

Magnetospektroskopia struktur z jonami żelaza na bazie GaN

Jan Suffczyński*, Joanna Papierska*, Jean-Guy Rousset*, Maciej Kozubal*, Andrzej Golnik*, Wojciech Pacuski*, Jan A. Gaj*, Tomasz Dietl*,**

* University of Warsaw, Warsaw, Poland ** Institute of Physics PAS, Warsaw, Poland

Andrea Navarro-Quezada, Bogdan Faina, Tian Li, Alberta Bonanni *University of J. Kepler, Linz, Austria*

Plan prezentacji

- Wprowadzenie
- Próbki
- Układ eksperymentalny
- Wyniki:
 - Odbicie w polu magnetycznym
 - Odbicie z podświetleniem
 - Niejednorodność próbek
 - Mikro- fotoluminescencja jonów Fe
- Podsumowanie
- Plany

(Ga,Fe)N jako nanokompozyt metalpółprzewodnik

GaN jednorodnie domieszkowany Fe

Dobór warunków wzrostu:

- Koncentracja żelaza powyżej granicy rozpuszczalności
- Prędkość wzrostu
- Temperatura wzrostu
- Dodatkowe domieszkowanie (np. Si, Mg)

Dekompozycja krystalograficzna

Dekompozycja chemiczna

Metal-półprzewodnik - efekty magnetooptyczne

Przykład: ZnCrTe z metalicznymi nanokryształami Cr

• Jednakowe zależności MCD i namagnesowania od pola magnetycznego!

Metal-półprzewodnik - efekty plazmonowe

Przyspieszenie emisji z półprzewodnika dzięki sprzężeniu z plazmonami powierzchniowymi

K. Okamoto et al., APL 2005

A. Toropov et al., PRL 2009

Bateria spinowa

B ⇔ prąd elektryczny

Próbki

- produkowane metodą MOVPE

Sample	TMGa (sccm)	Cp2Fe (sccm)	GaN:Fe layer thickness (nm)	Fe _{para} (10 ¹⁹ cm ⁻³)	Fe _{ferro} (10 ¹⁹ cm ⁻³)	T _{growth} (°C)
687	5	300	760	7.6	4.2	850
689	5	100	900	6.2	0.6	800
691	5	300	560	6.4	6.8	950

Warstwy (Ga,Fe)N

GaN cap				
AlGaN barrier				
GaN based QW				
AlGaN barrier				
GaN buffer				

 Al_2O_3

(Ga, Fe)N layer

GaN buffer

 Al_2O_3

Studnie kwantowe na bazie GaN

Sample	Structure	Thickness (nm)	GaN cap (nm)	Magn. ion concentr. (10 ²⁰ cm ⁻³)	T _{growth} (°C)
1216	AlGaN/GaN/AlGaN	30/40/30	100	0	820
1218	AlGaN/(Ga,Fe)N/AlGaN	30/40/30	100	1.8	820

Badane próbki - (Ga, Fe) N

Badane próbki - (Ga, Fe) N

Badane próbki - (Ga, Fe) N

Wysoka zawartość żelaza w wytrąceniach potwierdzona przez pomiar EDS

Bonanni et al., PRB'2007

Układ doświadczalny

Widma odbicia w polu magnetycznym

Widma odbicia w polu magnetycznym i MCD

Dwuchroizm kołowy (MCD) jako miara namagnesowania:

Natężenie MCD w funkcji pola magnetycznego – próbka z wytrąceniami Fe

s687, Ga(Fe,N) layer 0.4 MCD data at 1.5 0.3 Brillouin fit to MCD data SOUID data at 5 H 1.0 0.2 Integrated MCD M (emu/cm 0.5 0.1 0.0 0.0 -0.1 -0.5 -0.2 -1.0 -0.3 -1.5 -0.5 0.0 0.5 -1.5 -1.0 1.0 B (T) 13.10.2010 s687, Ga(Fe,N) layer 0.75 0.15 MCD data at 2 K Brillouin fit to MCD data 0.50 0.10 SOUID data at 5 K Integrated MCD 0.25 0.05 M (emu/cn 2 0.00 0.00 -0.25 -0.05 $\mathbf{T} = 2 \mathbf{K}$ -0.50 -0.10 -0.75 -0.15 -0.4 -0.2 0.2 0.4 0.0

Próbka z wytrąceniami: Natężenie MCD

- nie wykazuje szybkiego nasycenia i histerezy obserwowanej w pomiarze namgnesowania
- opisywane paramagnetyczną funkcją Brillouina

Pomiar SQUID: W. Stefanowicz, IF PAN

13.10.2010

B(T)

Natężenie MCD w funkcji pola magnetycznego – próbka bez wytrąceń Fe

Próbka bez wytrąceń:

- Zgodność między namagnesowaniem określonym optycznie i magnetometrycznie
- Opis namagnesowania paramagnetyczną funkcją Brillouina

Wnioski:

- Wkład od wytrąceń Fe odpowiada za niezgodność między namagnesowaniem określonym magnetometrycznie i magnetooptycznie
- Nośniki pasmowe nie sprzęgają się poprzez oddziaływanie wymienne z wytrąceniami Fe

MCD struktur ze studniami GaN i (Ga,Fe)N

- Niezerowe natężenie MCD w rejonie spektralnym ekscytonów A, B i C
- Szerokie studnie \rightarrow
- Słaby wpływ związania kwantowego na energię poziomów w studni

Natężenie MCD w funkcji pola B

- Dwa wkłady do sygnału MCD w obszarze ekscytonowym:
- dominujący od bufora GaN
- od studni GaN
- MCD silniejsze w przypadku struktury ze studnią (Ga,Fe)N niż ze studnią GaN

Obserwacja oddziaływania s,p-d

Udało się zobaczyć sygnał od studni o szerokości 40 nm

Struktura ze studnią

Warstwa

Struktura ze studnią

Warstwa

 efekt podświetlenia silniejszy w przypadku struktury ze studnią kwantową niż w przypadku warstwy

Warstwa

 podświetlanie w T = 2 K zmniejsza, a w T = 173 K zwiększa intensywność przejść ekscytonowych

• Natężenie efektu podświetlenia większe w T = 2 K niż w T = 173 K

Struktura energetyczna próbek ze studniami

Domieszki w GaN

Meyer et al., PRB'2000

Mechanizm wpływu podświetlania pod przerwą na widmo odbicia:

Fotoaktywacja nośników z płytkich stanów domieszkowych

"Wyganianie" nośników ze studni

Neutralizacja nośników rezydujacych w studni (studniach na międzypowierzchniach GaN/AlGaN W niskiej temperaturze blokowanie (części) procesów fotojonizacyjnych?

Niejednorodność warstw (Ga,Fe)N w skali sub-mm

8

5 mm

 $\overline{\mathbf{7}}$

____ <0.5mm

<0.5mm

rozszczepienie Zeemana zależy od położenia na próbce

Niejednorodność warstw (Ga,Fe)N w skali sub-mm

- Kształt i natężenie MCD w obszarze ekscytonowym zależy od położenia na próbce:
- Niejednorodny rozkład izolowanych jonów żelaza w warstwie

- Brak korelacji między rozszczepieniem, a intensywnością przejść ekscytonowych
- Najsilniejsze przejścia ekscytonowe na brzegach próbki: rola brzegów próbki?

Lokalne fluktuacje intensywności przejść ekscytonowych:

- obniżona jakość struktury?
- wbudowane pole elektryczne?

Niejednorodność warstw (Ga,Fe)N w skali sub-µm

Bonanni et al., PRB'2007

Hipoteza: agregacja jonów Fe w nanokryształy powadzi do lokalnego obniżenia koncentracji izolowanych jonów

Test: rozdzielona przestrzennie luminescencja izolowanych jonów

Przejście wewnątrzjonowe Fe widziane w fotoluminescencji s689 2 K Fotoluminescencja 200 - ${}^{4}T_{1}(G)$ Energia (meV) s689 20 K Fotoluminescencja $A_1(S)$ 260 +

Energia (meV)

Jednorodność w skali sub-µm

• Mapy mikro-PL

Podsumowanie

- Nośniki pasmowe nie sprzęgają się poprzez oddziaływanie wymienne z wytrąceniami Fe w GaN
- Wydajna regulacja koncentracji nośników w strukturach GaN/AlGaN poprzez podświetlanie w energii poniżej przerwy
- Zaobserwowano niejednorodność próbek w skali sub-mm

Plany

- Kontrola sprzężenia między jonami magnetycznymi w półmagnetycznych studniach kwantowych poprzez podświetlanie
- Studnie na buforze z AlGaN
- Rozdzielony w przestrzeni pomiar odbicia/fotoluminescencji: informacja m. in. o jednorodności rozkładu izolowanych jonów Fe i ich wpływie na własności optyczne struktury

Wpływ warunków wzrostu na formowanie się wytrąceń żelaza w GaN

TABLE II: Structural and magnetic parameters of some iron and iron-nitride phases in nanostructures and thin films. To be compared with our experimental values.

	lattice parameter					
	structure	a(nm)	c(nm)	$\mu_{ m B}$		
FeN	ZB RS	0.430^{a} 0.40^{b}	_	$AF \text{ or } 0^a$		
γ' -Fe ₄ N	RS	0.382^{b}	_	2.21 ^a		
γ'' -FeN _{0.91}	ZB	0.433^{a}	_	1.7 or 0^{a}		
$\varepsilon-\mathrm{Fe_3N}$	WZ	0.270 ^c	0.433 ^c	1.9^{d}		
$\gamma^{\prime\prime\prime}$ -FeN _{0.5-0.7}	RS	0.450^{a}	_	ferro^a		
$\varsigma - {\rm Fe_2N}$	HCP	0.443 ^a	0.484^{a}	$\mathrm{para}/1.5^h$		
$\gamma\text{-}\mathrm{Fe}$	ZB	0.361-0.370 ^e	_	0.3-2.0 ^e		
α -Fe	BCC	0.286^{f}	_	2.2^{g}		

Widmo odbicia od warstw (Ga,Fe)N – obszar ekscytonowy

Struktura energetyczna pasma walencyjnego

D. Sztenkiel, IF PAN