Magneto-optical studies of paramagnetic, wurtzite (Ga,Fe)N

J. Suffczyński¹, J.-G. Rousset¹, M. Koba^{1,6}, J. Papierska¹,
W. Pacuski¹, A. Golnik¹, M. Nawrocki¹, W. Stefanowicz²,
S.Stefanowicz², M. Sawicki², R. Jakieła², T. Dietl^{2,3,4},
A.Navarro-Quezada⁵, B. Faina⁵, T. Li⁵, A. Bonanni⁵

 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 2 Institute of Physics, Polish Academy of Sciences, Warsaw, Poland;
 Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland;
 WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan 5 Institut für Halbleiter- und Festkörperphysik, Johannes Kepler University, Linz, Austria 6 National Institute of Telecommunication, Warsaw, Poland

Outlook

- Relation between exciton splittings, magnetic circular dichroism, and magnetization in (Ga,Fe)N
- Impact of a sample design on magnitude of Magneto-Optical Kerr Effect in (Ga,Fe)N

Magnetic Circular Dichroism (MCD)

- Arises from the difference between optical absorption or reflectivity of left and right circular polarized light
- Quantified as:

$$MCD = \frac{I_{\sigma^+} - I_{\sigma^-}}{I_{\sigma^+} + I_{\sigma^-}}$$

Motivation

Photon Energy

- Zinc-blende DMS:
 - Single exciton transition
 - Straightforward interpretation of MCD, e.g., within a *rigid shift approximation*

Motivation

Photon Energy

- Zinc-blende DMS:
 - Single exciton transition
 - Straightforward interpretation of
 MCD, e.g., within a *rigid shift approximation*
- Wurztite structure DMS:
 - Three overlapping excitonic transitions
 - Mutually compensating excitonic contributions to MCD?

(Ga,Fe)N - near band gap reflectivity

(Ga,Fe)N - near band gap reflectivity

Modelling of the experimental spectra

Contributions to dielectric function $\varepsilon(\omega)$ from:

(Ga,Fe)N – dielectric function

Reflectivity spectra

A, B, C exciton parameters obtained from the model

MCD and magnetization in (Ga, Fe)N

• How to quantify the magnitude of MCD?

MCD and magnetization

How to quantify the magnitude of MCD?

- Integrated absolute area
- Amplitude (max)?

MCD and magnetization

How to quantify the magnitude of MCD?

- Integrated absolute area
- Amplitude (max)?
- Sum of extrema (max – min1 – min2)?

Magnetization and excitonic splittings

SQUID magnetization

Excitonic splittings

Excitonic splitting, MCD and magnetization

Brillouin function shape

 Good agreement between magnetization determined from magnetometry and magnetooptics (exciton A splitting and MCD integrated absolute area)

Exciton parameters in magnetic field

 Exciton oscillator strength, linewidth and splitting modified by the magnetic field

Contributions to MCD from exciton oscillator strength, linewidth and splitting

- Partial contributions to MCD of comparable weights
- Splitting deduced from MCD overestimated

Conclusions I

- Excitonic splitting proportional to magnetization as in zinc-blende DMS
- Correct description of the magnetization by the MCD (integrated absolute area under the MCD curve)
- Variations of all three excitonic lines parameters (splitting, linewidth, oscillator strength) contribute to the MCD signal with comparable weights

J.-G. Rousset et al., Phys. Rev. B, in print

Magneto-optical Kerr effect

- Arises from the difference between optical absorption or reflectivity of left and right circular polarized light
- Quantified as:

$$\Theta_K = \frac{1}{2} \arg \frac{r^-}{r^+}$$

Sample design

Impact of a sample design: DMS thickness

Impact of a sample design: DBR quality

• Already small number of periods of DBR mirror enough to enhance MOKE

Normal light incidence case

 Bragg mirror placed undreneath the DMS layer significantly amplifies MOKE

Angle dependencies: TE polarization

 MOKE enhancement maintained at wide incidence angle range

Angle dependencies: TM polarization

Very strong enhancement of MOKE at Brewster incidence angle

Conclusions (II)

- Magnitude of the MOKE in DMS depends on the actual sample design, e.g., thickness of the DMS layer
- Significant amplication of MOKE thanks to a relatively small number of periods of DBR mirror placed underneath the DMS layer
- The enhancement maintained for a wide range of the light incidence angles
- The maximum enhancement of the MOKE is obtained for the TM polarized light incidenting at Brewster angle

M.Koba and J.Suffczyński, Journal of Electromagnetic Waves and Applications 27, 700 (2013).