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"Two versions: 
 
1)" 1100 – 4INZ21  

   LECTURE (3h) +  
 
   PRACTICAL PART in computer lab(3h)  !! 9 ECTS 
   dr Nevill Gonzalez Szwacki 
 
2) 1100 – 4INZ21W 
 
     LECTURE (3h)    !! 4.5 ECTS 
      
 

SS 2014 

Lecture for  With the basis knowledge of  
Quantum Mechanics 

Lecture --- 45 h 

Practical exercises – 45 h 

Exam, elements of the note: 

Modeling of  Nanostructures  
and Materials 

"#      Test from lecture material, 
"#      Work during excercises 
"#      Project 

Jacek A. Majewski 

SS 2014 

Aim of the lecture: make familiar with modern modeling 
   tools (ability to perform calculations  
   with standard tools)  

SS 2014 

Ab initio Methods:  
     Density Functional Theory,  
     Local Density Approximation (LDA),  
     Hartree-Fock method,  
     Kohn-Sham Method,  
     Concept of Pseudopotential,  
     Survey of available numerical codes. 

Scope of the lecture 

Modeling of  Nanostructures  
and Materials 
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Semiempirical Methods for electronic structure  
calculations:  
   Tight-Binding Method  
   Pseudopotential Method 
 
Principles of Molecular Dynamics:  
   Ab initio molecular dynamics (Car-Parrinello method)  
   Empirical methods and coarse-graining 
   Valence-force field models 
 
Monte Carlo Methods:  
   Stochastic and Markov processes, ergodicity,  
   Algorithms for Monte Carlo simulations 
 

Scope of the Lecture (cnt.)   

SZ 2014 Modeling of  Nanostructures  
and Materials 

Jacek A. Majewski 

Lecture 1 –  24 February 2014 

Introduction to  
 
Computational Science,  
 
  (Computer Simulations, Computer Modeling),  
 
Computational Materials Science 
 
Modeling of Nanostructures  

WWhhyy  sshhoouulldd  wwee  bbootthheerr  wwiitthh  iitt??  

Modeling of  Nanostructures  
and Materials 

Computational Science 
a relatively new discipline 
involves using computers to study scientific problems  
complements the areas of theory and experimentation  
in traditional scientific investigation 
seeks to gain understanding of science principally  
through the use and analysis of mathematical models  
on (high performance) computers   

Computational Simulations 
Changing the way we do Science ? 

emerged as a powerful and indispensable method  
of analyzing a variety of problems in research,  
product and process development, and manufacturing. 

Computational Simulations 

Computer simulations provide both qualitative and  
quantitative insights into many phenomena that  
are too complex to be dealt with by analytical methods  
or too expensive or dangerous to study by experiments. 

Many experiments and investigations that have  
traditionally been performed in a laboratory,  
a wind tunnel, or the field are being augmented  
or replaced by computer simulations. 

Some studies, such as nuclear repository integrity  
and global climate change, involve time scales that  
preclude the use of realistic physical experiments. 
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Computational Simulations 

The availability of  
     high performance computers,  
     graphic workstations,  
     and high speed networks,  
coupled with major advances in algorithms and software,  
has brought about a revolution in the way  
scientific and engineering investigations are carried out. 

Computational Science vs. Computer Science 

These two things should not be confused ! 

Computational science focuses on a scientific  
or engineering problem and draws from computer  
science and mathematics to gain an improved  
understanding of the problem. 

Computer science focuses on the computer itself. 

Even though the areas are quite distinct,  
many of the topics typically considered to be in the  
domain of computer science are of much value  
in computational science. 

However, 

Computational Sciences 
Computational Physics 

Computational Chemistry 
Computational Biology 
Computational Engineering 

Computational Astrophysics and Cosmology 

Computational Materials Science 

Theory Experiment 

Comp. Simulation 

Computational Geophysics 

Computational Nanoscience (Modeling of Nanostructures)  

Relationship between modeling,  
theory and experiment  

Dr P. D. Bristowe, University of Cambridge,   
                              Department of Materials Science and Metallurgy 
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The computer - the hallmark of the information age 

Computational power has been compounding at 
an exponential rate for nearly 40 years, 

an achievement made possible by advances in 
silicon processing and fabrication at ever smaller 
length scales. 

Breakthroughs in control and fabrication of 
magnetic media have driven disk capacity to 
likewise grow exponentially. 

New Materials for Si- Technology     

Moore’s Law increasingly relies  
on material innovations ! 

The computer is possibly the most visible example  
of a high tech product that depends critically upon  
advanced materials 

There are many other similar examples that 
also profoundly affect our lives, 

new lightweight alloys,  
polymers,  
composites, etc. 

Importance of Materials for Society 

MMaatteerriiaallss  SScciieennccee  

Computational Materials Science 

The ability to identify, improve and implement materials -- 
whether stone, iron, paper, steel or silicon –  
has profoundly shaped human societies. 

From the Bronze Age to the silicon-driven Information 
Age, civilization has defined itself–and advanced 
itself–by mastering new materials. 

Today, thanks to increasingly powerful computers, the 
materials science community finds itself on the verge of 
another revolution. 

extensive computational modeling will complement  
and sometimes even replace traditional methods  
of trial-and-error experimentation. 

better understanding and design of new materials 
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Scientists have a handle on the smallest length scale  
(relevant to materials), which cannot be seen with  
a microscope, and the largest length scale, which  
can be seen with the naked eye.  
 
In between is an intermediate length scale where  
there are particularly exciting new frontiers.  
 
The primary scientific challenge is to uncover the elusive 
connections in the hierarchy of time and length scales  
and to unravel the complexity of interactions that govern  
the properties and performance of materials. 

Computational Materials Science - Scales Connection of atomistic and macroscopic 
scales  

Ab initio 
calculations 

Molecular dynamics 

Continuum methods 

Computational Materials Science –  
Multi-scale Simulations 

"coarse graining" 
the forces among the aggregated pieces can be accurately 
described by a new model with "renormalized" interactions. 

A schematic of the multi-scale challenge  
for mechanical properties of materials 

Types of Physical Models Based on Length Scale  
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Hierarchy of Models  
in Materials Research 
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Examples of Models Based on Length Scale (1)  

Atomistic Electronic 

Microstructural 

Polymers 

Examples of Models Based on Length Scale (2)  

Atomistic 

Continuum 
Microstructural 

Formation of cracks 

Principal physical, mathematical and 
numerical modeling scheme"

Physical Phenomena 

Physical Model/Theory 

Mathematical Model 

Analytically 
Solvable ? 

START 

1 

YES 

NO 

Heuristic, ab initio, 
phenomenology, 
Temporal & spatial 
scale,  
state variables 

Differential Eqns.,  
State Eqns. 
Kinematic Eqns.,  
Model Parameters 

Closed form 
Solution ! 

Principal physical, mathematical and 
numerical modeling scheme"

Numerical Model 

Computer code 

Calculate Model 

Validation? 

1 

YES 

NO 

Efficient algorithms, Observables, 
Averages, Input/Output  
Desired Precision 

Display/ Visualize/ 
Interpret Observables 

END 

Parallelization/ Optimization 

Improve Model 
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Available system size (edge length of a 
simulated cube of classical particles or atoms) #

in modern computational science !

101 
102 
103 
104 
105 
106 
107 
108 
109 
1010 

10 100 1000 1 

Atoms or particles 

Length [nm] 

Large Supercomputers 

Small Supercomputers 

Computer clusters 

Serial 
Computers 

Future nano-electronics  
 
Chemical reactions  
 

Examples of Computational Simulations 

Computational biology 

Simulation of a nanotube-based memory element 

The outer capsule - short segment  
of (10,10) carbon nanotube  
with diameter 1.4 nm  
terminated at both ends by  
perfect fullerene caps. 

The capsule is large enough to hold  
a C60 buckyball molecule inside. 

The buckyball carries a net charge if it contains  
an alkali atom in the hollow cage. 

The C60 molecule can be shifted from one end  
to the other by applying an electric field  
between the ends of the capsule 

Fullerene (buckyball) 
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Simulation of a nanotube-based memory element 

The two energy minima  
of this system, with  
the buckyball  
bonded to either end  
of the capsule,  
can be associated  
with bit 0 and bit 1. 

The simulation has been performed by Young-Kyun Kwon 
This structure has been patented as a non-volatile  
memory element and awarded U.S. Patent No. 6,473,351 

click to play 

Ab initio MD Simulations of Chemical Reaction 

Dissociation of water molecule 

Electrostatic potential for electrons 
"#  Zero value – green 
"#  Repulsive regions – red and yellow 
"#  Attractive regions - blue 

Structure of the 1PNH protein, 
a scorpion toxin (PO5-NH2)  

Different colors are used  
to represent different  
amino acids 

It consists of 31 amino acid  
Residues (ca. 500 atoms)  

Role of the protein charge state  
on the geometry – change of the charge  
state of the protein does not destabilize  
the local energy minima  

DFT as a new tool for computational biology 

Modeling Nanostructures 
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TEM image of a InAs/GaAs dot  Si(111)7!7 Surface 

GaN 

InGaN 

GaN 

HRTEM image: 
segregation of Indium  
in GaN/InGaN  
Quantum Well 

    Examples of Nanostructures   DFT for silicon nanostructures  
Silicon nanoparticles (clusters, dots) 
"#  optoelectronic materials on silicon basis 
"#  biosensors to detect biological and chemical warfare agents 

H Si O 

"#71 Si atoms  
   ‘passivated’ by hydrogens 
"#Electrons are in the center  
   of the dot  

2 H replaced by O 
Dramatic change of the optical  
properties (wavelength)  
of the silicon nanostructure 

G. Gali & F. Gygi, Lawrence Livermore National Laboratory 

What about realistic nanostructures ? 

2D (quantum wells):  10-100 atoms in the unit cell 

1D (quantum wires):  1 K-10 K atoms in the unit cell 

0D (quantum dots):  100K-1000 K atoms in the unit cell 

Organics 

Nanotubes, DNA: 100-1000 atoms (or more) 

Inorganics 
3D (bulks)               :  1-10 atoms in the unit cell 

Atomistic methods for modeling of  
nanostructures  

Ab initio methods (up to few hundred atoms) 

Semiempirical methods (up to 1M atoms) 

Empirical Pseudopotential 

Tight-Binding Methods 
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Tight-Binding methods 

    Tight-Binding Formalism   

!!n(
!
r ) == cn

!! i!!"" i (
!
r )

!! ,i
!!

index of orbital index of atom 

i! i! , j"
!i !i ,"j

H # | i! i! | t | i! j" |== >><< ++ >><<!! !!

!i{ " }orthogonal set  
of functions 

!i "j
n n n n n

i! j"
# $ | H | $ ( c )*c i! | H | j"==<< >>== << >>!!!!

Tight –binding Hamiltonian 

on-site hoping TB-parameters 

NOT ATOMIC  
ORBITALS ! 

Green’s Function + Molecular dynamics  
Carbon Nanotubes 

Molecular Dynamics simulations of a reactive collision  
of a biased nanotube (V=100mV) and benzene  
Current flowing in the nanotube calculated at each MD step 

v = 0.6 Å/ps 

Time Dependent Current 

B 
B 

C 
C 

CNT without C6H4 

I = 20% 

RCN-C6H4 = 10K  

RCN = 8 K  
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potential 

Ab initio 

Length scale for ab initio and tight-binding 
methods 

Microscopic approaches can be applied  
to calculate properties of realistic nanostructures 

Number of atoms in a spherical Si nanocrystal as a function of its radius R. 
Current limits of the main techniques for calculating electronic structure. 
Nanostructures commonly studied experimentally  
lie in the size range 2-15 nm. 

Computational Materials Science –  
The Era of Applied Quantum Mechanics 

TThhee  pprrooppeerrttiieess  ooff  nneeww  aanndd  aarrttiiffiicciiaallllyy  ssttrruuccttuurreedd    

mmaatteerriiaallss  ccaann  bbee  pprreeddiicctteedd  aanndd  eexxppllaaiinneedd    

        eennttiirreellyy  bbyy  ccoommppuuttaattiioonnss,,    

        uussiinngg  aattoommiicc  nnuummbbeerrss  aass  tthhee  oonnllyy  iinnppuutt .  

Computational Materials Science:  
A Scientific Revolution about to Materialize  

The materials science community is on the verge  
of a paradigm shift in the way it does science with the 
promise of building a sturdy bridge across the "valley 
of death" between basic science and technological impact. 

A useful construct for thinking about this potential 
paradigm is "Pasteur's Quadrant." 

D. E. Stokes, “Pasteur's Quadrant, Basic Science 
and Technological Innovation,,  
The Brookings Institution, Washington D.C., 1997 

Recent technological developments  
cause increasing demands  
for materials with specific properties  



12!

Computational Materials Science:  
A Scientific Revolution about to Materialize 

Pasteur's Quadrant 

Due to the complexity of materials systems, progress has 
necessarily proceeded either within the Bohr quadrant or  
Edison’s quadrant 

Realistic simulation is the vehicle  
for moving materials research  
firmly into Pasteur's quadrant. 

experiment and theory done on 
model systems 

research and development  
by trial and error 

Recent technological developments cause  
increasing demands for materials with  
specific properties  

Experiments are without doubt the most important  
approach in studying materials 

However, Kohn and co-workers opened a new avenue 
to study properties of materials from first-principles 
with the formulation of density functional theory (DFT). 

P. Hohenberg, W. Kohn, Phys. Rev.136, B864 (1964). 

Density Functional Theory –  
 
the key to  
 
Computational Materials Science 
 
&  
 
Multiscale Modeling of Nanostructures  
 
TThhee  BBaassiiccss  

Usage of Density Functional Theory (DFT) 

Using DFT many practical problems of materials science 
have been solved successfully.  
 
DFT is now employed not only by physicists, but also by 
chemists, geophysicists, biophysicists, metallurgist, 
and in other scientific fields. 

The computational implementations of DFT together with 
modern solid state theory allow it to obtain reliable results  
for thermodynamic, mechanical, electrical and magnetic 
properties of  
                    metals,  
                    semiconductors, or  
                    insulators  
without any adjustable parameters fitted to the experiment. 
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DFT – Applied to real materials 

There are numerous applications of DFT in chemistry  
and physics (> 10 000 papers a year) 

The use of DFT based methods is still very new in the 
field of engineering 

The simulation of cracks in materials belongs to the 
most challenging problems in materials science. 

While the crack itself is a macroscopic property,  
the physical processes at the crack tip itself involve  
the breaking of bonds governed by quantum 
mechanics. 

The big impact of DFT has been clearly high lightened by 
awarding the Nobel Prize in Chemistry in 1998 for the 
development               and           application            of DFT. 

DFT – Nobel Prize in Chemistry, 1998 

Walter Kohn John A. Pople 

Born in 1923 1925 - 2004 

80th  birthday of Walter Kohn 

“Walter Kohn –  
  Personal Stories and Anecdotes  
 Told by Friends and Collaborators”   

eds. Matthias Scheffler &  
        Peter Weinberger 

Springer Verlag 

Fundamental problem in materials science   

A fundamental problem in materials science is  
the prediction of condensed matter’s electronic structure 

DNA - molecule 

Crystal - diamond C60 - molecule 
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Materials Science: 
Examples of Schrödinger Equation?  

Ab-initio (first principles) Method –  
ONLY Atomic Numbers {Zi} as input parameters 

Materials are composed of nuclei                    and electrons  
            the interactions are known 

{Z! ,M! ,
!
R!} {!ri}

Kinetic energy 
of nuclei 

Kinetic energy 
of electrons 

Nucleus-Nucleus 
interaction 

Electron-Nucleus 
interaction 

Electron-Electron 
interaction 

Materials Science: 
Why ab-initio approach is needed?  

A model  
as simple as possible 

A model  
non-empirical and realistic  

"# Explanation and  
    extrapolation of  
    experimental results 
"# Physical insight 
"# Qualitative physics 

"# Reliable predictions  
    of matter’s properties 
"# Design of new materials 
"# Unexpected phenomena  
    and unusual conditions 
    (e.g., extreme pressures) 

Quantum Mechanics of Molecules and Crystals   
Molecule or Crystal = a system of nuclei (Ions) and electrons 

el Nucl
ˆ ˆH T U( x,X ) T== ++ ++

en ee NN
ˆ ˆ ˆU( x,X ) V ( x,X ) V ( x ) V ( X )== ++ ++

V̂en( x ,X ) ==
!!Zae

2

|
!
ri !!
!
Ra |ia

""
V̂ee ( x ) ==

e2

|
!
ri !!
!
rj |i<< j

""
V̂NN ( X ) ==

e2

|
!
Ra !!

!
Rb |a<<b

""

T̂el ==
1
2mi==1

N

!! !
pi
2 == !! ! 2

2mi==1

N

!!
!
!! i
2

T̂Nucl ==
1
2ma==1

Nnucl

!!
!
Pi
2 == !! ! 2

2Maa==1

Nnucl

!!
!
!!a
2

X !! {
!
R1 ,
!
R2 ,…,

!
RNnucl }

x !! {
!
r1 ,
!
r2 ,…,

!
rN }

( M ,X ,P )
Nuclei – mass M, coordinates X, and momenta P, 

Electrons – (m,x,p) 

Kinetic energy of electrons Kinetic energy of the nuclei 

Potential energy = The total Coulomb  
energy of nuclei and electrons 

Electron-nucleus 
Electron-Electron 

Nucleus-Nucleus 

The Adiabatic Approximation (Born-Oppenheimer)   

It is natural to consider the full Hamiltonian of the system  
to be the sum of an ionic and an electronic part 

N el
ˆ ˆ ˆH H H== ++

N Nucl NN
ˆ ˆ ˆH T V ( X )== ++ el el en ee

ˆ ˆ ˆ ˆH T V ( x,X ) V ( x )== ++ ++

M. Born & J. R. Oppenheimer, Ann. Phys. 84, 457 (1927) 
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The Adiabatic Approximation (Born-Oppenheimer)   

The Schrödinger equation for the electrons in the presence  
                                                                                           of fixed ions 

el n n nĤ ! ( X ,x ) E ( X )! ( X ,x )==

Parametric dependence  
on ionic positions  

The energy levels of the system of ions are determined by solving  

N
ˆ[ H E( K',X )] !(Q,K',X ) "(Q )!(Q,K',X )++ ==

The electronic energy contributes to the potential energy of the ion system.  
This implies that the potential energy depends on the state of the electrons.  

Adiabatic approximation – interacting electrons move in the ‘external’  
                                           potential of nuclei (ions) at fixed positions 

en e e
ˆ ˆ ˆ ˆH T V V !!== ++ ++

T̂ == !! !
2

2mi==1

N

""
"
## i
2

  
V̂en ==

!!Zae
2

|
!
ri !!
!
Ra |ia

"" == V̂ext == vext (
!
ri

i
"" )

V̂e!!e ==
e2

|
!
ri !!
!
rj |i<< j

""

Quantum Mechanics:   
System of N electrons in an external potential 

Enn ==
ZaZbe

2

|
!
Ra !!

!
Rb |a<<b

""
##

$$%%
&&

''((

{
!
R1 ,
!
R2 ,…}

H! E!==
  !! ({

!
Ra },
!
r1 ,
!
r2 ,… ,

!
rN ) ""!! (

!
r1 ,
!
r2 ,… ,

!
rN )

23N 10!!Many particle wave function 

0
ˆ ˆ ˆ ˆmin | | min | |e e extN N

E H T V V!"# "#
= " " = " + + "

!(
!
r1,
!
r2 ,…,

!
rN )

Ritz Variational Principle !! Ground State Energy of the system 

Many-particle wavefunction 

Schrödinger equation 

Full minimization of the functional           with respect to all  
allowed N-electron wave functions  

E[! ]

ˆ! | H |!E[! ]
! |!

<< >>==
<< >>

0E[! ] E!!

Quantum Mechanics:   
System of N electrons in an external potential 

H! E!==
Schrödinger equation Exact analytical solutions  

are not known  
even for two electrons !   

Approximations are needed ! 

Concept of independent particles moving in an effective  
potential 

Interacting particles Independent particles 

!(!x1,
!x2,…,

!x
1023
) !(!x1)!(

!x2 )…!(!x
1023
)

Idea: consider electrons  
as independent particles  
moving in an effective  
potential  

Hartree and Hartree-Fock Approximation   

Ansatz for the wave-function 

!Hartree(
!x1,
!x2,…,

!xN ) =!1(
!x1)!2 (

!x2 )....!N (
!xN )

Hartree Method 

Hartree-Fock Method 

!H!F (
!x1,
!x2,…,

!xN ) =
1
N!

!1(
!x1) !2 (

!x1) … !N (
!x1)

!1(
!x2 ) !2 (

!x2 ) … !N (
!x2 )

! ! !
!1(
!xN ) !2 (

!xN ) … !N (
!xN )

i! - one-electron wavefunction of the 
                                               ith level   
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Hartree-Fock Approximation   

H F H F
H F

H F H F

ˆ! | H |!
E[! ]

! |!
!! !!

!!
!! !!

<< >>
==

<< >>

Variational Principle 

H0!i (
!xi )+ ! *

j (
!x j )U(

!xi,
!x j )!

j=1

N

! ! j (
!x j )d
!x j

!

"
#

$

%
&!i (
!xi )

' ! *
j (
!x j )U(

!xi,
!x j )(

j=1

N

) !i (
!x j )d
!x j

!

"
#

$

%
&! j (
!xi ) = ! i!i (

!xi )

H == H0 ++
1
2

U(
!!
xi ,
!!
x j )

i , j
!!

H0 == H0( i ) ==
i
!! "" 1

2
!!i
2

i
!! ++Vext (

!!
ri ) U(

!
xi ,
!
x j ) ==

1
|
!
ri !!
!
rj |

H F! !!

Spectrum of Electronic Hamiltonian:  
What ab initio methods do we have?  

Methods for computing  
the electronic structure 

Empirical Methods 

Ab-initio Methods 

Hartree-Fock  
Method 

+ Configuration  
Interaction 

§#H-F - neglects completely 
           electron correlation 
§#H-F+CI – is able to treat  
                  ONLY few electrons 

Density  
Functional Theory 

Quantum  
Monte Carlo 

Ø# Existing realizations of DFT 
    allow accurate predictions 
    for large systems 
Ø# Currently the method of   
    choice in materials science 

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)  

Density Functional Theory (DFT)  

The DFT is based on two fundamental theorems for a functional  
of the one particle density.   

!!( !r ) == !! ( !r1 ,
!r2 ,… ,

!rN ) | !! ( !̂ri !!
!r ) |!! ( !r1 ,

!r2 ,… ,
!rN )

i
!!   

      == N d!r2!! ,… ,d!rN!!
* ( !r , !r2 ,… ,

!rN )!! (
!r , !r2 ,… ,

!rN )

One particle density – Basic quantity of DFT 

One particle density determines the ground  
state energy of the system  

Modern formulation – constrained-search method of Mel Levy 

Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979). 

Interacting particles Independent particles 

!(!x1,
!x2,…,

!x
1023
)   !! (

!
x1 )!! (

!
x2 )…!! (

!
x

1023 )

Idea: consider electrons  
as independent particles  
moving in an effective  
potential  

Density Functional Theory (DFT)  
in Kohn-Sham realization  

This reduction is rigorously possible ! 
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Density Functional Theory – constrained search formulation   
Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979). 

Functional of the one particle density F[!!]! min
"" !!!!!

"" !! | T̂ +V̂e!e |"" !!

The functional           searches all many particle functions       that yield  
the input density          and then delivers the minimum of     

F[ ! ] !
!!(
!
r )

e e
ˆ ˆT V !!++

d
!
rvext (

!
r )!!(
!
r )+! F[!!]! E0

d
!
rvext (

!
r )!!0 (

!
r )+! F[!!0 ]= E0

Theorem I 

Theorem II 0!
0E

- ground state density 
- ground state energy 

Let us define function        that minimizes  !
min" ! e e !

ˆ ˆ" |T V |"!!++
! !
min e e min

ˆ ˆF [ !] " |T V |"!!== ++ 0 0! !
0 min e e min

ˆ ˆF [ ! ] " |T V |"!!== ++
Proof of Theorem I: 
d
!
rvext (

!
r )!!(
!
r )+! F[!!]= d

!
rvext (

!
r )!!(
!
r )+! !! min

"" | T̂ +V̂e!e |!! min
"" =

= !! min
"" |V̂ext +T̂ +V̂e!e |!! min

"" ! E0
Ritz variational principle 

Density Functional Theory – constrained search formulation   
Proof of Theorem II: 0 0! !

0 min ext e e min
ˆ ˆ ˆE " |V T V |"!!"" ++ ++

0 0! !
0 ext e e 0 min ext e e min
ˆ ˆ ˆ ˆ ˆ ˆ" |V T V |" " |V T V |"!! !!++ ++ "" ++ ++

d
!
r!!ext (

!
r )!!0 (

!
r )+! !! 0 | T̂ +V̂e!e |!! 0 ! d

!
r!!ext (

!
r )!!0 (

!
r )+! !! min

""0 | T̂ +V̂e!e |!! min
""0

0 0! !
0 e e 0 min e e min
ˆ ˆ ˆ ˆ" |T V |" " |T V |"!! !!++ "" ++

From variational principle  
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(A) 
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[(A) & (B) true] 

Density Functional Theory – Constrained Search Formulation   

The ground-state energy minimization procedure of  
can be divided into two steps          

Relation to Ritz Variational Principle   

!2
!1

!4

!3
!5

!6

!7

ˆ! | H |!E[! ]
! |!

<< >>==
<< >>

! !
0 e e ext e e ext" N ! N " !

ˆ ˆ ˆ ˆ ˆ ˆE [" ] min " |T V V |" min min " |T V V |"!! !!"" "" ""

## $$== ++ ++ == ++ ++%% &&'' ((

Percus-Levy partition of the N-electron Hilbert space 

The inner minimization is constrained to all wave functions that give        ,  
while the outer minimization releases this constrain by searching all   !!(

!
r )

!!(
!
r )

Each shaded area is the set of      that  
integrate to a particular        . !!(

!
r )

!

The minimization             is over all  
such points. 

! N!!

The minimization             for a particular      
is constrained to the shaded area  
associated with this   , and is realized  
by one point (denoted by     )  
in this shaded area.     

! "!! !

!

Density Functional Theory – Constrained Search Formulation   
Relation to Ritz Variational Principle   
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In         O N E  function of 3 variables !!! 

In         2N wave functions of 3N variables 
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!
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!
r ))) ] ==
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Thank you! 
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