

used α = q = 0.05, which for the FDR relates to the pos-
sibility of erroneous detection of changes in one out of 20
resels indicated as significant.

According to the comparisons performed on the two
discussed datasets, false discovery rate (FDR) resulted—
as expected—to be less conservative that the stepdown
Bonferroni-Holmes procedure. It has also a more appeal-
ing interpretation than the family-wise error (FWE) of
Bonferroni-like procedures. Both these procedures take
negligible amounts of computations.

E. Experimental data

We present results for two datasets: what we shall refer
as the ”Dataset I” comes from another study, described in
[10]. Dataset II was collected especially for the purpose
of this study. The main reason of this was the need for
longer than usual epochs of EEG between the stimuli rep-
etitions to confirm the absence of false positives detections
in neutral time epochs.

E.1 Dataset I

Twenty-year old right-handed subject was lying in a dim
room with open eyes. Movements of index finger were per-
formed approximately 5 seconds after a quiet sound gener-
ated every 10 to 14 seconds and detected by a micro-switch.
The experiment was divided into 5 minutes long alternat-
ing sessions for right and left index finger movements, with
3 minutes breaks in between.

EEG was registered from electrodes placed at positions
selected from the extended 10-20 system, sampled at 256
Hz, analog bandpass filtered in the 0.5–100 Hz range and
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sub-sampled offline to 128 Hz. For data processing, EEG
was divided into 8 seconds long epochs, with movement
onset in the 5th second. We present analysis of 57 artifact-
free trials of right hand finger movement from the electrode
C1 referenced to Cp1, Fc1, Cz and C3 (local average ref-
erence).

E.2 Dataset II

Thirty one-year old right-handed subject was half lying
in a dim room with open eyes. Movement of the thumb,
detected by a micro-switch, were performed approximately
5 seconds (at a subject’s choice) after a quiet sound gen-
erated approximately every 20 seconds. Experiment was
divided into 15-minutes sessions, and recorded EEG into
20-sec long epochs with the movement occurring in the
12th second. After artifacts rejection, 124 epochs were left
for the analysis presented hereby.

EEG was registered from electrodes at positions selected
from the 10-20 system. For the analysis we choose the
C4 electrode (contra-lateral to the hand performing move-
ments) in the local average reference. Analog filters were
100-Hz low-pass and 50-Hz notch. Signal was sampled at
250 Hz and down-sampled offline to 125 Hz.

III. Results and Discussion

Example applications of the proposed methodology to
the datasets described in sections II-E.1 and II-E.2 are pre-
sented in Figures 2–4. These plots were constructed only
for some of the possible parameters; results and graphics
for other parameters can be easily reproduced using the
software and data available via Internet.

Figures 2 and 3 present results for the Dataset I (sec-
tion II-E.1) in the frequency range 0-40Hz. Normally it is
enough to investigate only the frequency range of interest,
e.g. from 5 Hz up, but we wanted to show that the applied
statistical procedures are robust also in the low frequen-
cies. Since the signals were not detrended before decom-
position, we have most of the energy concentrated in low
frequencies. This deteriorates significantly the possibility
of presentation of the whole energy spectrum at once, so
for the display (panels a) we used the logarithmic scale (for
all the further computations the actual values of energy
were used). Statistically significant regions in Figure 2f
clearly relate to the known phenomena: µ desynchroniza-
tion (marked as A), desynchonization of the µ harmonic
(B), post-movement β synchronization (C) and desynchro-
nization of the harmonic of β (D). We observe that the
low-frequency non-stationarities present e.g. around the
5th second (probably movement artifact) do not show up
as a statistically significant effects.

Similarly, Figures 4 and 5 present results for the Dataset
II (section II-E.2) in the same frequency range. This
dataset was collected with longer inter-movement intervals
so we could analyze longer epochs. As expected, we have
no significant effects more than 1-2 seconds away from the
movement onset, except for the two resels present in the
STFT results (Figure 5b)—these can be attributed to the
5% of false discoveries (section II-D.5).

A. Time-frequency resolution

Due to the considerations from the section II-B, we calcu-
lated the significant changes in resels relating to the same
time-frequency resolution for both MP and STFT. How-
ever, it by no means implies that the resolution of MP and
STFT are leveled by this approach. Within the significant
resels of size equivalent to the resolution of the STFT, we
can display the fine microstructure revealed by the MP
estimator. Also the energy estimated by MP within the
resels of the same size as STFT gives higher values of max-
imum ERD/ERS. Both these effects are clearly visible in
Figures 2 and 4, as compared to Figures 3 and 5. For the
Dataset I ERD/ERS estimated by STFT reach -51/65%,
while MP gives estimates between -90 and 409%. Similarly
for Dataset II (Figures 4 and 5) we got -32/44% for STFT
and -68/209% for MP.

Nevertheless, in spite of the generally better sensitivity
and resolution of MP, we observe that those two methods
give similar and consistent results. Taking into account the
high computational cost of the MP procedure, we may con-
sider the STFT estimator as an alternative for cases when
speed is more important than sensitivity and resolution.

B. Statistics

In an exploratory approach to the delimination of signif-
icant “bursts” of energy, statistical tests for different fre-
quency bands cannot be treated separately if we want to
talk about some significance level of the whole procedure.
On the other hand, dramatic loss of power incurred by the
Bonferroni correction in this setup has led to neglect the
issue of multiplicity, and hence the lack of a statistically
correct way to delimit the significant changes over the en-
tire time-frequequency range of interest.

Results in Figures 2–3 suggest that application of non-
parametric statistics combined with properly chosen cor-
rection for multiplicity (FDR or Bonferroni-Holmes) pre-
serves the power needed to properly detect significant
changes even in the case of a low number of repetitions
(57).

Figures 4–5 present the performance of these statistics in
a case designed especially to contain large (over 80%) time
epochs where no activation was expected. This increases
artificially the size of the problem which would make the
Bonferroni correction unusable, but FDR still seems to lead
to perfectly reasonable results.

Among the proposed and tested methods, bootstrap es-
timation of the pseudo-t statistics in the reference region
(section II-D.3) and FDR correction for multiple compar-
isons (section II-D.5) seem to be the methods of choice,
offering good accuracy at a reasonable computational cost.
As expected, FDR proved to be less conservative than
Bonferroni-Holmes correction. It provided significances
in the area coherent with other studies for the MP esti-
mates. When applied to STFT it usually left out some
significances in isolated resels (c.f. Figure 5) unrelated to
known physiological phenomena, which can be accounted
for by the allowed 5% of false discoveries. Application of
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Fig. 2. Calculating the high resolution ERD/ERS from the MP decomposition in statistically significant regions (Dataset I, sec. II-E.1).
a) average time-frequency energy density approximated from the MP decomposition (eq. 5), for clarity presented in the logarithmic scale
(in further computations the actual values of energy are used). Reference epoch marked by black vertical lines, movement onset in the fifth
second marked by white dashed line. b) energy from (a) integrated in resels 0.25s×2Hz c) average values of ERD/ERS calculated for the
time from the end of the reference epoch to the end of the recorded epoch (black dashed vertical lines in a and b, the last resel dropped
to avoid border conditions) d) ERD/ERS from (c) indicated as statistically different from the reference epoch by the pseudo-t bootstrap
procedure (sec II-D.3) corrected by a 5% FDR (sec. II-D.5) e) high resolution map of ERD/ERS calculated from (a) f) high resolution
ERD/ERS in statistically significant regions from (d): A—µ desynchronization, B—desynchonization of the µ harmonic, C—post-movement
β synchronization, D—harmonic of β. Horizontal scales in seconds, vertical in Hz.
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for the same epoch as in Figure 2), displayed for resels revealing significant change (Section II-D.2) corrected by a 5% FDR (Section II-D.5).
Epochs and areas marked as in Figure 2. Horizontal scales in seconds, vertical in Hz.
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Fig. 4. MP results for the Dataset II (sec. II-E.2), where long epochs of EEG were recorded prior to the movement to test for the absence
of false positive detecions in the stationary pre-movement epoch. a) average time-frequency energy density approximated from the MP
decomposition (eq. 5), for clarity presented in logarithmic scale (in further computations the actual values of energy are used). Reference
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the desynchronization of α harmonic in 24 Hz. Horizontal scales in seconds, vertical in Hz.
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Fig. 5. STFT results for the Dataset II (sec. II-E.2, movement in the 12th second), the same as analyzed in Figure 4 using MP estimates.
The harmonic of α is hardly visible in (a) and (b) and its effect is absent in (c). Two isolated resels indicated as significant can be accounted
to the allowed 5% of false discoveries (section II-D.5). Horizontal scales in seconds, vertical in Hz.

the Bonferroni-Holmes correction cleared the dubious re-
sels from Figure 5, but this should not be interpreted as
suggesting the use of this correction for the STFT in gen-
eral.

C. Reference epoch

The experiment providing the Dataset II (sec. II-E.2)
was designed especially to allow different settings of the
reference epoch, owing to the long pre-movement epoch of
recorded EEG. Figures 4 and 5 present results for 2-seconds
long reference epoch, positioned far away from the move-
ment onset. This indicates the robustness of presented
methodology, which gives no false positive detections in
the long pre-movement epoch.

Availability of such a long pre-movement EEG allows
also to test different choices of the reference epoch. We
found that all the settings consistent with the general con-
siderations from section II-D.1 (including a 11 sec long ref-
erence) give similar results, i.e. resulting statistics des-
ignates similar time-frequency area of significant changes.
These figures are not presented, but experiments with dif-
ferent setting of this and other parameters on the datasets
used in this study can be easily reproduced using the soft-

ware and datasets freely available via Internet.7

IV. Conclusions

The above results indicate that statistically correct
delimination of significant time-frequency regions of
ERD/ERS is possible over an arbitrary time and frequency
ranges (e.g. no high-pass filtering or a priori choice of
the frequency band of interest are needed). Careful choice
of the statistics and correction for multiplicity retains the
power of the procedure also in cases of a low number of
repetitions (57) or an artificially increased size of the prob-
lem (calculated for an area where over 80% of the time was
expected to exhibit no ERD/ERS).

In estimating the time-frequency energy density, MP of-
fers better sensitivity and higher resolution than STFT.
However, both these methods give similar and consistent
results in the context of delimination of time-frequency re-
gions of significant changes of energy. Taking into account

7Playing with different settings on the two presented datasets in-
volves only changing designated parameters in configuration files;
adapting the system to a different dataset requires writing a new
configuration file. One has to be also aware that the applied sta-
tistical procedures are computer-intensive, therefore in some cases
computations can take up to hours.
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the high computational cost of the MP procedure, we may
consider the STFT estimator as an alternative for cases
when speed is more important than sensitivity.

Presented methodology and software gives the missing
criterion for the significance of event-related changes in the
time-frequency energy density of signals. It introduces ob-
jective criteria to related neurophysiological research and
allows to investigate quantitatively e.g. the following issues:
• minimal number of experiment’s repetitions and duration
of each trial, required to correctly delimit the significant
ERD/ERS area,
• application of other than MP and STFT estimators of
the time-frequency energy density,
• minimal number of MP iterations (accuracy) in decom-
position of each trial, needed to achieve statistically signif-
icant results,
• choice of the time-frequency resolution for calculating
statistics,
• influence of the (fixed) time position of the reference
epoch.

V. Acknowledgments

This work was supported by the grant of Committee for
Scientific Research (Poland) 4T11E 028023.

A. Reproducible Research
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http://brain.fuw.edu.pl/~durka/tfstat. Calculation
of time-frequency energy density from the MP parametriza-
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sition in stochastic dictionaries is written in C and available
with complete source code and executables for GNU/Linux
and MS Windows at http://brain.fuw.edu.pl/mp.

References

[1] G. Pfurtscheller, “EEG event-related desynchronization (ERD)
and event-related synchronization (ERS),” in Electroencephalog-
raphy: Basic Principles, Clinical Applications and Related
Fields, E. Niedermayer and F. Lopes Da Silva, Eds., pp. 958–965.
Williams & Wilkins, fourth edition, 1999.

[2] J. R. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller,
and T.M. Vaughan, “Brain-computer interfaces for communica-
tion and control,” Clinical Neurophysiology, vol. 113, pp. 767–
791, 2002.

[3] S. Makeig, “Auditory event-related dynamics of the EEG spec-
trum and effects of exposure to tones,” Electroencephalogr Clin
Neurophysiol, vol. 86, pp. 283–293, 1993.

[4] C. Tallon-Baudry, A. Kreiter, and O. Bertrand, “Sustained and
transient oscillatory responses in the gamma and beta bands in
a visual short-term memory task in humans,” Visual Neuro-
science, vol. 16, pp. 449–459, 1999.

[5] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Re-
nault, and F. J. Varela, “Perception’s shadow: long-distance
synchronization of human brain activity,” Nature, vol. 397, pp.
430–433, 1999.

[6] J.-P. Lachaux, E. Rodriguez, J. Martinerie, C. Adam, D. Has-
boun, and F. J. Varela, “A quantitative study of gamma-band
activity in human intracranial recordings triggered by visual
simuli,” European Journal of Neuroscience, vol. 12, pp. 2608–
2622, 2000.

[7] B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller,
“Visualization of significant ERD/ERS patterns in multichannel

EEG and ECoG data,” Clinical Neurophysiology, vol. 113, pp.
43–47, 2002.

[8] O. Bertrand and C. Tallon-Baudry, “Oscillatory gamma activity
in humans: a possible role for object representation,” Interna-
tional Journal of Psychophysiology, vol. 38, pp. 211–223, 2000.

[9] P. J. Durka, D. Ircha, Ch. Neuper, and G. Pfurtscheller, “Time-
frequency microstructure of event-related desynchronization and
synchronization,” Med Biol Eng Comput, vol. 39, no. 3, pp. 315–
321, May 2001.

[10] J. Ginter Jr, K. J. Blinowska, M. Kamiński, and P. J.
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