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Abstract

We discuss three classical field theories based on the wave equation: scalar field, electrodynamics

and linearized gravity. Certain generating formula on a hyperboloid and on a null surface are derived
for them. The linearized Einstein equations are analyzed around the null infinity. It is shown how
the dynamics can be reduced to gauge invariant quanitities in a quasi-local way. The quasi-local
gauge-invariant “density” of the hamiltonian is derived on the hyperboloid and on the future null
infinity .# . The result gives a new interpretation of the Bondi mass loss formula [2], [3], [4], [10].
We show also how to define the angular momentum.
Starting from an affine approach for Einstein equations we obtain variational formulae for Bondi-
Sachs type metrics related to energy and angular momentum generators. The original van der Burg
[4] asymptotic hierarchy is revisited and the relations between linearized and asymptotic nonlinear
situations are established. We discuss also supertranslations, Newman-Penrose constants and Janis
solutions.

1 Introduction

In the papers [2], [3], [4] from the series “Gravitational waves in general relativity” Bondi, van der Burg,
Metzner and Sachs have analyzed asymptotic behaviour of the gravitational field at null infinity. The
energy in this regime, so called Bondi mass, was defined and the main property — loss of the energy was
proved. See also discussion on p. 127 in the last paper [10] in this series. The energy at null infinity was
also proposed by Trautman [1] and it will be called the Trautman-Bondi energy (or TB energy).

We interprete their result from symplectic point of view and we show that the concept of Trautman-
Bondi energy arises not only in gravity but can be also defined for other fields. In this case the TB energy
can be treated formally as a “hamiltonian” and the loss of energy formula has a natural interpretation
given by (2.21). We apply similar technique to define the angular momentum.

We introduce here the language of generating functions which simplifies enormously our calculations.
This point of view on dynamics is due to Tulczyjew (see [29]).

We start from an example of a scalar field for which we define TB energy as a “hamiltonian” on a
hyperboloid. The motivation for concerning hyperboloids in gravitation one can find in [12], [15] and [16].

In section 3 we give an example from electrodynamics.

Next we prove analogous formulae for the linearized gravity. The result is formulated in a nice gauge-
independent way. We show how the formula (2.21) can be related to the original Bondi-Sachs result
— mass loss equation (35) of [2] (cf. also equations (4.16) in [3], (13) in [4] and (3.8) in [10]). Our
result is an important gauge-independent generalization of this original mass loss equation. It shows the
straightforward relation between the Weyl tensor on the scri and the flux of the radiation energy through
it. We show how to define the angular momentum from this point of view.
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In section 8 we give “spherically covariant” formulation of the asymptotic equations from [4]. We
discuss several features of the theory like supertranslations, charges etc. and also the relations between
linear and nonlinear theory.

1.1 New results and propositions

We give a list of problems and results which seem to be important and they are discussed in this paper.
e hamiltonian formula on a hyperboloid and at the future null infinity for the scalar field
e application of the proposed method in electrodynamics
e natural outcome in linearized gravity, non-conservation laws, invariants

e analysis of the symplectic structure proposed by Kijowski in Bondi-Sachs coordinates, non-conservation
law for the energy at null infinity gives Bondi formula, symplectic structure on scri gives the result
proposed by Ashtekar et.al.

e application of the method for angular momentum, hamiltonian formula and non-conservation law
for it

e covariant formulation on a sphere of the Bondi-van der Burg-Metzner-Sachs asymptotic hierarchy

o transformation laws with respect to the supertranslations in general case without axial symmetry,
hypothesis for the angular momentum and static moment

e TB Four-momentum for any (cross-)section of the future null infinity in terms of the BvBMS
asymptotics

e simple relation between asymptotics on scri in full nonlinear theory and linearized gravity

e simple interpretation of the Newman-Penrose constants and their analogy in the linearized theory

2 Scalar field

Consider a scalar field theory derived from the density of a lagrangian L = L(yp, ¢,,), where ¢, := 0,¢.
The entire information about field dynamics may be encoded in the equation

SL(p, o) = Ou(p" o) = (Oup™)dep + "oy - (2.1)
The above generating formula is equivalent to the system of equations

oL

ot = — 2.2

W =50 (2.2)
oL

p‘u' = a— (2.3)
Pu

It is obvious that the system of equations (2.2)—(2.3) is equivalent to the Euler-Lagrange equations in the
usual form

oL _on
op, — 0p

Hamiltonian description of the theory is based on a chronological analysis, i. e. on a (3+1)-foliation
of space-time. Treating separately the time derivative and the space derivatives, we rewrite (2.1) as

5L = (pop) + O (p"de) (2.4)



where we denoted p := p°. Integrating over a 3-dimensional space-volume V we obtain

5/‘/L = /V(P5<p+p5¢)+/8V;DL5@0:/V(P5s0*sb5p+5(psb))+/avp%so (2.5)

where by p' we denote the normal part of the momentum p*. Hence, the Legendre transformation
between p and ¢ gives us

—5/ H(p,p) = / (Pdp — @dp) + / prop (2.6)
v v v
where the density of the hamiltonian is

Hi=pp—L (2.7)
and the hamiltonian we denote by H := [|, H. Equation (2.6) is equivalent to the Hamilton equations

. OH . OH
Pp=— 3 <P:5—
P

(2.8)
provided no boundary terms remain when the integration by parts is performed. To kill these boundary
terms we restrict ourselves to an infinitely dimensional functional space of initial data (p, p), which are
defined on V' and fulfill the Dirichlet boundary conditions ¢|sy = f on its boundary. Imposing these
conditions, we kill the boundary integral in (2.6), because dp = 0 within the space of fields fulfilling
boundary conditions. This way the formula (2.6) becomes an infinitely dimensional Hamiltonian formu-
la. Without any boundary conditions, the field dynamics in V' can not be formulated in terms of any
Hamiltonian system, because the evolution of initial data in V' may be influenced by the field outside of
V.

Physically, a choice of boundary conditions corresponds to an insulation of a physical system composed
of a portion of the field contained in V. The choice of Dirichlet conditions is not unique. Performing
e. g. the Legendre transformation between ¢ and p* in the boundary term of (2.6), we obtain

/ pL&P:(S/ p%—/ ipt . (2.9)
ov ov ov

Hence, we have
—W:/ (o — ¢op) —/ @op™ . (2.10)
\%4 oV
The new Hamiltonian
A=t [ vt (2.11)
ov

generates formally the same partial differential equations governing the dynamics, but the evolution takes
place in a different phase space. Indeed, to derive the Hamiltonian equations (2.8) from (2.10) we have
now to kill dp* at the boundary. For this purpose we have to impose the Neumann boundary condition
prlov = f. The space of fields fulfilling this condition becomes now our infinite dimensional phase space,
different from the previous one.

The difference between the above two dynamical systems is similar to the difference between the
evolution of a thermodynamical system in two different regimes: in an adiabatic insulation and in a
thermal bath (see [22]). As another example we may consider the dynamics of an elastic body: the
Dirichlet conditions mean controlling exactly the position of its surface, whereas the Neumann conditions
mean controlling only the forces applied to the surface. We see that the same field dynamics may
lead to different Hamiltonian systems according to the way we control the boundary behaviour of the
field. Without imposing boundary conditions the field dynamics can not be formulated in terms of a
Hamiltonian system.



2.1 Coordinates in Minkowski space

We shall consider the flat Minkowski metric of the following form in spherical coordinates
N dydy” = —dt? + dr? + r%(d#? + sin® 6d¢?)

The Minkowski space M has a natural structure of spherical foliation around null infinity, more precisely,
the neighbourhood of .#% looks like S? x M.
We shall use several coordinates on Ms: s,t,7, p,w,v,u. They are defined as follows

r=sinhw=p~!

t=s5+coshw=s+p ty/1+ p2

u=t—r=s++

p
14+ +/1+ p?
v=t+r=s+p t(V1+p2+1).

The hypersurfaces s =const., u =const. and v =const. correspond to the lines in the space My. The
two pictures below show them schematically.

A piece of My close to the
center in usual coordinates:
radial r and temporal ¢

A piece of M close to null
infinity in coordinates p, s



2.2 Scalar field on a hyperboloid
We shall consider a scalar field ¢ in a flat Minkowski space M with the metric

2dsdp dp?
+ 2
V1it+p? 1+p

Let us fix a coordinate chart (x#) on M such that 2! = 0, 22 = ¢ (spherical angles), 2® = p and z° = s,

Nudatdz” = p=2 <p2d32 + + d#? + sin® 9d¢>2> (2.12)

and let us denote by ’;AB a metric on a unit sphere ( ’?AdeAde := d6? + sin? 0d¢)2).
We shall consider an initial value problem on a hyperboloid X

Yy :={z €M |2°=s=const.}

for our scalar field ¢ with a density of the lagrangian (corresponding to the wave equation)

1 1 5. (0)? 2¢300 °
L= —=/—detn,n" = ——p Zsinf | p*(p3)* — AB
5 et N Pupy 5P sind |p*(ps)” — R + 7P oaps
We use the following convention for indices: greek indices pu,v,... run from 0 to 3; k,[,... are coor-
dinates on a hyperboloid ¥ and run from 1 to 3; A, B, ... are coordinates on S(s, p) and run from 1 to

2, where S(s,p) == {z € I, | #* = p = const. }.
The generating formula (2.1) can be written for any V C X

5/ L=/(p°5<p),o+/ p*op
\% 1% ov

and in particular the definition (2.2) of the canonical momenta p* gives the time and radial components
of it

L
poapzsin9< ¢027 L )

Let us observe that in general the integral / L is not convergent on ¥ if we assume that ¢ = O(p) and

v
3 = O(1). The same problem with “infinities” we meet in p and p. We can “renormalize” L adding
a full divergence

L:= —% sinf lPQ(iﬁs)z - %p?(%)z + wao + VAP | =

V1+p?
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=L+ 280 sin 6 % D5 (sinbp~'p?) (2.13)

V14 p? 2

where we have introduced a new field variable 1) := p~!¢ which is natural close to the null infinity. The
generating formula takes the following form with respect to the new variable 1)

5/VZZ/V(7TO(5¢),O+/W7T35¢

and the Euler-Lagrange equations (2.2)—(2.3) we write explicitely

ﬂozgzsirw Yo ¥s
o T+p* /14 p2

oL 1
3= 22 — _ginf | ——1) + p?
T 30, in (m% P¢3>
oL °
A= = — _gingyAP
™ O YB
oL
GMW#:%ZO

It is easy to check that all terms are finite at null infinity, provided ) = O(1) and ¥3 = O(1).
From the above equations one can easily obtain the wave equation

Oy =0 (2.14)
where the wave operator O is defined with respect to the metric
2dsdp dp?

_|_
V1+p2 1+4p

which is conformally related to the original flat metric 7, .
Remark. Let us observe that

L= L dem b, = L+ 5 (/a7 0?)

so we are not surprised that (2.14) holds. It can be easily checked that the equation (2.14) is equivalent
to the original wave equation

Oe =0 (2.16)

7, dztdz” = —p?ds® + 5 + d6? + sin? 0d¢? = p*n,, dztdz” (2.15)

by the usual conformal transformation for the conformally invariant operator O+ %R because the scalar

curvature R of the metric 77, vanishes.
From the Legendre transformation between 70 and 1y we can define the “hamiltonian” density

(v0)* + %ABwA'(/)B:| =%y — L

1 . 2 !
H = §S1n9 [(P¢,3) + 1 +p2

and the following variational relation holds

—5/VH=/V(7%5¢—¢5W)+/WW35¢, (2.17)
0

where here 7 := 7".



Remark. The relation between (2.17) coming from L and (2.6) with respect to L gives the same result
for the numerical value of the hamiltonian H := fz H and this can be easily seen from the following
observations

7wy — Pom = 05 — pop”
1
w38 — p3op = §6sin 0 pa)*

So the formulae give the same hamiltonian because pi)? vanishes on #+.
Unfortunately, if we integrate the relation (2.17) over hyperboloid X, we quickly realize that the
boundary term

/ w36 = / sin 01pdy)
(o) S(s,0)

does not vanish for the usual asymptotics of the field ¢. If we want to have a closed hamiltonian system,
we have to assume that ¥|ss; = 0 and then the energy will be conserved in time. But we would like to
describe the situation with any data | ,,. In this case we can define Trautman-Bondi energy, but it
would be no longer conserved, formally we can treat it as a “hamiltonian” of the opened hamiltonian
system and the formula (2.17) is useful as a definition of the Trautman-Bondi energy together with its
changes in time. In our case the boundary condition f depends on time (see disscussion after formula
(2.8)) and an interesting case for us is to compare the data with different boundary conditions. Although
the energy defined on a hyperboloid is not a hamiltonian in a usual sense, it plays an important role for
the description of the radiation at null infinity. The metod is useful for the construction of the other
generators of the Poincaré group and will be applied for the angular momentum.
We should express our hamiltonian as a functional of (, )

2
H:= %sinf) (ps)? + (7” Lt 7" +¢3> + VAP g (2.18)

sin 6

and the Hamilton equations (2.8) are the following

b= (U ) /T 2 (2.19)

sin 6
it = (my/T+ p2) 5 + [(L+ p?)sin0bs] , + (sinf 74P yp) 4 (2.20)

and they correspond to the wave equation (2.14).
The variational formula (2.17) describes an opened hamiltonian system because in our case there is
no possibility to kill the boundary term. Our “hamiltonian” is not conserved in time

_ _ 3 = . 2 .
o (/2 H) /az P s(e0) sin 6(v)) (2.21)

(we remind that 0¥X=5(s,0) is odd oriented). Formally, the result (2.21) can be obtained from (2.17) if
we replace variation 0 with 9y but it can be also checked by a direct computation using equations (2.19)
and (2.20) together with the definition (2.18) of the density H.

Nevertheless this formal calculation is very useful. For example, we can easily define the angular
momentum along the z-axis as a generator for the vector field %

/ (7T,¢5’§/J — ¢’¢57r) = —5/ 7T’§/J,¢ = _5Jz
b by

Using equations of motion, we can check that the angular momentum is not conserved in time

—80Jz = —80 (/E 71'¢’¢) = /52 7T3’L/J’¢ = ‘/S(S,O) sin 9’(/.11b7¢, (2.22)



We will show in the sequel that the formulae (2.21) and (2.22) can be written for the linearized gravity
and have the interpretation of the TB mass loss formula and angular momentum loss equation.
Let us formulate the following theorem:

Theorem. If the TB mass is conserved than the angular momentum is conserved too.

This means that it is impossible to radiate away the angular momentum without a loss of mass. The
proof is a simple consequance of (2.21) and (2.22). If the TB mass is conserved than (from (2.21)) ¢ has
to vanish on .# and from (2.22) we get that the angular momentum is conserved.

We shall see in the sequel that this theorem also holds for Bondi-Sachs type metrics describing
asymptotically flat solutions at null infinity for the full (nonlinear) Einstein equations.

2.3 Scalar field on a null cone

We shall consider an initial value problem on a null surface N defined as follows
N = {xeM|v:s—|—p_1(1+\/1+p2)zconst.} (2.23)

where we have introduced a null coordinate v := s+ p~1(1 + /1 + p?) which plays the role of time in
our analysis. Formally, .# T corresponds to the surface p = 0. Let us rewrite the Minkowski metric (2.12)
using new coordinates v, instead of s, p

Nudrtda” = p~2 (prdv2 — p?dvdu + d#? + sin® 9d¢2)
The relation between coordinates (v,u) and (2%, 23) used in the previous subsection is the following

v=a"+p A+ 14p%), w=-2p"", p=a’

=0y, 03=2p"0z—p > <1+ ;> o

V14 p?
d:cozdv—i—l 1+# du, dz?*==pdu
2 /1+p2

The density of the lagrangian takes the form

ol

1 y . 1,0
=g/ det 7, 0" Yuth, = sind [wuw’u — P2 — ZpQ YAByp atpp

The formula (2.1) on the null surface N can be written as follows

) / / TU0Y) o / T

and the corresponding components of the canonical momenta are

oL
Ny

Tl =

= sin 91/15

m_;fu—sme(wv2%)—sin9<pzw3+\/l1/}i7>

If we perform Legendre transformation, we obtain the density of the hamiltonian on a cone N

H = 7%, — L =sinf {(1&5)2 pz l/JAl/JB]



Let us observe that on the limiting surface £t (parallel to N) we get
lim H = sin0(yy)? = sin 01)° (2.24)

p—0F

and the hamiltonian [ s+ H describes the total flux of energy through .# T. Moreover, the symplectic
structure on N has also a natural limit on scri'

/ i - / sin 0ot "= [ sin Odopdudode (2.25)
N N +

B2

We will show in the sequel that the above formulae exist in electrodynamics and linearized gravity.
Similarily, the equation

/ Ty = / sin 0yt =% [ sin 04 pduddds (2.26)
N N g+

describes the flux of angular momentum through .# .

2.4 ADM mass

We have tried to treat separately the hyperboloid and scri and we have learned that there is no possibility
to get a nice hamiltonian system. Let us denote by N (only in this subsection) a “piece” of .#* between
¥ and spatial infinity i°. If we take the surface ¥ U N together

5 (/ZH—I—/NH) :/E(fnw—wf) +/N (ﬁéw—ww) +/8E 7r35¢+/8N 75 (2.27)

we will obtain a hamiltonian system provided we can kill the boundary term. This can be achieved,
assuming for example that

lim ¢ =0

U— — 00

which simply means that 1/1 is vanishing at spatial infinity. This usually happens for initial data on
Cauchy surface t =const with compact support or vanishing sufficiently fast at spatial infinity. The
following relations confirm our theorem

3] i T
s ’62——8111(91/)—71'

0% = S(s,0), ON = S(s,0) U S(—00,0)
Smapy = /E B (msw - wn) n /a . sin 93 (2.28)

where mapym = fzuN H. Let us note that here N = J,.,S(u,0) but we can also consider N =
Uue(s,s0] S(u;0) and then (2.28) leads to the Bondi mass on Y5, as a Hamiltonian [34].

2.4.1 One-parameter family of hamiltonian systems and their limit

ZT,E = {S =T,p2 6}

1+Vite
NTEI{UT+ e - Spﬁe}

’ € "1+ V1fe2

)

€
Le:=qt=7,0<p< 7}
T,€ { 3 1+ /—1 T 62
IThese observations has been applied by Ashtekar et.al. [31], [32], [33] for the description of the space of radiative modes
in exact relativity, see also equation (7.17) in this article.




lim ¥, . =3,

e—0t

lim N, =N, C.#*

e—0t

lim I, =4’
e—0t

1+vV1i+e2 —2v1+4 €2
NTGZ{U:T+ * +€7 te +TSUST}

)

€ €

1 1 2
[m:{tzmz; H}
€

Y, UN_ UI. . is an explicit example of a one-parameter family of surfaces (with respect to 7) and
the hamiltonian related to this family is an ADM mass. On the other hand, the hamiltonian system
(2.27) is a limit of these systems with respect to the second parameter ¢ (¢ — 07). This way we have
certain “finite” procedure for the hamiltonian system (2.27) at infinity.

2.5 Energy—momentum tensor

Let us consider the energy—momentum tensor for the scalar field ¢

T+, = \/T_n (p", — 6", L)
where 1 := det7,, and by §*, we have denoted the Kronecker’s delta. For the lagrangian L desribing
scalar field ¢ the canonical energy momentum is symmetric. From Nother theorem we have

O (V—TH,X") =0

for a Killing vector field X# and integrating the above formula we obtain
o / VT, XY = — | =T XY (2.29)
by oy

Usually, when ¥ is a spacelike surface with the end at spatial infinity, the boundary term on the right-hand
side vanishes and the equation (2.29) expresses conservation law for the appriopriate generator related to
the vector field X. On the contrary, for the hyperboloid the right-hand side does not vanish and (2.29)
expresses non-conservation law. It can be easily verified that for the energy and angular momentum we
have respectively

/E\/—_nTOO:/EH

[n= [

The boundary terms arising in (2.29) for the energy can be expressed in terms of energy—momentum
tensor

1 _ .
- / T30p~* sin §dfde — —= / T7,p~ % sin §dode (: / 32 sin0d0d¢>
o% 2 Jas onco+

1 1 )
/ T,p *dpsin 0dOde = / du <2T”vpzsin0d0dq§) and =p2TY,| =4¢?
N N

2 P

10



Similarily for angular momentum

— / T3 4,p~* sin 0dode = ! / T p~ % sin 6dOde (: / z/}w,qbsinededqs)
o5 2 Jox osC. o+

=y

1 1
/ TY 4p *dpsin d0dg = / da <§T“¢p_2sin 9d9d¢> and §p—2TU¢
N N g+

It is easy to verify that the result is compatible with (2.21)—(2.22) and (2.24)—(2.26).

This calculation shows that quasi-local density [ g2 ¥? sin #dfd¢ of the energy on .#* has two different
interpretations. It is a boundary term which describes non-conservation of the “hamiltonian” on a
hyperboloid ¥ or a density of a “hamiltonian” on .#+. More precisely, it is a density with respect to
the parameter w but integrated over a sphere. This is an example of an object which is local on Ms but
non-local on S2. We call such objects quasi-local. It will be shown in the sequel that this concept of
quasi-locality is useful in electrodynamics and gravitation.

The equations (2.21) and (2.22) are examples of the general formula which has the following form for
any Killing vector field X = X*d,

o </E \/—_nTO,,X”) =— /aE X4 + X0 (2.30)

Equation (2.21) corresponds to the vector field X := 0y and (2.22) to the Xy := 0.

Remark. One can check by a direct computation that X3|,+=0, which simply means that the
(Poincaré group related) Killing field X is tangent to the ..

The vector field corresponding to the linear momentum in z direction

0
Xp:= —&ao — p? cos00s — psin 0y | Xp| g+ = —cosbdy

V14 p?

gives the loss formula

—0o P, :/ X% = —/ sin 6 cos 0(1))? (2.31)
o5 S(5,0)

where P, ::/ \/—nTSX}‘,.
b

Similarily, we can take a boost generator along z-axis
XK = —pV1+4+p?cos005 — /14 p?sinfdy + sXp, Xgkl|s+=3sXp|s++ 5¢

where 3,4 = e4P0p, and the formula (2.30) takes the form

— K. = / X% + T3 Xpg = —s9 P, — sin? 0y (2.32)
ox S(s,0)

for K, := / TSXI”( or
b

— 00K, + 50y P, = / sin 9’(/)8:1,’4&
S(s,0)

The equations (2.21), (2.22), (2.32) and (2.31) express the non-conservation law of the Poincaré group
generators defined at null infinity.
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3 Electrodynamics

This section should convince the reader that the TB mass and angular momentum at null infinity can be
described in classical electrodynamics in a similar way as for the scalar field in previous section.
The field equations for linear electrodynamics may be written as follows

0L = 0, (F"™"0A,) = 0 (F"")0A, + F"HéA,, (3.1)
where A,,, := 0,4, and L is the Lagrangian density of the theory. The above formula (see [25]) is a
convenient way to write the Euler-Lagrange equations
oL
0A,

together with the relation between the electromagnetic field f,, = A,, — A,, and the electromagnetic
induction density F“#* describing the momenta canonically conjugate to the potential

0uF" = (3.2)

oL
U — 3.3
For the linear Maxwell theory the Lagrangian density is given by the standard formula
1
L = ,Z\/,_nfw/flw (3.4)
and relation (3.3) reduces in this case to FH¥ := /=mmHnP f.z.
Integrating (3.1) over V' we obtain
5 / L = / o (FHOS Ay + / FU36A, =
v v v
_ / Do (FBO Ap + FO5A5) + / (FB35A5 + FO5A0) (3.5)
v v

We assume that the charge e defined by the surface integral

e:= /5( )]—'03 (3.6)
5P

vanishes. The situation with e # 0 can be described similarily as in [24] but we are interested in “wave”
degrees of freedom and we are going to show, how the volume part of (3.5) can be reduced to the
gauge-invariant quantities.

Let & = p*2AS(37p), where Ags ) denotes the 2-dimensional Laplace-Beltrami operator on a sphere
S(s,p). One can easily check that the operator & does not depend on p and is equal to the Laplace-

Beltrami operator on the unit sphere S(1). Operator & is invertible on the space of monopole—free
functions (functions with a vanishing mean value on each S(s, p)).

Let us denote by ¢4Z the Levi-Civita antisymmetric tensor on a sphere S(s, p). We can rewrite (3.5),
provided that the electric charge e vanishes, in the following way

5/ L = / o [TOB,B Eflép*QABHB + FO5A; + FOB cef 1715P72(5ABAAIIB)} +
v v

+ /av(f?’B,B AT10p AP g+ FB6 A0+ F3B e ATop 2 (P Aap)) (3.7)

Here, by “||” we denote the 2-dimensional covariant derivative on each sphere S(s, p). Using identities

OpFPBY 4+ 03730 = 0 and O FPB3 + 9y F*® = 0 implied by the Maxwell equations and integrating again
by parts we finally obtain

) / L = / Ao []-‘30 &*15( AAs — (p2AP ) 3) + (F'Bl%%pe) &715P72(5ABAAHB)] +
1% 174

+ / [P0 A8 Ao — p72A% po) + (FFICe o) A7lop 2 (AP Aqyp)|  (39)
oV
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The quantities A Ay — p~2AB | g o and ( AA; — (p™2AB|p),3) are gauge invariant and it may be casily
checked that

sin 0 ( AAg — p’2AB||B,o) = p*FA)a (=)
and

sin { &Ag — (p72AB||B),3} = PQ}-ASHA (=m)
Let us introduce the following gauge invariants

Y= F3/sin6

*h = pfzeABABHA = — % F39/sing

mi=—p*F3*)a

fOBHC

— _ 2 A
X 1= EBC = P *.7:3 [|A

where
x FHY = %ij}‘a}—,\g
Now we will show how the vacuum Maxwell equations
OuF*™ =0, 0OxF' =0

allow to introduce equations for gauge-invariants. The result is analogous to (2.19) and (2.20) describing
scalar field

b= (1407 + V142 (3.9)
i = (my/T+ ) s+ [(1+p?) sinfus] , +sind Ay (3.10)
W= (14 7)o/ T+ (3.11)
it = (/T4 p2) 3+ [(1+ p?) sin 0 +¢hs] , +sinf A (3.12)

The proof of (3.9) is based on the observations that

. v
sinfipg = F g = —F34 4 = (140" V14

Fha , P

+
L+p> 1+ p?

—m=p*F3t 4 =

and

sin Oy = F20 5 = FO4) 4
Similarily for (3.10) we have the following relations
— (xF% pea”)

- (*fOAHBé“AB) + (*fAB”BCé‘AC)p =0

,0 »3
*.FOA _ 7p2€ABng

*fSA _ pzsAB]:OB
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*fAB — pQEABFOB
Fos = —p *F®

which allow to get the equation

F3A ]:OA fSA o
( a4 A + p2_7_-0AHA_ A + AFO—(
,0 )3

L+p% /142 V1+ p?

which is equivalent to (3.10).
For (x1, x7) the proof is the same, provided we apply the Hodge dual x for the variables and equations:

(m,90) = (+7, 59)) = (m,%))

Now we will show, how our variables appear in formula (3.8). Let us perform the Legendre transfor-
mation in the volume V'

P (A= AT AR )] = =0 [P (Aa— ATNTAP p)s )| 4
+ [As = AT(p72AP ) 5] 07
and on the boundary 9V
FO5 (Ag— Ao 24 50) = 8[F (Ag— ATp2A% p0)] +
(A0 = A71p7245 ) 65

This way the formula (3.8) may be written as

6/V[L—8o<w Alr) = 950 AT 0 F o) :—/Vao [ A720p 4 xm A5 0] +

+/ [;ﬂff“o,m Aty — FAIB b5 *w] (3.13)
av
Finally we obtain the following variational principle
5/ I= —/ Bo(m AL + 4 A6 xah) +/ 73 AL+ A Loy (3.14)
1% 1% v
where the lagrangian L is defined by
L=L-0, (w ﬁflw) — s (d) ﬁfl,ﬂfAOHA) (3.15)
and boundary momenta are
: F34 14 W
S S prf A :p2F0A YA —sing | +p2¢3
0 A 1A T+ 2 M+t 2

s o= —F3AlBe o =p? *fOAHA:sine (*1/1 + p? *1/13>

V14 p?

From lagrangian relation (3.14) we immediately obtain the hamiltonian one, performing the Legendre
transformation

76/H — 7/irzfléwfd}3715ﬂ+ﬁr£715*1/1—>m/}£’16*7r+
174 1%

+/ 7 ATLE) 4 oar® AL xep (3.16)
oV
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where
PO S S 317

is the density of the hamiltonian of the electromagnetic field on a hyperboloid.
The value of fv H is equal to the amount of electromagnetic energy contained in a volume V and
defined by the energy—momentum tensor

1
T“u = fu)\fku + Z§5fNAan
We are not surprised that the quantity H is related to T° by

/ Hdodo = V—nT,dod¢
S(s,p)

S(s,p)

and to prove it we can use the following identity
p tsinf |:*7T AL *th — 7 ﬁ_lib — 03 (¢ ﬁ_pofAOHA)} =

03 0A A -1 —27 A 0A||B A —1 AB
= FOFo3 — F 4 A7 p 2 Fo a4 — FOUNPBeap A7 Foaype

The non-conservation law for the energy we can write as follows

_8OLH:/azsin9<1/}£_1¢+*¢£—1*¢>:_/S

For angular momentum defined by

(9 A+ A1) sinfdode (3.18)
(s,0)
J, = _/ T ﬁflw + ﬁ*lw@
by
we have a similar formula

—0oJ> 280/ Wg_lw@‘*‘*ﬂ'&_l*‘pxﬁ:_/
5

sin 6 (¢ ANy + ) &_1*1&7(25) dode  (3.19)
S(s,0)

but the relation with symmetric energy-momentum tensor is not so obvious.
jz ::/ ﬁT% = / .7:03f3¢ S fae
b bX
Using the relations
m=—p Zsinffs* 4 V3=—p e fra5
s =p 2sind «fs 4 w3 =—p 2P xfyqp

we can express J, in terms of (1), %, #)) as

J, = /E¢ ( 3—1% +sin95¢ g_lwﬁ) + /E ) ( &_l*ﬂ,qb - sin95¢ g_l*‘/’,3> =

= —/ T 2‘11/)@ + T ﬁ_lw@ +/ sin9w(§¢ &—1*(/}
5 E)>
where 5A := 4205 and we have used the identity

/ sin 9@073(% &*1 x) = 7/ sin 9*1/1(% 5711/1,3
52 52
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The boundary term |, oy Sin 91/)3¢ A ~'wp usually has to vanish, if we want to interprete the integral
fz w/fnT% as an angular momentum generator, but in our case 1, %) do not vanish on .#* and we

obtain in general two different definitions of the angular momenta .J, and .J,.
Let us observe that

A¢ = (p_2 z_lABHB> . — éqs 5_1 *1

s

and
/ (‘7:)‘014(15)7)\ = / sin v g_lp_g (1413‘“9)7q5 —/ sin9¢3¢ &_1 *1)
1% av av

so the angular momentum .J, is related rather to the canonical energy-momentum tensor with gauge
AB ;B = 0 than to the symmetric one. More precisely, the canonical energy-momentum density 7#, is
related to the symmetric one as follows

1 L L
TH, = FMAy, — 20l = V=T + (F*A)
For the angular momentum we obtain

/TO¢:*/7T£717/1,¢+>WT£71*1/1,¢*/ sin 6y 4 &flp*QAB”B:JZJr
) s oy

+/ () Z*lp*QAB”Bsmadodqs
S(s,0)

Let us observe that if ¢ 4 and %) , are vanishing on . then J, is well defined in terms of the canonical
energy-momentum tensor density TO¢ and is conserved.

3.1 Electrodynamics on a null surface

Now we will show, how the formula (2.25) can be obtained in the classical electrodynamics. Let us
consider a volume V' C N, where N has been already defined by (2.23). Let us integrate infinitesimal
symplectic relation

/V Fod,dpdodo = | F A~'6p 2 AP pd0dg+

+ / Frs (A, — AN (o2 A% )| dpdbd - / FoABe g A16p 2 A g pe*Bdpdodg
v v
and similarily to the considerations on 3 we have

o _ 1 . B
AA, —(p2AP\ ) p= —F " a=v,=20"Yz

sin 6
where T = —% and 9, = 2p~?9g. For dual degree of freedom holds the analogical relation
FrilBenp =« F4) 4 =28 0p™ 7

and finally we obtain gauge-independent part 4+ boundary term + full variation

/ Fo A, dpddde = / For AL 5p 2 A8 dode — 6 / sin 09 A "1, dudfde+

\% oV |4

+/ sin 6 (u),u ALY + wp, A0 w) dudfde (3.20)
Vv
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This equality means that, modulo the boundary term and full variation, we can reduce our symplectic
form on . to the invariants. The final form is similar to (2.25) and posseses a quasi-local character.
Let us notice that on the surface v =const. we can use the coordinate u as well as @ or in other words
OulN = Oz|n, du|y = du|y and this observation refers obviously to the objects on N but not on M.

Now we will show, how the flux of energy through £+ is related to the energy-momentum tensor,
similarily as in subsection 2.5.

1 - v 1 - v 1 v v
Ty = 5o (f0)2 + 5o () + gnanf A7

/ T%,p~*sin dpdfdep = — / sin 0dudfde (1/)7u AN+ A *%) +
|4 14

1
+7 / p? sin 0dudfdg (¢ + «p?)
1%
The last term vanishes on the scri
—>O+
p2 (’po + *1/12) P4} 0
SO
V=T = 7/ du [sin 0dode (w,u A=l + )y A *wu)} (3.21)
g+t g+

The integral on a sphere in quadratic brackets represents the quasi-local density of the flux of the energy
through .#*. The main difference comparing with a scalar field is that here there is no possibility to

[e]
work with the local density because of the operator A ~! and only a quasi-local object assigned to a
sphere can be well defined. However, if we introduce “quasi-local vector”

U4 = 04( &—1¢) +eaP0p( 5_1 *))

then the flux of energy through £+ can be described by a “local density”

— / sin d0d¢ (¢ 5*1% + %b .y, AL w,u) = / sin 0dOde YABW 4
S2 S2

where ;AB is the inverse metric to the standard metric on a unit sphere ( %AdeAde = d#%+sin? Adp?).
Similarily, the symplectic structure (3.20) takes the form

/ FU§A,dpdfdep ~ / sin 0dudfdp T4 5w 4
\4 14

where ¥4 .= %AB V5 and symbol “~” denotes equality modulo full variation and boundary term.

4 Linearized gravity on a hyperboloid

We start from the ADM formulation of the initial value problem for Einstein equations [5]. In subsection
4.1 we introduce the hyperboloidal slicing and in subsection 4.2 we consider an initial value problem for
the linearized Einstein equations on it. In subsection 4.3 we discuss “charges” on the hyperboloid and
in the next two subsections we introduce invariants, which describe reduced dynamics. In subsection 4.6
we derive the “hamiltonian” in terms of gauge invariant quantities.
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4.1 Hyperboloidal conventions
The flat Minkowski metric of the following form in spherical coordinates
Nuwdytdy” = —dt* + dr? + r*(d6? + sin® 0d¢?) (4.1)

with 7 = sinhw, ¢t = s + cosh w already defined in section 2, can be expressed in the coordinates s, w well
adopted to a “hyperboloidal” slicing of Minkowski spacetime M

N dydy” = —ds? — 2sinhw ds dw + dw? + sinh® w(dO? + sin? fd¢?) (4.2)

In this section we use the different coordinate w instead of p used previously, but at the end we will
return to p to compare the results for the scalar field and linearized gravity. Let us fix a coordinate chart
(y*) on M, such that y' = 6, y?> = ¢ (spherical angles), y*> = w and y° = s. So we have

Yoo={yeM : y’=s}= U Ss(w) where S, (w):={ye%, : v =w} (4.3)
we[0,00[
and X, is a three-dimensional hyperboloid, Ss(w) = S(s, /——) and 9%, = S,(c0) = S(s,0).
We use the similar convention for indices (as for coordinates (z*)), namely: greek indices p, v, ... run
from 0 to 3; k, I, ... are coordinates on ¥ and run from 1 to 3; A, B, ... are coordinates on S(r) and run
from 1 to 2.

The hyperboloid ¥ has a very simple geometry. The induced Riemannian metric n;; on ¥ in our
coordinates takes the form

ndy®dy' = dw? + sinh® w(d6? + sin? Odp?) (4.4)

The hypersurface ¥ is a constant curvature space and the three—dimensional curvature tensor of ¥ can
be expressed by the metric

SRijkl = Nk — MikMjl (4.5)

4.2 ADM formulation for linearized gravity on a hyperboloid

Let (gxi, P*') be the Cauchy data for Einstein equations on a three-dimensional hyperboloid Y. This
means that gy, is a Riemannian metric on ¥ and P*! is a symmetric tensor density, which we identify
with the ADM momentum [5], i.e.

P* = \/det gpn (¢"' Tr K — K*)

where Kj; is the second fundamental form (external curvature) of the imbedding of ¥ into a spacetime
M, which is now curved.
The 12 functions (g, P¥') must fulfill 4 Gauss—Codazzi constraints

Pil|l = 8m/det 9mn Tiunu (46)
1
(det gmn)R - PklPkl + §(Pklgkl)2 = 167T(det gmn)TuununV (47)

where T),, is an energy momentum tensor of the matter, by R we denote the (three-dimensional) scalar
curvature of gg;, n* is a future timelike four—vector normal to the hypersurface ¥ and the calculations
have been made with respect to the three—metric gx; (?|” denotes the covariant derivative, indices are
raised and lowered etc.).

The Einstein equations and the definition of the metric connection imply the first order (in time)
differential equations for gy; and P* (see [5] or [6] p. 525) and contain the lapse function N and the shift
vector N* as parameters

2N 1
gt = —= | P — _gklp) + Nigji + Ny (4.8)
Vi ( : e
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where g := det g, and P := P*lg,,

. 1 2N 1
Pkl = _N kl _ — Kkl e Pkmpml o *PPM Pkle
Ve (R 2N 2 +( Jim
4 N pRp,. lpz _ Nk, pml _ Nl pmk \/—<N|kl _ M NIm >+
2\/§g kl 9 |m |m g g |m
87N /G g™ g™ (4.9)

We want to consider an initial value problem for the linearized Einstein equations on the hyperboloidal
slicing, introduced in the previous section. For this purpose let us first check that on this slicing the ADM
momentum P* for the background flat Minkowski spacetime on each hyperboloid 3 is no longer trivial

P = 2, /gq" (4.10)
and
grdy®dy! = ndy*dy! = dw? + sinh? w(d6? + sin? 6d¢?) (4.11)

where g* is the three-dimensional inverse of g;.
Let us define the linearized variations (hz;, P¥!) of the full nonlinear Cauchy data (g, P*') around
background data (4.10), (4.11)

hit == gri — Mkt » phL.— prl 4 2A77kl (4.12)

where A := \/detng; (= sinh? wsin ).
We should now rewrite equations (4.6)—(4.9) in a linearized form in terms of (hy;, P*'). Let us denote
P = nkﬂ?kl and h := nklhkl. The vector constraint (4.6) can be linearized as follows

Py~ Pity — 280" + Aby; (4.13)

Let us stress that the symbol has different meanings on the left-hand side and on the right-hand side
of the above formula. It denotes the covariant derivative with respect to the full nonlinear metric gy,
when applied to the P*, but on the right-hand side it means the covariant derivative with respect to the
background metric ;. The scalar constraint (4.7) after linearization takes the form

“|77

1 1
ViR = (P’”Pkl - 5(Pklgkl)?> ~ A (h’”u - hlk) 2P (4.14)
The linearized constraints for vacuum (7},, = 0) have the following form
'Plk“c — 2Ahlk‘k + Ah‘l =0(= 87TATl,m“) (4.15)
A (h’”u - h|k> o~ 2P = 0(= 167AT,n''n") (4.16)
The linearization of (4.8) leads to the equation
. 2N 1 1
hiw = A\ Pr— 5P )+ horp + hoie + 2Nnk1(n + ih) —2Nhy +
=N (Pngept + Pontje — Ptm) (4.17)

where N := \/1—00 = coshw, N3 = n93 = —sinhw, N4 = npa = 0 are the lapse and shift for the
-7

background and n := 2’17% is the linearized lapse. Finally the linearization of (4.9) takes the form
P = —NARM 4 NP NP 428 (Rt gt — i ho™ ) +
A (V) = g (V)| %N (i el — i, — B
—%Nm [h’“”m + 3hmHE 4 gpmHE — Rt (plm 4 2hmn|n)} (4.18)
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It is well known (see for example [8]) that linearized Einstein equations are invariant with respect to the
“gauge” transformation:

Py = oy + & + Euip (4.19)

where ¢, is a covector field, pseudoriemannian metric g,, = Nu, + hy and “” denotes four-dimensional
covariant derivative with respect to the flat Minkowski metric 7,,. There is no (3+1)-splitting of the
gauge for hyperboloidal slicing, similar to the situation described in [8]. The (341)-decomposition of the
gauge acts on Cauchy data in the following way

A—lpk,l N A—lpkl + N£0|kl _ Nnklgo‘mm _ 2N€Onkl _ Nké—(]‘l _ Nl€0|k +
+2nkle€O|m 4 2ekll y ogllh _ 2nkl§m‘m (4.20)
P = b+ &+ &+ 2N €0 (4.21)

It can be easily checked that the scalar constraint (4.16) and the vector constraint (4.15) are invariant

with respect to the gauge transformations (4.20) and (4.21). The Cauchy data (hg;, P*) and (A, 5“)
on ¥ are equivalent to each other if they can be related by the gauge transformation &,. The evolution of
canonical variables P*' and hy; given by equations (4.17), (4.18) is not unique unless the lapse function
n and the shift vector h%;, are specified.

Let us define the “new momentum” p* as

M= PM A (2BM —gMR)  (pi=P + AR)

and notice that this object can be also introduced in full nonlinear theory as P* 4 2\/§gkl and after
linearization gives p*', i.e.

Pkl +2\/§gkl %pkl

Let us also observe that the new momentum is trivial for flat Minkowski data. Moreover, the symplectic
structure is preserved

dP* A dgy — d (P + 2y/gg™) Adgr = —4d*\/g =0
and the gauge transformation for p*! is simpler than for P*!

AIphl o ATIphl 4 NgOIRL _ NpklOlm - \kOIL _ LIk 4 gpkl g cOlm (4.22)
The vector constraint has a familiar form

'y = 0(= 8TAT},n") (4.23)
We can also rewrite the dynamical equation (4.18) in terms of the new momentum

M= Nmp‘krzn LN (nklp_ 3pkl) 1A {(Nn)lkl _ nkl(Nn)lm‘m I 2Nm7kl} n

A
LNA (nklh _ 3hkl) _ EN (hmkum S opmllk gkl h\kl) i

+%Nm [hml|k 4 bl _ pRtlm nkl(h|m _ thnln)} (4.24)

We will show in the sequel that it is possible to define a reduced dynamics in terms of invariants,

which is no longer sensitive on gauge conditions. The construction is analogous to the analysis given in
[7].
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4.3 “Charges” on a hyperboloid

The vector constraint (4.23) allows to introduce “charges” related to the symmetries of the hyperboloid.
There are six generators of the Lorentz group, which are simultaneously Killing vectors on the hyperboloid
Y. Let us denote this Killing field by X*. It is defined by the equation

X+ Xyp =0 (4.25)
Let V C X be a compact region in ¥. For example V := U Ss(r) and OV = Ss(r) U Ss(r1). From

r€[ro,r1]

(4.23) and (4.25) we get

(SW/‘/ATzw“) =0= /VpkluXk = /V(plek)u = /BVp3ka (4.26)

The equation (4.26) expresses the “Gauss” law for the charge “measured” by the flux integral.
In particular for angular momentum, when X = 9/9¢, we can show the relation of this charge to the
dipole part of invariant y, which we will introduce in the sequel (subsection 4.4).

167s® := 16mj*Y = —2/ PPy = —2/ pa(r’e*? cos 0)) 5 =
ov ov

= 2/ r2p3AHB<€AB cosf = / Ay cosf (4.27)
ov v
The time translation defines a mass charge as follows

(16”/ AToun*) =0 = / N [A (hklu - h““) — 277} + 2N, =
Vv Vv |k

= / 280" + NA (B = BI') + A (Nh* = N'h)] .
L

- / IN ™ + A (Nhg”k‘k — Nh3 4 Np*S — N3h) (4.28)
v
and it can be related to the monopole part of an invariant x (subsection 4.4).

16mp° = / INp*3 + A (Nh3"'|k — NhP 4+ N B3 — N3h) =
ov

A

_ /8 ) %X (4.29)

Remark. The traceless part of hy; and p*! have nice properties with respect to the gauge transfor-
mation (4.19), which splits into 0-component (transversal to 32) which acts on p*! and space components
(tangent to X) which act on hy — %nklh. The traces h and P remain nontrivial unless we impose gauge
conditions. The most popular gauge condition, which allows to obtain the scalar constraint (4.16) as a
full divergence (see (4.30) below), is to assume that P = 0. Assuming such gauge we can define another
“mass” charge as a surface integral coming from the scalar constraint (4.16) (but we obtain totally non-
local object). More precisely, one can analyze the scalar constraint (4.16) (in the same way as (4.26) for
the vector one)

2/‘/P:/‘/A<h’”u—h"“)lk:/WA(h?’lu—h‘?’) (4.30)
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but there is no “Gauss” law for the “mass” defined by the surface integral on the right-hand side of (4.30),
unless we impose gauge condition P = 0. This means that such definition of the mass charge, measured
by the flux integral at null infinity, is not gauge invariant like the ADM mass at spatial infinity. This
consideration should convince the reader that the definition (4.29) is better than (4.30) together with
vanishing P.

4.4 The (2+1)-decomposition and reduction

Now we introduce reduced gauge invariant data on Y for the gravitational field, similar to the invariants
introduced in [7]. For this purpose we use a spherical foliation of ¥ (see equations (4.3) and (4.4)).

In this section we present mainly results without detailed proofs as in the section about electrody-
namics. See also Appendix A where we give explicit formulae used in this section.

Let k := cothw. The gauge (4.21) splits in the following way

hss — hsg+ 253+ 2NE° (4.31)

hsa  — hsa+8§3.4+8as — 264 (4.32)

hag — hap+&ap+E&p)a + 26na&s + 2NnapE’ (4.33)
where by “||” we denote the covariant derivative with respect to the two—metric nap on S(r). Similarily,

the gauge (4.22) can be splitted as follows

A71p33 _ A71p33 4 N£0|33 o N£O|mm _ A71p33 o NgOHAA o 2Nl€€073 (434)
A_1p3A N A—1p3A +N£O\3A _N3§0\A — A—1p3A +N€0’3A - — 1h é—O,A (435)
sinh w
A—lpAB N A—lpAB + Né—O\AB _ NT]ABSO\mm +277ABNm§O|m — A—lpAB + (436)
+NEUAB — Ny (50’33 +&M%% + (k- 2N3)€0,3)
It is also quite easy to rewrite the (2+41)-decomposition of (4.17)
. 2N 1
h33 = T <]933 - 5}7) + 2h03|3 + 2N(n + hgg) — N3h33‘3 = (437)
2N 1 .
= N (ng - 2p> +2ho3,3 + 2Nn + 2Nhgs — N2hs 3
: 2N s
hsa = — Psat hosja + hoajs +2Nhsa — N hgzja = (4.38)
2N
= Ty Psa + hoza + hoas — 2khoa — N3ha3 4
. 2N 1
hap = A \PaB —gnaBp |+ hoais + hopja +2Nnapn 4+ 2Nhap +
s 2N 1
—N°(hzaip + hspja — haps) = A \PaB = gnasp | + hoaj B + (4.39)
+hop|ja + 26maBhos + 2Nnap(n + haz) + 2Nhap +
—N?(hga) B + hap|a — hap3)
The vector constraint (4.23) can be splitted in the similar way
ps" i =ps® 3+ ps?tya — kp?Pras =0 (4.40)
1
pa¥ ik =pa® 3+ 04" B =p3as + Sa% 5 + §S\|A =0 (4.41)
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where S := pABnAB and S48 .= pAB — %nABS. Similarily, let us denote H := hABnAB and xap =
hap — %77,4 pH. The invariants are defined as follows

x := 2cosh? wh?® + 2 coshw sinh wh?’CHc + sinh? wXABHAB — coshwsinhwH, 3+

1, o 2sinh? w
—= 2)H — ———p*3 4.42

(A om0 (4.42)
X := 2sinh? wSABHAB + 2coshwsinhwp3A||A + &p% (4.43)
y = 2A " sinh? wp®A1Be 4 5 (4.44)
Y = A(A +2)h*Beyp — sinh® w(AXC 4 jcpe™P), 5 (4.45)

The (2+41)-decomposition of the scalar constraint (4.16) can be written in the form
A <h”l — hkluk> +2P = [A(H, 3 — 20%4) 4 — 260 + kH)] , 5 — 2A(R** + H)+
1
+2(p* +8) = AP 1 a + 2% 14) + A (h33||AA + 5H'%) =0 (4.46)
The dynamical equations (4.24) take the following (2+1)-form:

AP = AN (%3, 5 — kS) — (Nn)”AA — 2xkNn, 3+

N
+5 [h%HAA + H, 33+ 26H, 5 — 26(20°%) 4 + 1%, 3) — (2h3A||A),3} +

1 34
+5Ns [H,5 = 2h%) 4] (4.47)
AT = ATINB (P 5 + 2kp%) + [(Nn), 3 — kNn]lIA + 5 {H, gl — n®3lA 4

2 1

+Th3A — hAB| g, 5 — 26hAB) g — PP 5 4 h?’A”BB} + §N3h33”A (4.48)

sinh” w
A 'pap =A""NPpap, 3+ AN [nap(p™ + S) + pas] +
+N(n|aB — nasn1c) = Nnap(n, 33 + kn,3) + 20apN>n, 3+

N3 T 5 3 3C 1 34 33 c
t5 h” B + W Bj1A —naBR™ |10 +77AB(§H»3 =R A= h3) — xa"snes | +

N 1
t5 [(XCB, 3Nca),3 + XABHCHC — X% ayBc — X Bjlac + h¥ ) ap + 577ABHHCC+
tnap——5—(h* + H) + nap(sH, 3 — 263 4 — 26°1h%) + ———xap+

sinh” w sinh” w
. 1 .
- <77AB(H’133 - §H,3) +hP B + h3BA> ) 3] (4.49)
We can check the reduced field equations for our invariants
N

%=X+ (N3x), 3 (4.50)
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X = N*X, 5+ ANAx — AN3(x, 5 4 2kx) (4.51)

. N N3
y=3 Y+ (Ay)s (4.52)
Y = A(N3A7YY), 3+ ANALy — AN3(y, 5 + 2ky) (4.53)

where Ay, is a Laplacian on a hyperboloid X.
It can be easily verified that the invariants x and y fulfill the usual d’Alambert equation (as a
consequence of the above dynamical equations)

Ox=0
Uy =0

Let us notice that x and y are scalars on each sphere S(r) with respect to the coordinates y.
For the scalar f on a sphere we can define a “monopole” part mon(f) and a “dipole” part dip(f) as a
corresponding component with respect to spherical harmonics on S2. Similarily, the “dipole” part of a
vector v corresponds to the dipole harmonics for the scalars vAH 4 and €480 a|B- Let us denote by f
“mono—dipole—free” part of f. According to this decomposition we have

x = mon(x) + dip(x) + x
y = mon(y) +dip(y) +y

Then the mono-dipole part of each scalar can be solved explicitly from the equations (4.50)—(4.53) and
the solution has the form

4m 12k
X—X= _
T sinhw  sinh?®w
- 12s
Y=y sinh? w

Let p := k. We obtain
and

k = p(s + coshw) + ko

Moreover, &m =0, ( ﬁ +2)p =( & +2)ko = ( & +2)s = 0, which simply means that m is a monopole
and kg, p, s are dipoles and they are constant on Ms. They correspond to the charges introduced in [8].
Let us rewrite the solution in coordinates u,r, which will be more useful in the sequel

4m +12p  12(kg +
N P (02PU)
T T
12s

y=y-+ Tz (4.55)

X=X

(4.54)

Let us also remind the relation between spatial constant three-vectors in cartesian coordinates and dipole
harmonics

: ! l

k—] 2l _ bz _Ss&
0 — ) P= ) 5=

r r r

where z; are cartesian coordinates and 50, p', s! are corresponding three-vectors representing our charges
(see [8]).
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4.5 Reduction of the symplectic form on a hyperboloid

We want to show the relation between the symplectic structure and the invariants introduced in the
previous subsection. Let (p*!, hy;) be the Cauchy data on a hyperboloid.

The quadratic form fv p*'8hi; can be decomposed into monopole part, dipole part and the remainder
in a natural way.

From the considerations given in the Appendix B we can easily see that

/Bkléhkl N/Xﬁ‘l(ﬁ+2>‘155+X3‘1(5+2)‘15z
A% 174

where symbol “~” denotes equality modulo full variation and boundary term. Moreover, the “mono-
dipole” part has the form

mon(/ pkléhkl)w/ ;pg?’&mon(x)
% v

2 cosh? w

. 1 ) ° 4.
dlp(/ P aw) N/ — P335dIP(X)+/ A(hzape™P) A~ odip(y)+
v v 2cosh” w v

—|—/ (tanhw ﬁflh?’AHA - > odip(X) (4.56)
1%

4 cosh? w

The mono-dipole part of invariants: mon(x), dip(x), dip(X), dip(y) represents 10 charges which are sup-
posed to be fixed, they are analogous to the electric charge in electrodynamics. If we assume that there
is no matter inside volume V' then all of them are vanishing (this is included in (4.54) and (4.55) as the
regularity conditions at = 0). In particular on hyperboloid ¥ we obtain that mono-dipole part vanishes
for linearized vaccum Einstein equations and the symplectic structure can be reduced to the invariants

/pkléhkl ~ / XA (A+2) 7 0x+Y AT (A +2) sy (4.57)
> 3

4.6 Non-conservation laws on a hyperboloid with the end at .#*

Let us return to the coordinate p := ———. The metric on M takes the starting form (2.12). It is

sinh w
convenient to introduce new canonical field variables similar to the variables for the scalar field and

electrodynamics

U,i=p'x, U, :=p

X Y- A
I = —, I, =——= Y
/1 + p2 /1 + p2
Equations of motion are the same for both degrees of freedom

1 . II,y/1 2
— ¥, -v,,= Lvi+p”
V14 p?

I, — (IL,\/1 + p?),, = sin 0 [A‘IIL + (14900 ),

- L=z
sin 6 ’ 24

and they are similar to (2.19), (2.20) for the scalar field and (3.9), (3.10) for electrodynamics.
The reduction of the symplectic form (from the previous section) allows to formulate the hamiltonian
relation in terms of the new canonical variables

3> / B, AN (A +2)7 I — I, AH( A +2)7L60, = 1670H+
1%

1=xz,y
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72/ H\/1+p +sin (1 + p?) W L,p} A7 (A +2)7 60, (4.58)
ov

L=z,y
where
IL /1 + p? S -1/ % _1 (L1 + p?
167H = v 9)~1 [ VT Ly
6mH = %:y/( ot L,p>A (A+2) W, |+
+o Z/p sin0,, AN A +2)710,,, —sin¥,( A +2)717, (4.59)

L=,y
Similarily for angular momentum we propose the following expression
16w, = » /H ATYA+2)71w, (4.60)
L=x,y
The non-conservation laws for the energy and angular momentum

—16mOyH = Z / sin O, 1( A+ 2)71y,

=2y S(0)
~16m0). = » / sin6¥, A (A +2)71,,
are similar to (2.21), (2.22) and (3.18), (3.19). It should be also possible to formulate linear momentum
P, in a similar way as (2.31)
—16m0y P, = Z / sin 6 cos 6 [\PL &71( A+ 2)’1\PL]
L=z,y

but this will be analyzed in a separate paper?. It is obvious that all these formulae are quasi-local.

5 Linearized gravity in null coordinates

We are going to follow the idea from subsection 2.2 and apply it to linearized gravity.

5.1 Minkowski metric in null coordinates

Let us define the null coordinates: w :=t —r, v := r + t together with the index a corresponding to
the coordinates (u,v). The spherical foliation is the same as previously and the coordinates on a sphere
(z4), (A =1,2), (z' = 0,22 = ¢) are the same.

For convenience we need also some more denotations: p := r~! = ﬁ, p.a = p*e, where eu = %
€y 1= —%, n%€.6, = 1. We will also need €* := 1%, and we can check that € =1, €V = —1, ngpe%e® = 1.
The explicit formulae for the components of Minkowski metric can be denoted as follows
_92 0 1
NaB=p “YAB, Tab= _§|Eab|7 Naa =0
where E,, = 0= E,, and F,, =1 = —F,,. Similarily, the inverse metric has the following components

nAB:pQ,(;AB7 n® = —2|E®|, n%4 =0

2The meaning of the expression in quadratic brackets is not obvious and it should be rather @Z}ABMJAB where ¥4 g are
introduced in section 7. Also in electrodynamics the definition of P, is not obvious, however in electromagnetic case we
have energy-momentum tensor.
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where E** = (0 = E'Y and E“Y =1 = —E"*. We shall also need the derivatives

0P 0 =2pean™” | Map.a = —2peanan
and finally the nonvanishing Christoffel symbols except T4 g¢ are the following
Iap = pe"nap, Tap=—peadp
5.2 Riemann tensor in null coordinates
We need to derive the linearized Riemann tensor in null coordinates
2Rapcd = had,pe — hod,ac + hoc,ad — Rac,pa
2Rapep = haD be — MoD,ac + Mbc,aD — Pacop+
+pep (hap,c + heD,a — hae,p) — pea (hop,c + hep,b — Poe,D)
2R apcd = haajicp + hoc)a,a — hod)jac — hacpat
+peu (haajjc — hacija — hac,a) — pea (hpeya — hoajjc — hacy) +
+pnace® (hya.a — hadp — hav.d) — 2p%epeahac
2RaBcd = haapc + hpcjja.a — hpajac — hac)p.a + 2p€d (hocja — hacy ) +
+pnpce’ (haad — hda,a + had,a + 2p€ahaa) — pnace® (ha,a — haB,a + had,B + 2p€ihaB)
2Rabep = hap|jcp — MoD)|Ca + Moc||Da — hac) Dbt
+2p€, (hap|jc — hac| i) + 20€a (hociip — hup)ic)
2Rapcp = hap|Bc + heojjap — hepjjac — hac|sp+
+onace” (hap,a — has|p — hap)B) + P1BDE" (hac,a — hac)ia — haajic) +
—Bce® (hap.a — haap = hapjja) — Pape® (hc.a — hapjjc — hac| ) +
+p? (hppnac + hacniep — hapnsc — heenap) + 2p*€ € hay, (NacneD — NBCNAD)

5.3 Ricci tensor in null coordinates

The Ricci tensor takes the following form
2Rab = hcb,ac + hac,cb - hab7cc - hcc,ab + haA,bHA + th,aHA - habHAA - H,ab+

+p€aH,b + PGbH,a + QPGC (hab,c - hac,b - hbc,a)

1
2R.p = th,ab - haB7Cc + hac,cB - hcc,aB + haA||BA - haBHAA + XBAHA,a - iHHB,(L+
+peq (2hb3’b — hbb’B) — 2p€bth’a — 2p2€a€bhbg

2Rap = (h" a8 + haBHA)’a — h%a)a — XAB "0 — 20€"XaB,a + X4 0B + X8 |jcat

1
—xa8'"%c +nap —E(H”Cc + H) +2pe*(H o — ho™j4) + p* (26" hap — H)
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5.4 Gauge in null coordinates
The gauge transformation §,
Py = T + & iy
splits in the following way
hab — hap +Eap + &b
haa — haa +&a,a +E8a,a +2p€.€a
hap — hap +&a)B +&B|ja — 2pnaB€*Sa
and it would be also useful the following formulae

XAB — XaB + &) + &Bjja — 148E 10

1 1
GH — SH+E% 10— 20,

haA — haA + faHA +§A,a

which are straightforward consequences of the previous one.

5.5 Invariants

Let us introduce the following gauge invariant quantities

o

Vo= (A +2heayse® = (p2xa%cpe"?)

,a

yi= 2p *(hypacP) B

[e]
x:= p 2P pa— 3 AH+p 'e"H, — H +26°hgy, — 2p 1 e*ho™ |4

(o) (o]

Xab = A(A +2)hay — (A +2) [(p72ha 1) 0 + (021 4).a] + [P 2(072X*P )1 4B) 0] , +

+ 2 (07X 1aB) 0] ,
They fullfill the following equations
P2y )a=0 2p %y E" = (a+2)y
2E(p%y)p+p 2y" =0
[0 (Yab — y5.a)]" +p 2 (a+2)ya =0

(p'y)*+p tay=0

1 1

(p~'%)" = —p~lax

p2x® = A(A +2)x
nabxab =0
Xab = 2(p_2x),ab - nab(p_2x)7cc

if we assume vacuum equations R, = 0.
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5.6 Reduction of symplectic form on .#*

Now we will show how the linearized symplectic form on the null surface N can be reduced to the
invariants in “wave” part similarily to the “hyperboloidal” case. In the full nonlinear theory it was
introduced by Kijowski [27] (however he was interested only in spacelike surfaces), see also short reminder
in the section 6.

We shall calculate this form in a convenient gauge but the final result will be gauge-invariant. This
way we shall prove that, modulo boundary terms depending on the gauge, the invariant part of the
symplectic form can be obtained in the demanded shape in “wave” part.

5.6.1 Gauge conditions

Let us assume the following gauge conditions
Xap =0, htja=0

It is easy to verify that they are compatible for the “wave” part
p 2P a5 — p XA P as + (A +2)6% 4
p2xa% ) 1c5e?? — p2xa% 1cBEP + (A +2)84) 5P

haAHA — haAHA + Piz Aga + (§A||A),a
More precisely, mono-dipole-free parts of &, and £4 are uniquely defined under these gauge conditions.
5.6.2 Partial reduction to extract gauge invariant part
The linearized 7#*” has the form
1
T = AR o (hG + H)A

and it can be simplified in our gauge. Let us observe that invariants (5.1) and (5.4) have simple form
in this gauge in terms of h,,. From (5.4) and (5.5) we obtain h? = —4h,, = 0. Moreover, 48 =

—uv

%AnAB@Z — AxA® vanishes. Similarily 7rAbHA = 0 because 74% = —Ah4®. Finally from the above
considerations we obtain

/ E‘LW(SAZV — / ECdéégd _ 27TbAHBEABp_2 &_16AabA||B€AB
S(s,p) S(s,p) -
One can show the following relation
[ actsaz,~ [ aoixt), A4 +2)2600 xa) (5.6)
1% 1%

where ~ denotes equality modulo boundary terms and full variation.
Similarily one can prove

/Vﬂ'bAHBEABp_2 A—léAvbAHBgAB ~ /‘/Ap2yb A_l( A +2)—25 [(p—4yv)7b _ (p—be),v] (57)
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5.6.3 Full reduction to x,y

We would like to obtain a similar formula to (2.25). The “curl” part (5.7) reduces easily to the demanded
form

/VApzyb ATHA+2)725 [(p7y") s — (07 %y0)"] N/V2Ap2(p‘1z),u ATHA+2)7(p 7 y)
On the other hand, the second part of (5.6) can be rewritten in the following way
[ A7)0 AR 427200 xa) ~ [ 20027 00 A1 A +2)7 180 )
1% v

)

1o o
+/ 16Ap° {pl(plx),w +35 A(p1X),y] A2(A+2)725(p " x)
14

Let us observe that the last term vanishes on .#%, more precisely (p~1x), = O(p?). The presented
calculations should convince the reader that the following formula holds

[asag,~ [ oag [0, A& +2)75(0) + (0,0, A7 (R +2)0(w,)

and this is a quasi-local form which is similar to (2.25) and (3.20).

6 Generating formula for Einstein equations

Let us remind some results from [27] which will be useful for the sequel.
The variation of the Hilbert Lagrangian

9| R (6.1)

~ 167
may be calculated as follows
oL =0 ( lg| ¢ R, ) = f—g’” Guv + 1; g 9" SR, (6.2)
where
" = /|g| (R™ — %g’“’R) ) (6.3)

It was proved in [27] that the last term in (6.2) is a boundary term (a complete divergence). For this
purpose we denote

1
W= i 4
™ Te. V09lg (6.4)
and
A T A
Ay, =T, = 60, T5, (6.5)
We have
MA,, = W), =0l = Ruy —To,I%, + T, T7, (6.6)
= Ry +A),A7 —gAxA
Hence, we obtain an identity
Ox (T'6A5,) = 7R wg (A2, A%, — 2 A, ¢ ATH) S A 6.7
)\(W [,Ll/) = 7 ILV+7T po V)\_g pur‘tvo +()\7T ) uv ()

= TSR, + (Var) 6AN

nv
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Due to the metricity of I' we have V7#” = 0. This way we obtain

TR, = 0y (T"0A,) = 0. (m))"0T),) (6.8)
where we denote

= S — 77"(”55) (6.9)

Inserting (6.8) into (6.2) we have
1 v v A
5[/ = —16—7‘_g# 59,‘“, + 8,\ (71'# 6A;uj) (610)

We conclude that Euler-Lagrange equations G*” = 0 are equivalent to the following generating formula,
analogous to (2.1) in field theory
SL = 0 (7"6A;,) (6.11)

nz

or, equivalently,
5L = 8, (m)""or),) (6.12)

This formula is a starting point for the derivation of canonical gravity. Let us observe, that it is valid not
only in the present, purely metric, context but also in any variational formulation of General Relativity.
For this purpose let us rewrite (6.10) without using a priori the metricity condition Va7#” = 0. This
way we obtain the following, universal formula

1 v VK VK
oL = —ﬁgﬂ Sguy — (Vum"™) 6T, + O, (w701, (6.13)

It may be proved that, in this form, the formula remains valid also in the metric-affine approach and in
the purely-affine one. In metric—affine formulation, the vanishing of V \7#¥ is not automatic: it is a part of
field equations. We see that, again, the entire field dynamics is equivalent to (6.12). Finally, in the purely
affine formulation of General Relativity the Einstein equations are satisfied “from the very beginning”
whereas the metricity condition for the connection becomes the dynamical equation. We conclude that
also in this case the entire information about the field dynamics is contained in the generating formula
(6.12).

This formula, compared with (2.1), suggests that the role of field potentials in General Relativity
should be rather played by the connection I', whereas the metric g should rather remain on the side
of canonical momenta. This observation was the origin of the purely affine formulation of the theory.
Also in the multisymplectic formulation (i.e. formulation in terms of Poincaré-Cartan form — see [26])
the connection appears on the side of field configurations. We stress, however, that the results do not
depend upon the choice of a variational formulation.

7 Metrics of Bondi—Sachs type

In this section we shall consider the initial value problem for the curved space-time M with a metric of
the form

|4
gudrtda? = ——e*Pdu? — 2e*°dudr + r*ysp(dz? — UAdu)(dz® — UBdu) (7.1)
r

on the null cone C' = {z € M | 2° = u = const.} (see [10], [2], [4]) with the boundary OC' at the future
null infinity. We have the following non-vanishing components of the inverse metric g

v
g3 = Lo
r

g% = 28
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FPA = _e 28y

1
g8 = AP
r

where 74 is the inverse metric to vap.
Let us define the “covector” Upg as

Up = gpaU® = r’ypaU?
We have in our coordinate system the following non-vanishing components of the metric g,
|4
goo = —?em + UsU4

gos = —*’

goa = —Uax
_ .2
gAB = T"YAB

We also assume that

v/detyap =sinf

The metric (7.1) implies the following expressions for 1677#” = \/—gg*” and A/\W = F’\W — (5()‘#1"",,)0
defined by (6.4) and (6.5)

V=g =e*r%sin6
16779 = —r?sin g
167748 = 28 sin 94 AP
167733 = 7V sin 6
167734 = —r? sin U4
16779 = —r?sin
167748 = €28 sin 9448

A3 =A%, =0

1
A%z = —fB3 — =
,
Ayp = e (7“2%43),3
2
Az = —=
,

1 _ 1 i
A354 = 56 2ﬁUB’ggBA ~3 (lnsmﬁ)A

\%4 1% .1
Algs = —B3+ (-) ~UPBp—B— e U U4,
r 2r) 4 2

)
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1

_ ) \%4
Adyp = 3¢ 28 <gAB —94Bs+ U+ UB|A>

The following expression below was proposed by Trautman and Bondi to call the mass

1
Mg 1= 8_7T/BCT -V (7.2)

Choose a (3+1)-foliation of space-time and integrate (6.11) over a 3-dimensional null-volume V' C
C = {2% = const.}

5 / L= / (w8 AS,) + / THEAS, (7.3)
\4 14 ov

Similarily as in the case of electrodynamics, we use here adapted coordinates; this means that the co-
ordinate 3 is constant on the boundary dV. Adapted coordinates simplify considerably derivation of
the final formula. We stress, however, that all our results have an independent, geometric meaning. To
rewrite them in a coordinate-independent form it is sufficient to replace “dots” by Lie derivatives Lx,
where X is the vector field generating our one-parameter group of transformations, which we are describ-
ing. In adapted coordinates X := %. Moreover, the upper index “3” has to be replaced everywhere by
the sign “1”, denoting the transversal component with respect to the world tube. This way our results
have a coordinate-independent meaning as relations between well defined geometric objects and not just
their specific components.

Because the translation between these two notations is so simple, we have decided to use much
simpler language, based on adapted coordinates. The volume part of the formula (7.3) can be simplified
(or reduced) as follows

1671'71'””5/12” = 16775 AY + 32077 S A, 4 167705 A,
= 3277%36A4%;3 4+ 16772854 45

1.
= -3 sin€ (ryap)s o (T’)/AB) +

2r4 sin 0 (g) 73] (7.4)

The last term in the above formula is a full variation of the quantity, which logarithmically diverges when

+4

we try to integrate it, 8 = O(r~2) and 2r%sin6 (T%) = O(r~1). Removing of this term (we can call
3

such procedure: the renormalization of the symplectié form) corresponds to the renormalization of the
lagrangian for scalar field (2.13).
On the other hand, the boundary part in (7.3) can be rewritten as

1671'71'"”514%,, = 167330 A%35 + 327136 A% 3 + 3207346435 4 4+ 16774B5 A% 45 =
. 2+1B . AB 1. . V AB
:251119(21/71" U HB) 0 4+ sin Oy 5UAHBf§s1n0 9AB = -9AB.3 oy P+

v

V .
+r2 Sin96_2ﬂUB73gBA5UA -0 [%2 sin 6 (rKQ + (5) + 7@3 - 06— UBQB> (7.5)
3

R

where by “||” we have denoted a covariant derivative with respect to the two-metric g4ap on 9V.
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Inserting these results into (7.3) we obtain
1
1671'(5/ L = —/ —sinf [(r’yAB)s(S (r’yAB)} —|—/ r? siHHe_QﬂUByggBA(SUA +
v v 2 ’ 0 )%
1
—|—/ 2sin 6 (2V - ’I“QUBHB) o8+ 5 sin 6 (TV’}/AB73 - 7"2"}/AB - 2UA||B) 5’}/AB +
ov

+5/ 4r?sinfB 3 — 6 72 sin 6
v ov

2V 1% 1%
— + (—) +2—B3 2088 p (7.6)
r T 3 T

because 2-dimensional divergencies “O4 f4” vanish when integrated over the boundary OV
From (7.4) we get the relation

167r7r‘“’/12y = —% sin6 (ryap) 3 (r44P) + 2r*sing <g) (7.7)
3

)

On the other hand, from [25] we know that

1677/ T Lx AY, :/ V=g (V?X° - V°X?) =
\4 ov

= / r?sin 6
v

where the last equality can be checked directly for the metric (7.1) and X* = §f. From (7.7) and (7.8)
we obtain the final formula

167r5/ L = / 1sin@[(r"yAB)5(7”7,43)3—(7"")/,43)35(7"7‘“3)} —5/ 2Vsinf +
1% v 2 ' ' v

(= 2r?sin0A3;) (7.8)

1% 1% :
<7> + 27@3 —2UPB 5 — 26— e 2PULUS
3

1 . . -
+5 / sin€ (rVayaps — r*yap — 2Ua;p + r2e 2PUSycaUg) 097 +
v
2V
+/ 2r? sin 0 <r_2 ~UP s+ UAUfg) 58 — 12 sin@e_QﬂUA(SUé (7.9)
ov

Remark. It seems to me that a more natural “control mode” in the above formula corresponds rather
to the control of the term (TQUA)73 than Ug‘ and it can be achieved by the following manipulation

—r? sin@e_wUA(SU)A = — sin@e_zﬂUAé(ﬂUA))g +4 (r sin9€_25UAUA) +
1

+2rsin fe 2PULUASS + = sin e 2PU, U574
r

It is convenient to introduce the following asymptotic variables (I14p,¢4?) related to asymptotic
degrees of freedom

o o
PP =y = yAP g i=ryap — 7T Vas
1. 1. °
ap:=—sinb (ryap); + 5 sinf (7’ VAB)
2 ' 2 3
If we pass to the limit, the formula (7.9) takes the form

—16m0mys = —6 | 4Msinf = / [TapdAP — 2B — E / sin 04 4 g0 AP (7.10)
oC C 2 ocC
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where V = r — 2M + O(r~!) and the asymptotic conditions are given in [4] and will be summarized in
the next section. We can denote the non-conservation law for the TB mass

1 . . 1 o o
—16TIgmrs = ——/ sin GwABwAB (: —/ sinf X aB.u XAB,u> (7.11)
2 Joc 2 Joc

where the last form in the brackets becomes clear when we learn about asymptotics presented in the next

] i v AB v AB
section. In particular Y ap| s+ = Xap and 27| s+ = — X7,

Similarily, for angular momentum we get the answer from the superpotential proposed by Komar [20]
167 / T Lx A}, = / V=g (V?X° - v°x?)
v ov

where now X = 9/0¢.
The right-hand side can be expressed in terms of the Bondi-Sachs type metric

V=g (V3X0 — V0X3) = / r4sin Ge*ww}AU‘g — 167J,
ov av '
The limit is taken on .# T and according to the asymptotics presented in the next section we obtain
1 o o .
16nJ, = — /80(6N¢ + 5 X ¢B XBCHC) sin #dfd¢ (7.12)
But on the other hand

167‘1’/ 7TIW£XA/(M)W :/ ﬂ-IWA?w,ti? :/ HAB¢AB,¢>
Vv |4 14

and

) ) 1 o
167r60/ W””A2V7¢ :/ HAB1/)AB7¢ - HAB,dﬂ)/}AB = 5/ 51n9¢A31/JAB,¢
C C ocC

We will show in the next section that the non-conservation law for angular momentum agrees in terms
of the asymptotics

. 1 o o
167.J, = — / = Xapu X*P 4 sin0dode (7.13)
oc 2 ’
7.1 Symplectic structure on scri
Let us observe that we can use the previous results (7.4) and (7.5) to reduce the form
v v v 0 3
oAy, = T S(A,, +247,) (7.14)

Let us also remind the coordinate system which should be used to describe the situation in a similar way
as in section 2.3 for scalar field and 3.1 for electrodynamics. (u,r) — (v,7), @ = —2r v = u+2r, Oy = Oy,
Or = =203 + 0y, du ANdr = %dﬂ A dv and finally W“”éAzl,deGd(b = %77“”5A7,jydﬂd9d¢).

If we put
2r* sin 6 (i > ] (7.15)
r
3

)

1
167r7r‘“’5A?W =-3 sin€ (ryap) 36 (r*yAB) +9

and

1 1%
1671'71'“”(5A3W = 2sinf (2V — TQUBHB) 00 + sin9’yAB(5UAHB ~3 sin 6 (g'AB — ?gABg,) (5'yAB+

+r?sin e 2PUL 3gp40U* — 5 |2r?sin 6 (Z + <K> + %ﬁ’g -B- UB@B>] (7.16)
3

72 2r
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into (7.14), assuming asymptotic behaviour on .# 1, we obtain the following formula at the future null
infinity

167" A 4| 5o = —sin 0 apd™ P + 45(sin M) (7.17)

Remark. The symplectic form
/ dudfde sin 06925 A Siap
S+

has been considered by Ashtekar et.al., see [31], [32] and [33]. Their reformulation in a conformally
geometric way (in the spirit of the “universal structure” of Penrose’s null infinity) has given the symplectic
structure on the space of radiative modes of the non-linear gravitational field in exact general relativity.

Let N = [u;,us] x S C .#T be here a “finite piece” of #*. The relation for the TB mass is based
on the following observations. First of all from (7.17) we obtain

1 1 . .
167r/ iw”"Avw,odﬂdeqﬁ =-3 / sin 04 4 pp AP dudfdg + 2 M sin 0dOd¢
N N AN
and secondly
167 / T Ly AV = / V=g(V'X? = V'X") = — / 2M sin 0dod¢
N N N
where X = Jp, so finally
. 1 . SAB 4
—4 M sin dfd¢ = —= sin 0y 4 gy dudfd e
ON 2 /N

The left-hand side of the above formula represents the change of Bondi mass from initial state u; to final
state ug (ON = {us} x S? U {u;} x S?) but the right-hand side is a flux of the energy through N which
is a piece of .# T between initial and final state, compare with (8.12) and (8.14).

Similarily, for angular momentum we have

1 1 :
167 / T Lx AV, = 167 / iw“”A”W@dﬂdedgb: -5 / sin 04 4 1P dudfde
N N N

where now X = 04.

8 Multipole structure of Bondi—van der Burg—Metzner—Sachs
equations

The metric (7.1) depends on the six functions: V, 3, vap, U# and the asymptotic behaviour of them is
described in [3] and [4]. We shall rewrite formulae from van der Burg paper [4] in a “spherically covariant”
way. More precisely, we denote:

0. M iV are scalars

1. Pairs of functions U, W and N, P can be combined in two vectors U4 and N4 respectively

U =U=U
Uy = sin? QU® = W sin 0
Ny=N?=N

Ny = sin? N? = Psin6
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2. Pairs of functions ¢,d, C, H and D, K correspond to the symmetric traceless tensors >O(AB, Cyp and
DABZ
X% =— X% =2c

(o] [e]
X%y =sin®0 X% = 2dsin

Similarily C% = C, D% = D etc. The reason for this notation arises in a natural way, if we change
the parameterization of the 2-dimensional metric y45. Let us remind that van der Burg in [4] (p. 112)
proposed the following parameterization

yapdztdaz? = 7 cosh(26)d6? + 2sinh(26) sin #dAd¢ + e =27 cosh(26) sin? #d¢? (8.1)

which differs from original Sachs formulation by a linear transformation of the functions v and ¢ (see [3]
p. 107). Next the used functions v and ¢ are expanded in the form

vy=c/r+(C - %cg — ;cd2)7*3 +Dr 4 0(r79)

1 1
d=d/r+ (H - 6d3 + 502(1)7‘_3 + Kr~t +0(r™°)

Let us notice that there is no =2 term, which was analyzed in [10], and vanishing of this term is called
“outgoing radiation condition”.

We propose to change this parameterization in such a way that for the original Bondi axi-reflection-
symmetric metric both formulations are the same. The main advantage of our change is that the expansion
terms take a nice geometric form (mainly the term of order r—3 takes a nice form).

Let us fix the frame df, sin #d¢ which is orthonormal with respect to the background metric ’3 AB-
The symmetric matrix (close to unity)

€27 cosh(26) sinh(24)
( sinh(20)  e~27 cosh(20) ) (8.2)

with the determinant equal 1 can be also parameterized in a natural way by the exponential mapping
exp(ao, + bo,)
where o, and o, are Pauli matrices
1 0 0 1
(o 5) == ()

The solution of the matrix equation

€27 cosh(20) sinh(24) _ ( +bo,)
Slnh(25) 6—2’}/ COSh(2(S) - eXP ao'x Uz

leads to the nonlinear relation between a,b and ~, ¢ in the form
arccosh(cosh(24d) cosh(2v))
sinh?(26) + cosh?(26) sinh?(2)

a = sinh(27) cosh(20)

arccosh(cosh(24) cosh(2y))

b = sinh(20)
sinh?(28) 4 cosh?(26) sinh?(2)

but the asymptotic relation for small v, § is simpler, namely

a=2y+ 2752 +0(v,0)°
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4
b=26+ 5726 + O(v,6)°
and it gives only a correction in r—3 for our expansion. More precisely,

1 1
50 = e/r+(C— 6(02 +d*)e)r 3 4+ Dr~* +0(r79)

1 1
5b= d/r+ (H — 6(d2 +Ad)r 3+ Krt +0(r™°)

and now we can write the expansion in the matrix form

(o]

o 1 o o
logvap = Xap/7T+ (ZCAB = Xcop XP XAB) 173 4+ 2Dapr™t + O(r®) (8.4)

where each term of the expansion is a traceless symmetric tensor on a sphere. The indices are raised with
[e]

respect to the inverse 748 of the background metric (which is a standard metric on a unit sphere). It

is diagonal in our coordinates, ¥gp = 1 and 7 44 = sin®f. The metric connection of the ¥ 45 has the

following non-vanishing components

F0¢¢ = —sinfcosf , F¢¢9 =cot

We are ready to show the asymptotic expansions for the rest of the quantities, which appear in Bondi-
Sachs type metric (7.1). They were introduced in [4] (p.114) but now we can rewrite them in a covariant
way on S?

1 o 2NA 1 [loy, o 1 /o o 1A
A _ AB A 9 BC cD
v 7R ([ R bx X IIC+16(XCDX ) ]
1o 2N 4 1 o o

Ua = 72 UB_— __yB ( CD)
A =T"7VAB 5 A|lB T . +16r Xcp X LA

Vv 2M NAHA 1 {1045 o C 1 °op ©
l=—=—t—— — 2 |7X iBXa jet g X Xeo

_ 1 1 o ° AR
= 32 r X
Basic equations (eq. 13-15 in [4]) can be expressed as follows

o

1o o
Mu:—g XAB,u XAB7u+ XABHAB7u (85)

)

R

CcD

o o 1 o o
X4p X2 10 — R X4op (8.6)

=] w

1 D
3NA,u=—MA—Z§AB(>O(c DE‘S:EC) -
1B

The “dynamics” of the further asymptotic hierarchy (eq. 8-9 and 11-12 in [4]) takes the form

o o

o 1 o o o o
X“P Xep XABwu + 1 Xap XP Xcpu = Najs+ Npjja — WABNC||0+

ol =

_4CAB _
°c S F °EG (87)

° 1o
—MXAB_ZgACX B XE ||FG €

—4Dap = (A +4)Cap — (X4“Ng)jjc — (X8“Na)jjc + Yas(X“PNp)c (8.8)
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Let us observe that mono-dipole but also quadrupole part of the right-hand side of (8.8) vanishes. More
precisely, let us rewrite this equation in the following way

4D = (A +4)Cap — Sa%p|1c (8.9)
where
Sapc = XacNp+ XBcNa— Yap XcpNP

It is easy to check that Sapc is a traceless symmetric tensor (in each pair of indices) and the same holds
for S’ABC :=e4pSPpc. One can prove (see [30]) that SABCHCAB and SABC||CAB are orthogonal to the
first three eigenvalue spherical harmonics (with [ = 0, 1, 2).

On the other hand, from the relation

CAB||CCAB _ CABHABCC’ + 20AB||AB
we obtain that

[(£+4)CAB] = (A +6) (C*P | 45)

[|AB
and similarily for éAB ‘=eapCPp.

This way we get 10-dimensional space of quadrupole Newman—Penrose charges in D 45 which are con-
served ([14], [4]). More precisely, quadrupole (and also mono-dipole) parts of 9, D45 45 and 0, DAB |AB
have to vanish. However, for the polyhomogeneous asymptotics they may be not conserved (see [10]).

Let v = u + 2r, than the metric (7.1) takes the following form

\%4
gudatdz” = (—— + TQWABUAUB + ew) du? — e?Pdudv — 2r2'yABUBdudmA +
r

12y pda?da? (8.10)
and its linearization can be expressed as follows
1 1 o

H~-. . XAB =
5 2 XAaB X

1% 0 oM N4
huw 21— — 420+ 12 7 4pUUP = = 4 A

T T T
huvg_ﬂgo

o o 1o 2Ny
hya = =12 Y agUB —r X 4pUP = 5 XBAHB + -

o o 1 9 0 o
XAB =T X 4AB, hABgTXAB+§7“ YapH =71 Xan

The linearized asymptotics of invariants

AM  6N4)4
XE——+—5
T T
1 o c o 6 o
y = —-Xa cB e4B 4+ T_QNAHB eAB

U, =rx24M, ¥, =rx, = X8
r=TX= ) e =TXu= X""||4Bu

~ ° ¢ S AB ; ~ o © °AB
Uy=ry=—Xa ycpe™", VYy=ryu=—{Xa cB¢
U

give an indication, how to relate linearized theory to the van der Burg asymptotics. This observation will
be used in the sequel.
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8.1 Supertranslations

Let us consider .# 7 as the cartesian product S2 x R! or rather trivial affine bundle over 2 with typical
fiber R'; in some more general situations R' may be replaced by an interval I. The supertranslation
corresponds to the zero section of this affine bundle. On the other hand the boost transformation leads
to the nontrivial scaling factor in a fiber and a conformal transformation on a base manifold S? (see [3]
p. 111).

A prolongation of the supertranslation from scri “to the interior” in Bondi coordinates (metric (7.1))
leads to the following asymptotic relations (see also [3] p. 119)

1 1 o AB
A =24+ ;a”A ~ 53 (X ajp — 224 g +FABca|Ba|C) +...
_ 1 1 o AB
U=u—o— 501"’4@“,4 + 4_7"2 l:X QA B — all4 (0‘|BO‘|B>A] +
B 1 o 1 o AB 1 o AB 1 o AB 1 |AB A
rErog At o X pat o X Qas T 5 X w)a) s — 50T ap — qae

B = (30) ]+

Now we can check the transformation law for )% and M

1 o AB 1o 1 o AB

M =M+ 5 Xjpuia+ 5 X 0as + 7 X ®iac)s

o] o] o o
XAB: XAB_Qa\\AB+ rYAB A«

04 =04+ a’A(“)O

and finally we obtain that certain combination

OAB [e] [e] [e]
AM — X jjap =4M — X 45+ A(A +2)a (8.11)

has a simple transformation law with respect to the supertranslations. Moreover, mono-dipole part of
[e]

4M — XABH Ap 18 invariant with respect to the supertranslations. It corresponds to the mass and linear

momentum at null infinity. We would like to stress that in general the definition (7.2) is correct only on a

{u = const.} cross-section of .# . Let us consider any (cross-)section s : S? — # of the affine bundle

I

Definition.
167 M ;:/ <4M7 %ABHAB) (5(0, $)) sin 8dAdep (8.12)
S2
° AB 2
16mpk = /S (M = X)) (500, 0)) = sin0d0dds (8.13)

The above definition together with (8.11) gives the following

Theorem 1. The energy-momentum 4-vector at null infinity is invariant with respect to the super-
translations.

On the other hand, the angular momentum defined by (7.12) is not invariant with respect to the super-
translations but obeys the following transformation law

167 J, = 167J, + / 4Ma g
S2
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The definition (8.12) allows us to define the flux of the energy through the piece of .#+ between any
two cross-sections of the null infinity in a supertranslation-invariant way. More precisely, let

$;:8%2 — gt

for i = 1,2 be two different cross-sections of .#* such that there exists N C #+ with ON = s9(5%) U
51(8?). Then one can easily check from the definition (8.12) and the relation (8.5) that

1 o .
mTB(SZ) - mTB(Sl) = 7167‘[‘/ (4M — XABHAB) sin 6dfd¢ =
ON

]_ o o
=5 | Xanu XAB  sinfdudfdg = (flux of energy through N) (8.14)
™ JN ’

Similar formula holds for linear momentum pj, defined by (8.13)
PF(s2) — pF(s1) = L/ (4M — XxAB ) 2 n0dds =
167'(' ON HAB r

1 o o k
= "3 X ap.u X*P uz_ sin fdudfd¢ = (flux of linear momentum through N) (8.15)
TN r

Remark. The supertranslation gauge freedom exists also in the linearized theory. The linearized
part of the supertranslation corresponds to the gauge condition which preserves five components of the
linearized metric: hy., H, hyp, hr-a. More precisely, it is a solution of the gauge conditions

=0, &M =", (Eape??) =0
A 2 r T u
€||A+;€ =0, g,r""&,uzo
where we use here the Minkowski background metric in the form

Nupdatda” = —du® — 2dudr + 72 ’C;AdeAde

The solution of the above gauge equations is quite simple
1o

u T 1 S
¢h=-7Pap, =-a, &=-5Aa

where « is any real mapping a : S? — R and mono-dipole part of a corresponds to the usual translations
in Minkowski space. The gauge transformation for traceless symmmetric tensor xap

XAB — XAB — 2rogap + 17 45 A
is similar to the nonlinear case.
Proposition. How to remove the supertranslation gauge freedom?
[e]
Assume at time ug that 4M — X AP ljaB = 0, then for example the stationary solution becomes a simple

stationary solution (the definition is given in subsection 8.4). This procedure allows to treat XAE as the
invariant asymptotic degree of freedom and will be considered in subsection 8.4.

Remark. The Kerr-Newman metric in certain Bondi-Sachs coordinates can be asymptotically repre-

sented in such a way that M =0 = )OCAB.
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8.2 Hierarchy of asymptotic solution on scri for scalar wave equation

Let us rewrite the wave equation in null coordinates (u,v)

P ) e+ Ap=0 (8.16)
and suppose we are looking for a solution of the wave equation (8.16) as a series
@ =p1p+pap’ +@3p’+ ... (8.17)

where each ¢, is a function on scri, 0,¢, = 0.
If we put the series (8.17) into the wave equation (8.16), we obtain the following recursion

f%[ & + (n — 1)njpn, (8.18)

Compare with equations 2, 3, 4 in [2].

au(,07L+1 -

Remark. The kernel of the operator [ & + I(l + 1)] corresponds to the I-th spherical harmonics.
The right-hand side of (8.18) vanishes on the n — 1 spherical harmonics subspace. This means that the
corresponding multipole in ¢, 1 does not depend on u. In particular, for n = 3 we have quadrupole
charge in the fourth order. The nonlinear counterpart of this object is called Newman-Penrose constant
or NP charge. We discuss some features related to NP charges in section 8.5.

8.3 Linear theory, asymptotic hierarchy, “charges”

Let us first check that the linearized theory can be obtained, if we remove nonlinear terms in the asymp-
totic hierarchy (8.6)—(8.8)

AM = X*P|ap.,

. o . o AB 1 o
3NAHA=—AM 3NaBE :_Z AXABHAB

| . ) o o AB
40P up = (A +2)NY 4 —4CP apu = (A +2)Nyp €

—AD*B | 4p = (A +6)C*P 45 — 4bABHAB,u =(A+ G)GABHAB
x =4Mp+ 6N 4p* + 6C*P | app® +4D*P | 4pp* + O(p°)

o AB R R
Yy =X*P|app+6Nayp e p*+6CP ) app® +4D*P | app* + O(p°)

It is easy to verify full agreement with (8.18) up to the 4-th order for the invariants x, y. Moreover, let
us define m := mon(M), p := dip(M). Then we get

M=m+3p+M, 4M= X" 45, m=p=0
and similarily for N4 we obtain
AB
NA = —pllAy — k(‘)‘A — € 5B + N4
where p, ko and s are dipoles. This way we have reconstructed “charges”. Let us notice that the
mono-dipole parts of invariants

1
x =4mp + 12jloxl 3+ 12pl:1cl - p3 <u + —)
p

y = 12sa; - p3
or

2

x=4(m+3p)-p+12(ko+p-u)-p° y=12s-p

are the same as in (4.54) and (4.55).
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8.3.1 Nonradiating solutions
Suppose fS2 M = 0, then from asymptotic equation (8.5) we know that
. 1 o o
0= Mz——/ XAB,uXABu
g2 8 /g2 ’

so we get X AB.w = 0, and finally also M = 0. Moreover, equation (8.6) gives the relation
- 0 1,
3N 4P = ZXCDHCD

so the dipole part dip(N AlB gAB ) vanishes and this means that the angular momentum is conserved.
This way we have proved the theorem formulated at the end of the subsection 2.2, namely:

Theorem 2. If the TB mass is conserved than angular momentum is conserved too.

The general solution of this type (namely M=0= )o< aB,u) Will be called nonradiating solution and it
has the form

M=m+3p+M

A o = u 1o N
NA — _pHAu_ k:g‘ _ sABSHB + NA 4+ 3 (Z EABXCDHCDB _M|A)

~ A ~ -
where N© = N4 and N’ﬁ = 0. The integration of the equations
. _ B o C o lA ~CD
4Cap = =Ny B — Npjja+ YaBN"|jc + (m +3p+ M) X 4B + L XABX" Tjjep

4Dap = —( A +4)Cap + Sa%p)c
with
Sapc = XacNp+ XpcNa— 7Vap XcpNP

gives polynomial (with respect to the variable u) solutions of degree 2 for C4p and degree 3 for Dap.

8.4 How to relate linearized theory with van der Burg equations

The “first order” asymptotics of the Bondi-Sachs type metric on .#7T is described by three functions

[e]
M, X sp. We shall try now to relate these data with the boundary value on £+ of our invariants ¥, in
the linearized theory in such a way that the non-conservation laws for the mass and angular momentum

are similar in both cases. Suppose we know M, S.CAB at the moment u = ug and )%AB’U on .1 (actually
we need only in the neighbourhood of ug). We propose to perform a supertranslation which is related to
the data at ug in such a way that

(4M — X{B5)(uo) = 0 (8.19)

Remark. The condition (8.19) for flat Minkowski space corresponds to the appriopriate choice of the
surface {u = ug = const.} which is a true cone with a point-like vertex. Let us call the condition (8.19) the
supertranslation gauge at the moment uy. This way we have removed quasi-locally the supertranslation

ambiguity at the moment ug. We stress that the relation 4M — iﬁ‘fB = 0 holds only at ug because

in general QF( X ABw) = 4M , — ;cﬁfB . 18 not vanishing, however for the nonradiating solutions the
condition (8.19) may be fullfilled globally for all w. This is the main difference between the linearized

theory, where the condition 4M — ;cﬁfB = 0 can be fullfilled globally, and nonlinear data, where we can
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only demand this condition to be fullfilled at one moment 3. Nevertheless, these procedure allows us
to relate nonlinear data at ug with linearized theory, namely
v AB v AB i
AM = Xjap — Yo,  Xjapu — Va

<AB “AB ;
X||AB — vy, X||ABu v,
and also >OCAB = lim,_o+ (1/1,43 —pt %AB) Now it is easy to verify the analogy. The calculations from

the previous sections devoted to the linearized gravity should convince the reader that in linear theory
we can believe in the following equations

—1670pmrs = / sin 0d0d[¥, A L(A +2) 1, + 7, AH(A +2)71F,) (8.20)
S(s,0)
—16780.J. = / sin 0dodo [, A7 (A +2) 710, 5+ by AT (A +2)710,, (8.21)
S(s,0)

On the other hand, the energy defined in terms of the asymptotics on .#* by (8.12) together with (8.5)
gives the non-conservation law for the TB mass

. 1 o o
—16TIgmry = —/ 4M sin #dOd¢ = 3 / X ABu XABM sin 0dfd¢ =
S2 S2

o] o

= [ sin0a6d6 [(X1£5). ANA + 27 (RiiFa)+ (1En)w A7 (A 427 ()] (822

Similarity between (8.20) and (8.22) is obvious, provided %ﬁfB’u — 0, Xﬂ‘fou — 0,
We propose the following definition of the angular momentum (around z-axis) in terms of the asymp-
totics:

J, = i/ ]\VTAHB gAB cos 6 sin 6dAd¢
8 S2

where
o o BC

v 1
Na=Na+ 5 XasX o

It is compatible with the earlier proposition given by (7.12). We have promised at the end of the previous
section to show the relation (7.13) for angular momentum. The following sequence of equalities holds

. . 1 o o
167J, = —/ 6Ny + §8u( X 6B XBCHC) =
82

o 1 o

o o 1o o 1o o
=/52 Xo X7 j0u+ 5 XM 0w Xoas = 5 Xgpu X710 = —5/32 XAP X apg

where in the middle we have used equation (8.6). The last equality (in the above sequence) is a nontrivial
identity and can be denoted more geometrically

. 1. 1 .
/2 X apXP% 0 + §XBCXABHCXA - §XAXABXBC||C =
s

3The choice of the supertranslation corresponds to the choice of the “better” local Bondi-Sachs coordinate system. More
precisely, the cross-section u = ug of ];L for the Einstein metric g,, in the Bondi-Sachs coordinate system (u, :):A) should

be compared rather with the cross-section w = ug — a of f; in the flat Minkowski space with coordinates (u, J:A) on the
future null infinity, where u is the usual flat coordinate corresponding to the usual null cone. The mono-dipole freedom in
the choice of the supertranslation a (and in the choice of coordinates (w, z)) corresponds to the usual translation freedom
in the flat Minkowski space.
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1

=-3 /2 X*P(Xxapc + X Bxca + XY axceB) (8.23)
s

where now y4p and xap are any symmetric traceless tensors on a unit sphere, X409, := 0y and

XaB,o = Xxap|c + X Bxca+ X axcn
Another form of (8.23) can be transformed in the following way.

1

3 /52 P9 (X*xajic + Xoxs? 4 — X*XBoja) =0

is equivalent to

/2 XPCXA (xpejja — xBajc) = /2 XPXexe?|a
S S

and the last equality holds for integrands
XPOXA (xpeja — xBajic) = XP X cacxs” o = X*XP e acenrx™Pp = X Xarx" P p

This way we have proved (8.23) and finally also (7.13). Let us rewrite the final result in the form
. 1 o o
—167J, = 7/ X‘?LB X AB,p =
2 Jg2

o o

= [ sin0a006 [(%1125) A7CA + 27 (RiiFn)o + (iiFs) A7CA +27 )
The similarity with (8.21) is obvious, provided that the supertranslation ambiguity is removed.

8.4.1 Stationary solutions

Let us introduce in the full nonlinear asymptotics the following objects

AM = Q + Biiiy

o o [e]
Xap = Bap —2qap + YaB Aq

where () and Bup are invariant with respect to the supertranslations, ¢ represents supertranslation
ambiguity

7g=q+a, ¢=0

and equation (8.5) is equivalent to
Q= _gBABBAB = QF(Bas)

where quadratic term corresponding to the flux of energy we denote by QF. The supertranslation gauge

Qup) = 5( A+ 2)q allows to relate ¥, at .#* with Bap. The decomposition is chosen in a convenient
manner for the situation of the so-called “sandwich-wave”.

Suppose Bap has compact support on . (suppBag C [u;, uf] x S? C #T). Let us also suppose that
below u; and upper u; our gravitating system is stationary. These two assumptions define a “sandwich-
wave”.

In subsection 8.3.1 we have defined the nonradiating solution. Now let us answer the question: When
a nonradiating solution becomes stationary?

. [e]
From N4 = 0 we obtain p = M = )QAB||AB = 0; m, kg, s are not restricted but also X ABHAB does
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not vanish. From Dap = 0 we get Cup = ( 5 +4)’1SACBHC. Similarily, Cap = 0 gives m )OCAB =
NAHB +NB\|A — ’VABNCHC or NAHB gAB =0 and XABHAB = ( A +2)NAHA.

Let us call a simple stationary solution the situation when )oc A = 0 and M = m = const., described
by van der Burg in static case (sec.5 in [4]).

Remark The equations related to the Newman-Penrose charge in static situation presented in [4] at
the end of page 119 can be denoted in our notation as

o 1o
(A +10)Dyp = 15(MCpp — NANp + 3 Y aNCEN¢)
We have defined three categories of special solutions:

simple stationary solutions C stationary solutions C nonradiating solutions

and let us observe that the supertranslation gauge leads to the conclusion that every stationary solution
in supertranslation gauge (8.19) is simple.

(nonradiating sol. in supertr. gauge) N (stationary sol.) = simple stationary sol.

On the other hand, in the case of the “sandwich wave” the supertranslation gauge at u; and at uy in
general is not the same. The difference depends on

uf uf
/ Qdu:/ QFdu

so in general the initial and final states cannot be simple in the same Bondi coordinates.

8.5 Special solutions of asymptotic hierarchy, Newman—Penrose charges

The equations (8.5)—(8.8) represent a nonlinear analogue (up to the fourth order) of the hierarchy (8.18)
for the usual wave equation.
We could define, as a generalized NP charge, any solution which starts in the n + 1-th order from

o
“multipole constant”. More precisely, if ¢ € ker[ A + (n — 1)n] then from (8.18) ¢,41., = 0. Let
us observe that if this charge vanishes we can derive “finite” Janis solution [13], which is obtained by
“cutting the series” and derive hierarchy “upward”. More precisely,

©=p1p+ @0’ + ...+ onp"

©n € ker| g +n(n—1)] = ¢ny1 =0, @n=Cu)Y,1(6,9)

2k —2
nn—1)—(k—-1)(k—2)

Pk—1 = o k<n

(o]

and Y] is a spherical harmonics ([ A + I(I + 1)]Y; = 0). In particular, when ¢; = 0, then C(u) is a
polynomial of degree n — 1.

On the other hand, if NP charge is not vanishing, the solution ¢ can not be stationary. Moreover,
monopole and dipole examples show that these solutions are singular (but on .#~). The monopole
example is the following

_ 2p? °
P =2p2pv " = 3 P Apy=0 Oup2=0
+ pu
similarily the dipole one
4 3v—u 4 0 o
=3 T~ = P35 s 2 =0 Oup3=0
¥ 3¢3pv2(v — U) @33 (2 + pu)g ( A+ )@3 ¥3
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and generally

Pnt1 Eker[ A +n(n—1)] = ¢n41 =0, @pi1=CY,1(0,9)

but now C' =0 and ¢, 9 = — g Pnt1 # 0.
For gravity we have:
1. Dap = 0 = Janis solution
2. Dap — pure quadrupole = NP charge solution.
In the Janis paper there are only linearized solutions. We shall try now to construct an asymptotic
quadrupole solution of nonlinear hierarchy (8.5)—(8.8). Let us assume that M and x“P|cp are given

quadrupoles (0 = ( A+ 6)M = ( A+ 6)X“?1cp)-

o D [e] ~
AM =3(0.6) Xc pgc® =13(0,0)

Sapc = XacNp+ XpcNa— 7ap XcpNP

o _ 1 o
CAB==(AA'+4)](SACBHc)-§Zu2(nAHB-%nBHA-— VABnCHc>

NA = —pHAu—k(‘)‘A— gABsHB—i-NA—i-gnA
M=m+3p+M

A _

© AB ,CD A
n eABOP ocpp — M/

NG

- ~ o ~ o 1. . o _

Nujp + Npjja— YapN% ¢ = (m+3p+ M) Xap + ZXABXCDHCD —4( A +4) (S B|1cn)
This is a special example of the nonradiating asymptotic solution, which was defined by the condition
that the TB mass is conserved.

9 Closing remarks

We have shown how to define energy at null infinity and its flux through the # for linear hyperbolic the-
ories like scalar field, electrodynamics and linearized gravity. For a given surface (hyperboloid) which ends
on # T we have assigned generators like energy and angular momentum. They fulfill non-conservation law
which comes in a natural way from the variational formula. The boundary term describing flux through
# 7 has been obtained in three ways:

a) from the variational formula on a hyperboloid

b) from the variational formula on the future null infinity surface .#

¢) from the energy-momentum tensor.

In all cases we get the same answer for the scalar field and electrodynamics. For gravity, where there
is no energy-momentum tensor, the symplectic method has been successfully applied and it gives the
correct answer for the energy at £+ and the non-conservation law for it. The method is useful for the
definition of the angular momentum.

We have explained the relation between linearized theory and Bondi-Sachs asymptotics and discussed
the role of the supertranslations.
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A Appendix — explicit formulae on a hyperboloid
We give explicit formulae for the relations which have been used extensively in the section 4.

A=sinh’wsing Ny, =Ny Ny =—Ny=Nng N =-Nj, =3N

N =coshw N®=N3=—sinhw NA=0 naps=2snap

AB

P 3= —2/{77‘43 €AB,3 = 2KEAB EAB,3 = —92ke? kK = cothw
1
A,3:2:‘$A KN,3:—I€N3:N Ry3 = ——"—5
sinh” w
g =—knap Tp3=rdg Tpc,3=0
2 9 1
Rapcp = ——5— (nacnep —napnsc) “Rap= ——5—"NaB
sinh® w sinh” w

£33 _ ¢33 g3A _ e84 _ e d (|AB _ (lAB | AB s
§33=2E833 &304 =&3)1a —K€a Ea3 =8a3 — Kéa

Eas = &ayp + 026

h33j3 = hsz s hszja = hgs a — 2Khsa

hAP\3 = b8 5+ 260" hapis = hag,s —2khap hp3 =h"p,s
R34 3 = h34 5 + kB3 hyaz = hsa,s — khsa

hsap = h3a B — khap + knaphss

hapic = hap|c + knachss + knpchsa

B Reduction of the symplectic form on a hyperboloid

Let (p*', hyy) and (s, ;) denote two pairs of Cauchy data on a hyperboloid. The (24-1)-splitting of the
2
tensor qi; gives the following components on a sphere: ¢:= n*Bqgap, q33 — scalars on S?, g34 — vector

and 231 AB ‘= QAB — %77,4 B 5 — symmetric traceless tensor on S2. Similarily, we can decompose the tensor
density p*. The quadratic form fV p* ¢ can be decomposed into monopole part, dipole part and the
remainder in a natural way.

The “mono-dipole” part we write separately

1 tanh? w
mon(/ pleIkl) = / — p**mon(¢) +/ — —p*¥mon(s>*)+
\74 \% 2 cosh” w Vv A

1 2
—|—§ /6V tanh wp**mon(q) (B.1)
. 1 . o o _
dlp(/vpkl%l) = /V mp33d1p(f) - Z/lep(smhz WP3A||B5AB) A 1(Q3A|\B5AB)+
tanh®w . s 1 4o 2
+/ Mp‘gsdip(s?"g) + 7/ tanh wp®3dip(q)+
v A 2 Jov
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33 ° 1 o 2
+/Vdip (%iih% + tanhw A_1p3A||A) (5 A 4 —2sinhw Coshwq3A||A> (B.2)

where invariant £ is defined as follows

2
&= 2 cosh? wq*® + 2 coshw sinhwq3AHA + sinh? w EABHAB — coshwsinhw ¢, 3+

1 o 2 sinh? w
_t 9) ¢ oS W 33

2( A+2)q s

From the vector constraints
2
sinh wp?3, 5 + sinh wp3AHA —coshw P=10 (B.3)
o 1 o 2

(sinh? wp?’AHA)73 + (sinh?w pABHAB) + 3 ADP=0 (B.4)
(sinh® wp*A1Be 4 5), 5 + (sinh? weAC ;)ABHBC) =0 (B.5)

we can partially reduce our form

. 1 22 o o
/ M = / ¥ a3 + 20" gaa + 5 P+ PP dap =
% v
[e] [e]
= / p33q3s — 2(sinhwp3AHA) A_l(sinhwq?’AHA) — 2(sinh wpA1Be 4 5) A_l(sinhwquHBaAB)—i—
%

1 22 o ) o o
+/ 5 Pa +2(sinh® we” P 4P| pe) AT (A +2) 7 (sinh® we 447 pe)+
%

o

+2/V(sinh2wf>ABHAB)£—1(A +2) Y (sinh®w 445 4p) =

[e] o
= / p*qs3 — 2(Sinhwp3AHA) A_l(sinhwq3A||A) — 2(sinhwp3A”BgAB) A_l(sinhwquHBsAB)—i—
1%

o o

1 2 o
+/ §(tanhwp33,3 + tanhwp®*)4) 4 —2/ (sinh? wp®A1Be 1), 3 A7 A +2) 7 (sinh? we?? a4 o)+
v v

1 o

—2/ [(sinh2 wp3A||A),3 + 3 A(tanhwp33,3 + tanhwp3A|A)] Afl( A + 2)*1(sinh2w &ABHAB) =
1%
33 |12 ° 1/ 12  %AB
= tanh wp §Q—(A—|—2) (sinh”w ¢ 45) | +
ov

,2/ (sinh® wpP 1 4) A (A +2) " (sinhw ¢4 4 5)+
oV

72/ (sinh® wpPA1Be 4 p) A7 (A +2) " (sinh® we® G 45 o)+
oV

(o)

—2/ (sinh2 waAHBaAB) A1 [%AHB&“AB —(A+ 2)71(Sinh2 weAC qABHBc),g +
\4

Gah3
sinh®w o 45

+/Vp33 [Q33+(£ +2)71(

1 2
— ~(tanh
coshw 14B)3 2(tan wq)’3]+
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12 o o )
+/ tanhwp?’AHA {5 q +2sinhwcoshw A 7' ( A +2)7!(sinh® w QAB||AB),3+
v

o

—(A +2)" Ysinh?w (3AB||AB) -2 &’1(sinhwcoshwq3A||A)}

The volume term in the framebox is mono-dipole-free and corresponds to the invariants y, Y. The last
two terms we can proceed further, but first let us write a scalar constraint in two equivalent forms

sinh® w o up ° 1 2
( p— 1AB)s3 + (A +2) {%3 - g(taHhT q)w] = (tanhw§), 3 + £+
2 2, .33 .12 34
+K (tanh? ws*® — tanh w sinh® ws®%| 4) (B.6)
1 o o 2 o o o
3 A(A +2)q+2sinhw coshw(sinhzw qABHAB),g — Asinh?w qABHAB—i—

o

—2( A+ 2)(Coshwsinhwq3AHA) =

2sinh? w

= 2coshw(sinh wé), 3 — ﬁf — A

( As3 + QSinthOSthBAHA) (B.7)

For the “radiation” part we get the following result:

13
33 ° _1,8inh”w o 45 1 2
2 — —(tanh
/VP [q33+(A+ ) (coshw 9°7)1aB); 3 2(311 Wq),?)] +

12 o o )
+/Vtanhwp3AHA [5 ¢ +2sinhwcoshw A "' ( A +2) ! (sinh®w 447 4), 5+
—( A+ 2)~1(sinh? w g4 Blag) —2 ﬁfl(sinhwcoshwq?’AHA)} =
2
/ p? [(tanhw{), 3+&+ K(tanh2 ws® — tanh w sinh? wsBAHA)] +

14

2sinh? w

" ( 5533+23inhwcoshw53A|‘A) =

+

/Vtanhwp m A L A +2)7! [2 cosh w(sinh w¢), 3 — &5 —
= /av [tanh(,up?"3 +2sinh?w AL 3A||A} (3 +2)7 e+

+/V [gp% - & tanh wp33, 5 — QSinhw(sinhwp?’AHA),g, — ﬁ tanhwp?’AHA} &_1( ﬁ +2)7 e+
+/V % [tanhwp33( A+ 2)" ! (tanhws®® — sinh® ws®4| 1)+

_ sinh?2 wp3AHA &—1( A+ 2)~!(tanh w A% + 2sinh? ws?’AHA)} =

= /av[tanhw ngs + 2sinh? WPSAHA] &71( A+ 2) et

+/ [Ap33+2sinh2w]%ABHAB—|—2Sinhwcoshwp3AHA} ATHA+2)7 e
1%
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2 i ° . . o o .
+/ < [tann?wp® (A +2) 715 — 2sinhtwp® 4 ATHA +2) 75 +
1%

2 — - - 0 .
f/ n tanh w sinh? w (pss( A+ 2)*153‘4“,4 +p3AHA( A+ 2)*1533>
1%

and again the framebox corresponds to the invariants (here x and X).
Finally we get in volume integrand the gauge invariant part

“radiation” part in V ‘—l—

/Vpqu;gl = monodipole part in V +
+/8V[tanhw &pgg + 2sinh? wp3A||A] &_1( ﬁ +2) et
-2 /av(sinh2 wpABe 4 5) &_1( A+ 2)~*(sinh? we ¢ EABHBCH’
+/E)V tanh wp>? B 5 —( A + 2)"(sinh® w SIABAB)] +

—2/ (sinh® wp34| 1) 3_1( A+ 2)~ ! (sinh®w EABHAB)
ov

where

1

monodipole part in V = -
petep v 2cosh?w

tanh?
p**mon(¢) + / S B3 mon (%) +

V A

1 . . o _
+/ — p33d1p(§) — 2/ dlp(smh2 prAHBEAB) A l(quHBEAB)+
v 2cosh”w v

tanh? w . . 33 o 1 o0 2 )
+/ Tp33d1p(833) —|—/ dip (p72 + tanh w A_1p3A||A> (5 A ¢ —2sinhw Coshwq3A||A>
v v 2 cosh” w

‘ “radiation” part in V' ‘ = /

{Ap33+28mh2w;)“‘BHAB+2smhwcoshwp3‘4||A} AT A +2)7E+
v

—2/ (sinh? prA”B&AB) AT [quHBsAB — (A +2)"(sinh? we?¢ qABHBC),g]
v

C List of symbols

— three-dimensional volume or function in Bondi-Sachs type metric
— lagrangian density

— hyperboloid

— scalar field

— rescaled scalar field

& et M <

— “variational” derivative

0, — partial derivative
TH, — symmetric energy-momentum tensor
Nuw — flat Minkowski metric

n —detnu,
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T*", — canonical energy-momentum density
0", — Kronecker’s delta
p* — canonical field momenta
m — canonical momenta
‘H — hamiltonian, energy generator
H — density of a hamiltonian or two-dim. trace of hap
z#,y” — coordinates on M
t — time coordinate on M>
r — radial coordinate on M
w — related radial coordinate on Ms, r = sinhw
p — “inverse” radial coordinate on Ma, r = p~!
s — “hyperboloidal time” coordinate on M, s =t — /1 + r2
u,v — null coordinates on Mz, u =t —r,v=t+r
u — coordinate on Mo, u = —2r
6,¢ — spherical coordinates on S2

d — exterior derivative

w, v, ... — four-dimensional indices running 0, ..., 3

k,l,... — three-dimensional indices running 1,...,3
A, B,... — two-dimensional indices on a sphere

a,b,... — two-dimensional “null” indices on M2

O - d’Alambertian, wave operator

O - conformally related wave operator
M, — conformally related metric
R — scalar curvature
X — vector field
i® — spatial infinity
# — null infinity
ST — future null infinity
#~ - past null infinity
N — null surface “parallel” to £ or a piece of & T
mapm — ADM mass
S? — sphere parameterized by 6, ¢
— sphere in M corresponding to coordinates s, p
— sphere in M corresponding to coordinates s, w
— sphere on T

— unit sphere
Y ap — metric on a unit sphere
A — two-dimensional laplacian on a unit sphere

. . . o
— skew-symmetric tensor on a unit sphere, sin 6 el =1
€ — two-dimensional skew-symmetric tensor, 2 sin 9e® = 1
|| — two-dimensional covariant derivative on a sphere

da — dual of 0a, Ha = e4B05
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FhY
Juw
4,

)

TC KT

J-

Gkl
Pkl
Kkl
Ruuka
R
.
n:u'

R

b
Pkl
pkl

g

A

Eu

K
x,X,y, Y
XAB

SaB

S
H

Asx
Jz
P,

T

1\
a, I

<

\
II

<

L
Eap

Ya

Xab

B,V,U* van
C

mrTB

WAB

Ilas

Lx

%, sl s

m

— electromagnetic induction density

— electromagnetic field

— electromagnetic potential

— gauge-invariant positions for electromagnetism
— gauge-invariant momenta for electromagnetism
— angular momentum

— three-dimensional riemannian metric

— ADM momentum

— extrinsic curvature

— curvature tensor

— Ricci tensor

— Christoffel symbol

— normal unit future directed vector

— three-dimensional scalar curvature

— linearized metric

— linearized momentum

— “new” linearized momentum

— det g1

— volume element, A = 2 sin 6

— gauge in linearized gravity

—cothw

— invariants

— traceless part of hap

— traceless part of pap

— trace of pap

— trace of hap

— laplacian on a hyperboloid

— angular momentum generator

— linear momentum generator

— “asymptotic position” on a hyperboloid

— “asymptotic momenta” on a hyperboloid

— abstract index, « =,y

- %Eabdx“ Adz® = du A dv

— invariant in null coordinates

— invariant in null coordinates

— parameters describing Bondi-Sachs type metric
— null cone or van der Burg asymptotics

— Trautman-Bondi mass

— nonlinear asymptotic position on a null cone
— nonlinear asymptotic momenta on a null cone
— Lie derivative with respect to vector field X
— spin charge

— mass charge
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p*,pl,p — linear momentum charge

51 ko
M

v, 0
Uuw
N, P
NA
c,C,D
d,H, K

[e]
XaB,CaB,Das

static momentum charge (center of mass)

Minkowski space or asymptotics of function V' in van der Burg notation
van der Burg parameterization of yap

van der Burg parameterization of U*

van der Burg parameterization of N4

asymptotics of U4

van der Burg notation for the asymptotics of

van der Burg notation for the asymptotics of §

asymptotics of yap

0z,0, — Pauli matrices
Sapc — traceless symmetric tensor appearing in eq. (8.8)
Sapc — “dual” of Sapc, Sasc = €4PSpsc
Cap — “dual” of Cap, Cap = €4”Cpp
Xap — “dual” of §<AB, XAB = g 4P >O(DB
Dap — “dual” of Dap, Dap = ¢4°Des
mon(F') — monopole part of F
dip(F') — dipole part of F'
F — mono-dipole-free part of F'
F — supertranslation of F'
Y; — spherical harmonics with eigenvalue —I(! 4 1) of the laplacian &
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