Magnetic Circular Dichroism vs Excitonic Zeeman Splitting in (Ga,Fe)N

Jean-Guy Rousset¹, Jan Suffczyński¹, Joanna Papierska¹, Andrzej Golnik¹, Michał Nawrocki¹, Tomasz Dietl^{2,3}, Andrea Navarro-Quezada⁴, Bogdan Faina⁴, Tian Li⁴ and Alberta Bonanni⁴

¹Institute of Experimental Physics, Warsaw University, ²Institute of Physics, Polish Academy of Sciences, ³Institute of Theoretical Physics, Warsaw University,

⁴J. Kepler University, Linz, Austria

41 st ISCPS – Jaszowiec – 11-06-2012

Motivation

• MCD as a measure of magnetization

Motivation

Photon Energy

MCD

 One exciton model: straightforward interpretation of MCD

- Wurztite • Wurztite - Three e - Mutuall excitonic
 - Wurztite structure DMS
 - Three excitonic transitions
 - Mutually compensating excitonic contributions

Interpretation of MCD ?

The sample

(Ga,Fe)N layer (~ 900 nm), x_{Fe}=0.20%

GaN buffer (1µm)

Sapphire substrate

Grown by MOVPE at J.K. University - Linz

Energy diagram

After W. Pacuski in ``Introduction to the Physics of Diluted Magnetic Semiconductors`` J. A. Gaj

Experimental setup

Reflectivity Measurements

Excitons A and B split toward opposite directions in magnetic field

Reflectivity Measurements

Excitons A and B split toward opposite directions in magnetic field

Modelling of the experimental spectra

Contributions to dielectric function $\varepsilon(\omega)$ from:

Modelling of the experimental spectra

Fabry Perot interferences in a multi layered structure:

Fit of the reflectivity spectra

Successful description with the assumed model

Excitonic splitting vs magnetic field

Excitonic splitting vs magnetic field

Apparent exchange constants determined from the fit $N_0 \alpha^{(app)} = -0.05\pm0.1 \text{ eV}$ and $N_0 \beta^{(app)} = +0.5\pm0.1 \text{ eV}$

MCD and magnetization

• What parameter of the MCD spectrum is linearly proportional to the excitonic splitting?

- Integrated signal?
- Amplitude (max)?
- Sum of extrema
 (max min1 min2)?

Integrated MCD and excitonic splittings

Brillouin function shape - saturation

Normalized exciton A σ- splitting

Splitting of Exciton A σ - (magnetization) well correlated with

- integrated MCD
- and sum of extrema

Influence of the excitonic width Γ

Similar dependence in both cases: integrated MCD and sum of MCD extrema.

Influence of the exciton width $\boldsymbol{\Gamma}$

- MCD not correlated to magnetization when exciton linewidth increased
- A better magnetization description with Integrated MCD

Conclusions

- Reflectivity and excitonic splitting of excitons in (Ga,Fe)N succesfully described
- Determination of $N_0 \alpha^{(app)} = -0.05 \pm 0.1 \text{ eV}$ and $N_0 \beta^{(app)} = +0.5 \pm 0.1 \text{ eV}$
- Justification of magnetization description by MCD in the case of wurtzite (Ga,Fe)N
- A crucial parameter deciding on the suitability of the description: exciton width