

sp-d exchange coupling in Mn doped GaN and ZnO studied by magnetospectroscopy

J. Suffczyński¹, A. Grois², W. Pacuski¹, P. Kossacki¹, A. Golnik¹, J. A. Gaj¹, D. Ferrand³, J. Cibert³, Y. Dumont⁴, E. Chikoidze⁴, C. Deparis⁵, C. Morhain⁵, A. Navarro-Quezada², B. Faina², T. Devillers², A. Bonanni², T. Dietl^{1,6}

 ¹ Inst. of Exp. Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
 ² Institut für Halbleiter- und Festkörperphysik, J. Kepler University, Linz, Austria ³ Laboratoire Louis Néel, CNRS-Universite J. Fourier, Grenoble, France
 ⁴ CNRS-Université de Versailles, Meudon, France, ⁵ CNRS, Valbonne, France
 ⁶ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland; Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Outline

- Introduction
- Samples and experimental setup
- Results
 - Zero field reflectivity and photoluminescence
 - Magnetoreflectivity spectra and their model description
 - Exchange integral determination: (Ga,Mn)N and (Zn,Mn)O
 - Photoluminescence of (Zn,Mn)O in magnetic field
- Conclusions

p-d exchange integral – chemical trends DMSs based on :

ZnTe, CdTe

- Molecular field approximation \checkmark
- Virtual crystal approximation ✓

$\beta < 0$

CdS

S. Gubarev et al., JETP (1986), M. Nawrocki et al., MRS Proc. (1987). C. Benoit à la Guillaume et al., PRB (1992). J. Tworzydło, PRB (1994); APPA (1995). Description based on virtual crystal approximation not fully correct

GaN, ZnO

(Zn,Co)O: W. Pacuski et al., PRB (2006). (Ga,Mn)N: W. Pacuski et al., PRB (2007). (Ga,Fe)N: W. Pacuski et al., PRL (2008). (Ga,Mn)N: J. Suffczyński et al., PRB (2011). (Zn,Mn)O: W. Pacuski et al., PRB (2011).

- Virtual crystal
- approximation fails
- T. Dietl, PRB (2008).
- C. Śliwa and T. Dietl, PRB (2008).

Beyond Virtual Crystal Approximation

Virtual crystal approximation justified

Beyond Virtual Crystal Approximation

Virtual crystal approximation justified

Beyond Virtual Crystal Approximation

Virtual crystal approximation justified

Strong coupling - virtual crystal approximation does not work

(an analogue of Kondo effect in metals)

T. Dietl, Phys. Rev. B 77, 085208 (2008). C. Śliwa and T. Dietl, Phys. Rev. B 78, 165205 (2008). C. Benoit à la Guillaume et al., Phys. Rev. B 46, 9853 (1992). J. Tworzydło, PRB (1994).; APPA (1995). p-d exchange integral – chemical trends DMSs based on :

ZnTe, CdTe

- Molecular field approximation ✓
- Virtual crystal approximation ✓

 $\beta < 0$

CdS

S. Gubarev et al., JETP (1986), M. Nawrocki et al., MRS Proc. (1987). C. Benoit à la Guillaume et al., PRB (1992). J. Tworzydło, PRB (1994); APPA (1995). Description based on virtual crystal approximation not fully correct

GaN, ZnO

(Zn,Co)O: W. Pacuski et al., PRB (2006). (Ga,Mn)N: W. Pacuski et al., PRB (2007). (Ga,Fe)N: W. Pacuski et al., PRL (2008).

• Virtual crystal approximation fails

 $\beta^{(app)} > 0$ $\beta^{(app)}$ reduced

reduced

T. Dietl, PRB (2008). *α*^(app)
C. Śliwa and T. Dietl, PRB (2008).

p-d exchange integral – chemical trends DMSs based on :

ZnTe, CdTe

- Molecular field approximation ✓
- Virtual crystal approximation ✓

 $\beta < 0$

reduced

CdS

S. Gubarev et al., JETP (1986), M. Nawrocki et al., MRS Proc. (1987). C. Benoit à la Guillaume et al., PRB (1992). J. Tworzydło, PRB (1994); APPA (1995). Description based on virtual crystal approximation not fully correct

GaN, ZnO

(Zn,Co)O: W. Pacuski et al., PRB (2006). (Ga,Mn)N: W. Pacuski et al., PRB (2007). (Ga,Fe)N: W. Pacuski et al., PRL (2008). (Ga,Mn)N: J. Suffczyński et al., PRB (2011). (Zn,Mn)O: W. Pacuski et al., PRB (2011).

• Virtual crystal approximation fails

T. Dietl, PRB (2008). *O*(*app*)

C. Śliwa and T. Dietl, PRB (2008).

Samples

(Ga,Mn)N

(Ga,Mn)N (<700 nm)	↑c - axis
GaN (1300 nm)	
Sapphire	

 x_{Mn} < 0.9 % (SQUID and SIMS)

MOVPE grown (one series)

(Zn,Mn)O

x_{Mn} < 3 % (SIMS)

MOCVD or MBE grown

CNRS-Université de Versailles, Meudon, France CNRS, Valbonne, France

J. Kepler University, Linz, Austria

Zero field spectroscopy

- Well resolved excitonic transitions in reflectivity
- Excitons shift towards higher energies with increasing Mn content

Band gap energy vs Mn concentration

 → Increase of the band gap with increasing Mn concentration: (contrary to e. g. ZnMnSe case)
 in agreement with the recent theoretical predictions

Reflectivity in magnetic field – (Ga, Mn)N

- Reflectivity in magnetic field confirms identification of excitonic transitions
- Well resolved excitonic shifts

Model of the Reflectivity spectra

Dielectric function for GaN and (Ga,Mn)N layers:

$$\varepsilon_{j}(E) = \varepsilon_{0} + \frac{4\pi \cdot \alpha_{Aj} \cdot E_{Aj}^{2}}{(E_{Aj} - E)^{2} - i \cdot E \cdot \Gamma_{Aj}} + \frac{4\pi \cdot \alpha_{Bj} \cdot E_{Bj}^{2}}{(E_{Bj} - E)^{2} - i \cdot E \cdot \Gamma_{Bj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2}}{(E_{Cj} - E)^{2} - i \cdot E \cdot \Gamma_{Cj}} + \frac{4\pi \cdot \alpha_{Cj} \cdot E_{Cj}^{2$$

+ *excitonic excited states* + *continuum of unbound states*

Fitting parameters: energies, widths and polarizabilites of excitons A, B, C:

Reflectivity in magnetic field – (Zn,Mn)O

- Clear observation of the giant Zeeman splitting of 1S and 2S excitons
- Correct model description

Modelling of the of the excitonic shifts in magnetic field

Effective Hamiltonian:

$$H = E_0 + H_V + H_{e-h} + H_{s,p-d} + H_{Zeeman} + H_{dia}$$

Hamiltonian of exchange interaction between Mn³⁺ ions and free carriers:

$$H_{s,p-d}^{\sigma\pm} = \pm \frac{1}{2} N_0 x_{Mn} \langle -S_Z \rangle \begin{pmatrix} \beta - \alpha & 0 & 0 \\ 0 & \alpha - \beta & 0 \\ 0 & 0 & \alpha + \beta \end{pmatrix}$$

 \rightarrow Free parameters of the fit: N₀ α , N₀ β , band gap energy, splittings Δ_1, Δ_2

Excitonic splitting in magnetic field

(Ga,Mn)N

(Zn,Mn)O

- Quantitative description of excitonic shifts in magnetic field
- Anticrossing of A and B excitons due to e-h exchange interaction
- Magnitude of A and B exciton splittings:

 \rightarrow exciton A in (Zn,Mn)O has r₇ symmetry

Exchange constants

• Apparent $N_0 \alpha^{(app)}$ in (Ga,Mn)N - small

as expected from the recent theories

Exchange constants

Photoluminescence in magnetic field – (Zn,Mn)O

- No e-h exchange \rightarrow no exciton anticrossing
- Γ_9 shift larger than Γ_7 shift

Conclusions

- Band gap of (Ga,Mn)N and (Zn,Mn)O increases with Mn concentration
- Apparent p-d exchange energies $N_0\beta$ much reduced and ferromagnetic: $N_0\beta^{(app)} = +0.8 \pm 0.2$ for (Ga,Mn)N and + 0.5 ± 0.15 eV for (Zn,Mn)O
- Apparent s-d exchange energy in (Ga,Mn)N small: $N_0 a^{(app)} = +0.0 \pm 0.1 \text{ eV}$
- Opposite circular polarization of reflectivity in ZnO as compared to GaN due to reversed valence band ordering
 → Recent models /T. Dietl, PRB (2008).; C. Śliwa and T. Dietl, PRB (2008)./ of wide gap DMSs confirmed
- Mutually opposite polarization of excitonic photoluminescence and reflectivity from (Zn,Mn)O explained

Strong coupling regime

Dietl, PRB'08