
Motivation Complexifier coherent states Gauge-invariant coherent states Semiclassical Analysis Summary

Coherent States in LQG

Benjamin Bahr

Albert Einstein Institute
Am Mühlenberg 1

14476 Golm

3rd March 2010

Benjamin Bahr

Coherent States in LQG



Motivation Complexifier coherent states Gauge-invariant coherent states Semiclassical Analysis Summary

Outline:

◮ Motivation

◮ Complexifier coherent states ψt
g1,...,gE

◮ Gauge-invariant coherent states Ψt
[g1,...,gE ]

◮ Semiclassical analysis
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Outline:

◮ Motivation see talk by Rovelli

◮ Complexifier coherent states ψt
g1,...,gE

see talk by Thiemann, Perini

◮ Gauge-invariant coherent states Ψt
[g1,...,gE ]

see talk by Thiemann, Perini

◮ Semiclassical analysis see talk by Giesel, Thiemann

◮ Summary
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Classical interpretation of states in LQG

In LQG, basis of Hkin given by spin networks T
γ,~j ,~ι
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Classical interpretation of states in LQG

The T
γ,~j,~ι

have geometric interpretation (eigenstates of area- and volume operator).

But: not close to ’classical geometry’ (e.g. half-integer holonomy operators have zero
expectation values).

γ
j

〈Tγ,j | t̂r 1
2
(h) |Tγ,j 〉 = 0

One needs to construct states which contain information about both canonical
variables (fluxes and holonomies) ⇒ semiclassical states, in order to:

◮ Interpret states as “close to classical geometry” (centered around phase space
points, small fluctuations)

◮ Check semiclassical limit of operators
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Strategy:

Construct coherent states on Hγ by taking Hall’s complexifier coherent states on the
gauge-variant Hilbert space, and project them to the gauge-invariant subspace:

ψt
g1,...,gE

∈ L2
(

SU(2)E , dµH
)

⊂ L2
(

A, dµAL

)

⇓ ⇓ ⇓

Ψt
[g1,...,gE ]

∈ L2
(

SU(2)E /SU(2)V , dµ
)

= Hγ ⊂ L2
(

A/G, dµAL

)
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Phase-space of GR

(AI
a,E

a
I
)

Σ
Σ

Hkin

he

Ef

⇒⇒

Quantum Theory in LQG constructed in two steps:

1. Replace fields (AI
a,E

a
I
) by holonomies and fluxes he ∈ SU(2), Ef ∈ su(2).

(smooth fields smeared over 1− and 2− dim. submanifolds)

2. Build a quantum theory out of holonomy-flux algebra

⇒ Choice of coordinates on phase-space: he ,Ef .
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Phase-space of one graph

Thiemann ’00

Choose graph γ = {e1, . . . , eE} and dual graph γ∗ = {S1, . . . , SE}

e

v1

v2

S

Variables are the he ,Ee (one canonical pair per edge)

he = holonomy along edge e

Ee = Flux integrated over S (parallelly transported to v1)

This defines a 6E -dim sub-phase-space of the whole phase-space of GR
(≃ (T∗SU(2))E ).
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Hall’s complexifier coherent states

Hall ’97, Sahlmann, Thiemann, Winkler ’00

Hall introduced generalizations of Gaussian wave packets on L2
(

G , dµH
)

for comapct,
s.-s. Lie groups G , spheres,...

ψt
ge
(he ) := exp

(

∆
t

2

)

δ(he , h
′)∣
∣

∣

h′→ge

=
∑

je

(2je + 1) exp

(

−je(je + 1)
t

2

)

χje

(

h−1
e ge

)

χje = character or rep’n je , he holonomy along edge e, ge ∈ SL(2,C), t > 0

t =
ℓ2
P

a2

where a is a characteristic length scale. Semiclassical limit: t → 0
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Gauge-variant phase space

Complexifier procedure delivers correspondence between T∗SU(2) and SL(2,C) via
polar decomposition:

ge =
∞
∑

n=0

in

n!
{C , {C , . . . , {C , he} . . .}}

= etEe he

e1

e2

v1

v2

S

p

Note: In SF context more convenient to parallelly transport E to p instead of v1. (see
talks by Rovelli and Perini) Then one has

etE
(v1)

he1e2 = he1 e
tE (p)

he2
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Properties of complexifier coherent states

Thiemann, Winkler ’00

◮ Minimal uncertainty states, Gaussian peaked, Eigenstates of ’ladder operator’

◮ Approximate observables: Let f be a polynomial phase-space function (i.e. a
polynomial function on holonomies and fluxes he ,Ee ), then

〈ψt
g1,...,gE

|f (ĥe , Êe)|ψt
g1,...,gE

〉
〈ψt

g1 ,...,gE
|ψt

g1,...,gE
〉 = f (he ,Ee ) + O(t)

where ge = exp(tEe )he .
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Properties of complexifier coherent states

◮ Resolution of identity:

∫

SL(2,C)E
dν |ψt

g1,...,gn
〉〈ψt

g1 ,...,gn
| = 1L2(SU(2)E )

where ν is some measure on SL(2,C)E related to the heat kernel.

◮ Bargman-Segal representation: For a state φ, the function

φ(g1, . . . , gn) := 〈φ|ψt
g1,...,gn

〉

is complex analytic in the ge .

Benjamin Bahr

Coherent States in LQG



Motivation Complexifier coherent states Gauge-invariant coherent states Semiclassical Analysis Summary

Gauge-invariant coherent states:

Thiemann, Winkler ’00

Projection of complexifier coherent states:

Πgauge : L2(SU(2)E ) → L2(SU(2)E /SU(2)V ) = Hγ

Ψt
[g1,...,gn ]

:= Πgaugeψt
g1,...,gn

=
∑

~j,~ι

[

e−
∑

e je (je+1)t/2T
γ,~j ,~ι

({g∗
e })
]

T
γ,~j,~ι

with g∗ := ǫgǫ−1.
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Labels of gauge-invariant coherent states
BB, Thiemann ’06-’08

Since for a gauge action αk1,...,kV with kv ∈ SU(2) one has

αk1,...,kV ψ
t
g1,...,gE

= ψt

ks(e1)
g1k

−1
t(e1)

,...,ks(eE )gE k
−1
t(eE )

one might think that Ψt
[g1,...,gE ]

are labelled by [g1, . . . , gE ] ∈ SL(2,C)E/SU(2)V , but

this is not the case:

(k1, . . . , kV ) 7−→ Πgaugeαkvψ
t
g1,...,gE

(1)

can be extended analytically to all of SL(2,C)V . But then (1) is a complex analytic
function which is constant on the ’real line’ SU(2)V , so it has to be constant on all of
SL(2,C)V .

[g1, . . . , gn] ∈ SL(2,C)E

SL(2,C)V
= orbit

of (g1, . . . , gn) under complexified

gauge transformation.

SL(2,C)EOrbit of SL(2,C)V
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Geometry of gauge-invariant phase space

The set of orbits [g1, . . . , gE ] is not a manifold, but contains singular points:

γ g1 g2

(g1, g2) ∼ (kg1k
−1, kg2k

−1) k ∈ SL(2,C)

g1 = g2 = ±1 ⇒ dim Orbit(g1, g2) = 0

g1 = ±g2 6= 1 ⇒ dim Orbit(g1, g2) = 4

g1 6= ±g2 6= 1 ⇒ dim Orbit(g1, g2) = 6

For generic points, the dimension of gauge-invariant phase space SL(2,C)E/SL(2,C)V

is

dim SL(2,C)E/SL(2,C)V = 6(E − V ) = 6(L− 1)

where L is the number of loops in the graph γ.
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Properties of the coherent states Ψt
[g1,...,gE ]

:

BB, Thiemann ’06-’08

◮ Approximation of gauge-invariant observables: Let f be a polynomial

gauge-invariant phase space functions (e.g. Âr
2
e , trj (he )), then one recovers (in

lowest t-order) the classical expression:

〈ψt
g1,...,gE

|f (ĥe , Êe)|ψt
g1,...,gE

〉
〈ψt

g1 ,...,gE
|ψt

g1,...,gE
〉 = f (he ,Ee ) + O(t)

where ge = exp(tEe )he .
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Properties of the coherent states Ψt
[g1,...,gE ]

:

◮ Resolution of the identity:

∫

SL(2,C)E

SL(2,C)V

dN ∆FP |Ψt
[g1,...,gE ]

〉〈Ψt
[g1 ,...,gE ]

| = 1L2(SU(2)E/SU(2)V )

with the averaged measure

N([g1, . . . , gE ]) =

∫

SL(2,C)V
dµ⊗V

H
(~k) ν(α~k (g1, . . . , gE ))

and a Fadeev-Popov-determinant ∆FP (see Bianchi, Magliaro, Perini ’10)

◮ The states Ψt
[g1,...,gE ]

are Gaussian peaked almost everywhere, apart from the

points where the gauge-invariant phase space has singular points (degenerate
gauge orbits).

Benjamin Bahr

Coherent States in LQG



Motivation Complexifier coherent states Gauge-invariant coherent states Semiclassical Analysis Summary

Peakedness properties of the coherent states Ψt
[g ]:

Example:

γ
g

Assume g ∈ SL(2,C)

g = e izIσ
I

, zI ∈ C

with z2 := z21 + z22 + z23 6= 0:

Then

Ψt
[g] ≡ Ψt

z =
∑

j

e−j(j+1)t/2 z
2j+1 − z−2j−1

z − z−1
Tγ,j ,

and

ρ(w) =
|〈Ψt

w |Ψt
z〉|2

‖Ψt
w‖2‖Ψt

z‖2
=

sinh wz
2t

sinh zw
2t

sinh |w|2

2t
sinh |z|2

2t

(1 + O(t∞))

is the phase-space density of the state Ψt
z .
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Peakedness properties of the coherent states Ψt
[g ]:
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Phase-space density ρ(w) of the state Ψt
z with z = 1.

⇒ Gaussian peaked around w = z = 1.
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Peakedness properties of the coherent states Ψt
[g ]:
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Phase-space density ρ(w) of the state Ψt
z with z = 0 (corresponds to g = 1, i.e.

degenerate gauge orbit.

⇒ Non-Gaussian peaked around w = z = 0 (rather exp(−|z |4/t) - profile).
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Semiclassical limit of Master constraint

The (non-graph changing) master constraint M̂ as defined by Thiemann has the
correct semiclassical limit, in the following sense: (Giesel, Thiemann ’06)

◮ Choose classical fields A0,E0 in Σ

◮ Choose then a cubic graph γ (and dual graph γ∗) such that the fields A0,E0 do
not vary much inbetween lattice sites.

◮ The classical fields A0,E0 induce, by smearing along the edges and surfaces of
γ, γ∗, discrete coordinates he ∈ SU(2), Ee ∈ su(2).

◮ Consider the coherent state Ψt
[g1,...,gE ]

with ge = exp(tEe )he .

Then

〈Ψt
[g1,...,gE ]

|M̂|Ψt
[g1,...,gE ]

〉
〈Ψt

[g1 ,...,gE ]
|Ψt

[g1,...,gE ]
〉

= M(A0,E0) + O(t) + O(ǫ)

where t is the semiclassicality parameter, and ǫ measures the variation of the fields
A0,E0 inbetween lattice sites.
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Semiclassical limit of the (Ashtekar-Lewandowski-) volume operator
The (AL-) volume operator V has the correct semiclassical limit for 6-valent graphs
only in the following sense:

◮ Choose flat background A0,E0 in Σ in the manifold Σ.
◮ Embed a tetrahedron, cuboid or octahedron into Σ
◮ Construct appropriate coherent state (on a graph dual to polyhedron) Ψt

[g1,...,gE ]

Then

〈Ψt
[g1,...,gE ]

|V̂ |Ψt
[g1,...,gE ]

〉
〈Ψt

[g1,...,gE ]
|Ψt

[g1,...,gE ]
〉

= κnV (E0) + O(t)

(n = 4, 6, 8), and V (E0) is the classical, flat volume of the embedded polyhedron. The
numbers κn are given by

κ4 =

√
2

6
, κ6 = 1, κ8 =

1

2
√
2
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How to deal with this result?

◮ Change the states Ψt
[g1,...,gE ]

◮ Change of complexifier from Ĉ = ∆ t
2 so something else (e.g. Ĉ = V̂ )? See Flori ’08

◮ Something different than complexifier procedure?
◮ However: States work well on many, many other levels.

◮ Change the volume operator
◮ Adjust factors κn
◮ Different regularization procedure
◮ However: ”Triad test”: Classical identity Giesel, Thiemann ’06

E(S) =

∫
S

det E{A,V} ∧ {A,V}

shall also hold on quantum level

◮ Work only on six-valent graphs
◮ Favoured by Grimstrup, Aastrup: Specrtal triple construction in LQG see talk by Jepser Møller

◮ However: Not a representation space of the holonomy-flux algebra.
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Summary:

◮ The complexifier coherent states ψt
g1,...,gE

are good semiclassical states on

L2(SU(2)E ) (approximate well fluxes and holonomies). t = semiclassicality
parameter, ge obtain geometric interpretation in terms of polar decomposition:

ge = exp
(

tEe

)

he

((g1, . . . , gE )=point in gauge-variant phase-space)

◮ Their gauge-invariant projections

Ψt
[g1,...,gE ]

= Πgaugeψt
g1,...,gE

are good semiclassical states for gauge-invariant sector ([g1, . . . , gE ] = point in
gauge-invariant phase-space).
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Summary:

◮ Gauge-invariant phase-space SL(2,C)E/SL(2,C)V contains singular points
(degenerate gauge orbits). There e.g. smooth structure, complex structure, etc.
breaks down. Correspond to phase-space points with non-trivial symmetry (e.g.
all ge equal).

◮ On generic points however, the dimension of gauge-invariant phase-space is
6(L − 1), where L is the number of ’loops’ in the graph γ (generators of first
fundamental group).
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Summary:

◮ The coherent states Ψt
[g1,...,gE ]

can be used to investigate semiclassical (t → 0)

limit of operators:

◮ It is possible to approximate a classical smooth field configuration (A0,E0) with a
coherent state Ψt situated on a very fine graph.

◮ AL-volume operator and Master constraint in LQG have the correct semiclassical
limit, if this graph is cubic.

Nontrivial, since Master constraint is no poynomial in the fields.

◮ States can be used to write down and investigate coherent propagator for LQG
Han, ’09

◮ On non-cubic graphs (i.e. with valence different from n = 6), the (AL-) volume
operator has not the correct semiclassical limit: In the sum

V̂ 2
Al =

∣

∣

∣

∣

∣

∣

1

48

∑

e,e′,e′′

ǫ(e, e′, e′′)ǫIJK Ê
I
e Ê

J
e′ Ê

K
e′′

∣

∣

∣

∣

∣

∣

the coherent states seem to overcount triples of edges e, e′, e′′.
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Outlook:

Recent development:

Works of Bianchi, Magliaro, Perini:

On gauge-invariant phase-space SL(2,C)E/SL(2,C)V introduce coordinates given by
Speziale, Freidel. ⇒ For four-valent graphs, these have nice interpretation in terms of
twisted geometries of simplicial complexes (see Claudio’s talk)!
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