

Modification of emission properties of ZnO layers due to plasmonic nearfield coupling to selforganized Ag nanoislands

 J. Papierska¹, B. S. Witkowski², A. Derkachova², K. P. Korona¹, J. Binder¹, K. Gałkowski¹, Ł. Wachnicki², M. Godlewski², T. Dietl^{1,2}, and J. Suffczyński¹

¹ Faculty of Physics, University of Warsaw, Warsaw, Poland
 ² Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

1. Samples

- 2. Scanning electron microscope (SEM)
- 3. Experiment
- 4. Photoluminescence (PL)
- 5. Time-resolved PL (TRPL)
- 6. Theoretical model
- 7. Conclusions
- 8. Plan

sample A: covered with silver islands by sputter deposition lasting for 2 s

sample B: coated by Ag sputtering over 15-20 s, yielding a 3 nm layer of Ag, and then annealed at temperature of 750°C for 3 min

atomic layer deposition (ALD) method

B. Witkowski IF PAN

Samples ZnO

diameter D = 10-40 nm surface density $\rho \approx 2000/\mu m^2$ diameter D = 70-100 nm surface density $\rho \approx 25/\mu m^2$

The Ag islands have a quasi-spherical shape in both samples.

- emission excited at 325 nm (3.81eV) (He-Cd laser)
- at 5 K and 300 K
- a grating monochromator (600 gr/mm or 1800 gr/mm)
- CCD camera
- Time-Resolved PL (TRPL)
- emission excited at 300 nm (4.1eV) (frequency tripled Ti:Sapp pulsed laser)
- at 4 K
- a grating monochromator (600 gr/mm or 1800 gr/mm)
- a streak camera

Transmission

- a halogen lamp as the light source
- at 300 K
- a grating monochromator (600 gr/mm or 1800 gr/mm)
- CCD camera

- optical transitions:
- ✓ ~3.36 eV \rightarrow bound exciton emission in ZnO
- ✓ 2.90-3.33 eV \rightarrow stacking faults
- ✓ below ~2.9 eV \rightarrow a weak defect

 \succ temperature increase \rightarrow a shift towards lower energies and broadening

- sample A (10-20 nm Ag islands)
- ✓ slight PL decrease in the almost entire spectral range
- sample B : (80-90 nm Ag islands)
- $\checkmark\,$ enhancement of the emission $\rightarrow\,$ below ~2.4 eV
- $\checkmark\,$ a quenching of the emission \rightarrow above ~2.4 eV

enhancement or quenching are independent of temperature & magnitude of electron density independent of temperature \rightarrow plasmonic effects in Ag

Sample B

Transmission:

- ➢ free exciton (FX) → 3.375 eV
- ➢ donor bound exciton
 (DX) → 3.361 eV
- ➤ two weak peaks →
 3.33 eV and 3.34 eV
- > stacking fault (SF) \rightarrow 3.30 3.33 eV
- ➤ acceptor bound exciton (AX) → 3.356 eV (not observed in the signal from the uncovered sample) → the diffusion of the Ag atoms, acting as acceptor centers, to ZnO layer during the process of the sample annealing

Transition		FX	DX	SF
Energy (eV)		3.375	3.36	3.30 - 3.33
PL lifetime (ps) (fast components)	as grown	35(5)	77(5)	40(15)
	with Ag	25(5)	66(5)	30(10)
Intensity (10 ³ counts)	as grown	4.7	39	7.0
	with Ag	4.0	17	1.3

- ➤ large Ag nanoislands → reduced decay times and emission intensity → the existence of additional nonradiative channel related to the coupling of the emission to surface plasmons confined in the Ag nanoislands
- small Ag nanoislands have a minor effect on the PL lifetimes

Mie scattering theory:

- the efficiencies Qscat, Qext, Qabs of scattering, extinction and absorption
- \succ light interacting with a single spherical particle of a radius R
- > the dielectric function of silver as in the classical Drude model
- ✓ Sample A: dielectric function of pure silver εib = 3.7, γ_{bulk} = 0.18 eV, ω_p = 9.1 eV
- ✓ Sample B: annealing at temperature of 750°C → interdiffusion of Ag and Zn → the effective parameters modified $\epsilon ib = 8.1, \gamma_{bulk} = 0.3 \text{ eV}, \omega_p = 9.1 \text{ eV}$

 $n_{ZnO} \rightarrow$ following A. B. Djurišić et al., Appl. Phys. A, 43, 37 (2003)

 $n_{out} = f n_{Air} + (1 - f) n_{ZnO}$

Efficiency

- the extinction maximum shifts to lower energies when the radius of the sphere increases:
- ✓ sample A: D = 10-20 nm
 → energy of extinction
 maximum ~3 eV
- ✓ sample B: D = 80-90 nm
 → energy of extinction maximum ~2.7 eV or ~2.4 eV
- ➢ increase of the sphere radius → a decrease of the absorption efficiency and an enhancement of the scattering efficiency

Sample A : the absorption dominates over the scattering in the whole studied spectral range → a decrease of the PL intensity

- > Sample B:
- the absorption dominates over the scattering above 2.5 eV → a quenching of the emission
- scattering dominates over the absorption → below ~2.5 eV emission enhancement

- The fabrication process, involving sputtering and annealing, has served to obtain Ag nanoislands of dimensions insuring the presence of the strong plasmonic effects.
- The temperature independent enhancement or quenching of the emission is observed and explained by the numerical model developed within the Mie theory.
- The ratio of the absorption to scattering efficiencies is found to govern the emission enhancement or quenching.
- The model highlights the impact of the sample preparation on the dielectric function of Ag.

ightarrow QD CdTe/ZnTe \rightarrow MBE University of Warsaw \rightarrow VIS

- $ightarrow QW \ GaN/AlGaN → MBE UNIPRESS and MOVPE University of J.Kepler Linz → UV:$
- Porosity of the surface (UNIPRESS)
- Sputtering (islands) and lithographically defined metal nanostructures \rightarrow Au, Ag, Al.
- variable distance from the surface to the emitter \rightarrow optimal distance (strong plasmonic mode intensity and small intensity of noradiative process)