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Questions

‣Is there a notion of diffeomorphism symmetry in discrete models?

‣Can it help us to adress: 

‣ambiguities and anomalies, lattice effects

‣path integral measure (for labels and triangulations)

‣sum over triangulations vs. continuum limit?

‣Relation to triangulation independence?  [Pfeiffer 04 ]  How much do we have to sum 
over?

‣Is the Regge action special?



Two Remarks

‣We will apply a precise dynamical criterium for the existence/non-existence of 
symmetries.   We  give reasons to identify the (broken) symmetries we find in 
this way as discrete incarnations of (active) diffeomorphism symmetry.                                    
You might disagree and  call these symmetries by some other name and then 
explain relationship to diffeomorphism symmetry in continuum limit.

‣Although we explicitly work in a discrete setting, these considerations might be 
also useful for continuum theories where discrete features appear in the 
regularization of operators.  [Perez & Pranzetti 10, Giesel & Thiemann AQG framework] 



Overview
A. Criterium for gauge symmetries

B. Do we have gauge symmetries in discrete gravity?

C. Why do we care?

D. Improving the dynamics with renormalization

E. Perturbative Expansion

F. Repercussions for canonical formalism

G. Conclusions

                                       

                                                           



Set up: Regge calculus
(classical theory corresponding to spin foam models, lattice loop quantum gravity)

•approximate space time by 
  piecewise flat triangulation 
•length variables on edges fix geometry
•discrete action defines dynamics

Scont =
∫

dDx
√

g
(

1
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)

Sdiscr =
∑

hinges h

Fhεh − Λ
∑
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4d:triangles
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4-simplex/
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deficit angle



A. and B.

Is there a notion of diffeomorphism symmetry in 
discretized actions?



A. Criterium for gauge symmetries

•criterium: non-uniqueness of solutions for fixed boundary conditions

‣ 

•existence of symmetries depends on dynamics (that is action)!

•different solutions might have gauge orbits of different size

•invariance of action not sufficient for gauge symmetry
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•criterium relevant for 
‣canonical analysis
‣perturbative expansion
‣counting of physical degrees of freedom



B. Gauge symmetries in Regge calculus? 

•for boundary conditions leading to flat solutions: non-uniqueness of solutions!
⇒there are gauge symmetries! 

•3d (vanishing cosmological constant): all boundary conditions lead to flat solutions
⇒gauge symmetries for all configurations

•4d (vanishing cosmological constant): some boundary conditions lead to flat solutions
 ⇒gauge symmetries for these configurations

 
•gauge modes correspond to changing position of vertices on flat background 
 ⇒matched to continuum diffeomorphism symmetry in lineariziation    [Rocek and Williams 81]

  vertex translation acting on 
flat solution

  Hessian of action evaluated on 
flat solutions has null modes



B. Gauge symmetries in Regge calculus? 

 For (a) curved solution: symmetries are broken. 

!0.01 0.01 0.02 0.03

!0.015

!0.010

!0.005

[Bahr, BD 09]

lowest eigenvalues of Hessians as function of deviation 
parameter from 4d flat solution (curvature)

Symmetry is broken, effect quadratic in curvature. 



Is there a notion of diffeomorphism symmetry in 
discretized actions?

Yes.

1) flat vertices allow for gauge modes corresponding to translations

2) invariance (slightly) broken at non-flat vertices for the Regge action; 
effect is quadratic in curvature



C.  Why do we care? 

•exact symmetries       ⇒        exact (first class) constraints      

     [Gambini & Pullin et al 03-05, et al, Bahr & BD 09, BD & Hoehn 09 ] 

•anomalies in quantization (by regularization)   vs   fixing of ambiguities
     [for instance Perez & Pranzetti 10 in 3d with cosm. const.] 

•perturbative expansion around flat geometries is very subtle if symmetries are broken 
      [related: Horava-Lifshitz gravity]

•path integral computation: no propagator for pseudo gauge modes

•strong condition on measure in path integral

•action with exact diffeomorphism symmetry hopefully related to triangulation independent 
Hamilton-Jacobi functional: control sum over triangulation!



Gauge symmetries are properties of the (discrete) action.
⇒Improve the action.

D.  Is there a discretization with exact  symmetry?



Construct better actions

•remember: (broken) symmetries are properties of action

•idea: construct actions that capture better continuum dynamics
[Improved and Perfect actions: ..., Symanzik, Wilson, Hasenfratz et al in QCD: avoid Lorentz symmetry breaking!]

•by renormalization group transformation:

•fine grain and integrate out fine grained degrees of freedom

•obtain effective action on coarse grained lattice, capturing dynamics of 
    fine grained lattice

     Question: Do we regain local gauge symmetries from continuum?



 3d Regge 
calculus with 
cosmological 

constant

[Bahr & BD 09]

It works!

Examples

 4d Regge 
calculus,

perturbative
expansion

[BD & Hoehn 09]
[Bahr & BD &He wip]

1d  discretized 
systems,

perturbatively 
and non-

perturbatively

[quantum: Bahr, 
Steinhaus & BD wip]

It works!

 3d Regge 
calculus with 

matter

[Banisch & BD wip]



3d Regge calculus

without cosmological constant 

• any triangulation of flat space is a 
solution

• at every vertex 3dim translation 
symmetry

• triangulation independent

• zero physical degrees of freedom

• unique solutions to equations of 
motion

• there is no translation symmetry  
acting

• not triangulation independent

• all degrees of freedom physical

with cosmological constant 

exact diffeo symmetry approximate diffeo symmetry



3d Regge with 
cosmological constant 

κ = Λ

Sκ
T =

∑

E

LEεκ
E + 2κ

∑

σ

V κ
Σ

 3d Regge with curved 
simplices 
[B.Bahr, BD 09]

integrate out small edge lengths

action for flat simplices action for simplices with curvature

approximate 
symmetries,

triang. dependent

exact
 symmetries,

triang. independent

ST =
∑

e

leεe − Λ
∑

σ

Vσ



1d reparametrization invariant systems

s→ n

L(n, n + 1) = (tn+1 − tn)
(
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2
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− V (
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q′2

t′2
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)
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det
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∣∣∣solution
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continuum:

• take q and t as variables
• use auxilary parameter evolution

parameter s

• solutions t(s), q(s) invariant
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discretization

• vertex translations symmetry for V = 0
• symmetry broken for V != 0 [Gamini Pullin 03, Marsden West 01]
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•vanishing potential
•position of vertices arbitrary
•one gauge mode
•refinement independent

•quadratic potential
•position of vertices fixed
•one pseudo gauge mode
•refinement dependent

•linearization around solution:  
kinetic term of pseudo gauge 
mode vanishing

•gauge breaking in potential!
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Remark: piecewise linear 
approximation added by hand!

Examples



1d reparametrization invariant discrete systems

• There is always a discrete action with exact symmetries!

• trick: use the Hamilton-Jacobi functional of continuum theory as discrete action

• ⇒discrete theory captures exactly continuums dynamic

• can be obtained by integrating out almost all variables                                                             
(“renormalization group flow”) 

0 =
∂Sd

∂qn

=
qn+1 − qn

tn+1 − tn
−

qn − qn−1

tn − tn−1
(6.22) {Gl:DiscreteVariationWRTT

0 =
∂Sd

∂tn
=

1

2

(

qn+1 − qn

tn+1 − tn

)2

−
1

2

(

qn − qn−1

tn − tn−1

)2

(6.23) {Gl:DiscreteVariationWRTT

One immediately sees that the second equation is automatically satisfied if the first is.
The first equation, however, does not determine tn, qn uniquely. For any choice of t0 <
t1 < . . . < tN there is a solution for the qn, which is given by

qn+1 =
qN − q0

tN − t0
tn (6.24) {Gl:DiscreteVariationWRTT

as one can readily check. So the discrete system exhibits complete reparametrization
invariance. Now with potential, where this doesn’t work?

Furthermore, for each reparametrization invariant continuous system, one can write
down a discrete system that retains this invariance, as we will see in the following chapter.

XXXXX Define approximate gauge invariance, thickened constraints or maybe later
....

6.1 Regaining reparametrization invariance

For the type of discretized actions we discussed so far one can always define a discrete
action which displays exact reparametrization invariance. The idea is that the discrete
system should exactly reproduce the dynamics of the continuous system. To achieve such
a dynamics one can start with the continuum action and solve for all variables t(s), q(s)
except for those at some discrete subsets of the evolution parameter sn. Reinserting the
solutions in the action will result in a sum of Hamilton–Jacobi functions:

Se =
N−1
∑

n=0

Ssn,sn+1

HJ (tn, qn, tn+1, qn+1) (6.25) {actionb1}

=
N−1
∑

n=0

∫ sn+1

sn

ds L(t(s), q(s)) .

Theorem: The discrete action Se defined in (6.25) is exactely reparametrization invari-
ant.

Proof: It is clear that on each interval [sn, sn+1] the functions t(s), q(s) solve the Euler-
Lagrange equations (...) for the continuum action S for boundary values tn, qn, tn+1, qn+1.
All these solutions are only unique up to reparamterization of the interval [sn, sn+1]. One
can in fact choose such a solution for each interval such that the concatenated functions
t(s), q(s) are smooth on all of [s0, sN ].1 On the other hand, each smooth solution of

1Reference to Marsden? Appendix?
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Existence of symmetries depends on the dynamics. 

This dynamics can be improved by constructing actions that approximate 
continuum dynamics very well/perfectly.

Interpretation of discrete building blocks depends on dynamics. 

Do not see them literally as (flat) blocks but as representing coarse 
grained quantities.



 4d?
•action will be non-local, but might be triangulation independent  [Bahr, BD, He wip]

•impossible to solve equation of motion non-perturbatively: 
  ⇒expansion around flat space 

•What are the properties of this expansion? 
  To which order are the gauge symmetries/ triangulation independence realized?

              
Regge calculus

• gauge symmetries for flat solutions

• background gauge parameters
position of vertices in flat background

• symmetries broken for curved solutions

Parametrized (an-)harmonic oscillator

• gauge symmetries for qn = 0, tn arbitrary

• background gauge parameters
tn

• symmetries broken for qn != 0
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E. Perturbative expansion 
[BD, Höhn 09]

Regge calculus

• gauge symmetries for flat solutions

• background gauge parameters
position of vertices in flat background

• symmetries broken for curved solutions

Parametrized (an-)harmonic oscillator

• gauge symmetries for qn = 0, tn arbitrary

• background gauge parameters
tn

• symmetries broken for qn != 0
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solutions not unique solutions unique

?

We will see: 
•Typically: consistent expansion only possibly for specific choices of background gauge.
•For other choices: 
•Precise relation with invariance properties of (truncated) Hamilton-Jacobi functional.

Regge calculus

• gauge symmetries for flat solutions

• background gauge parameters
position of vertices in flat background

• symmetries broken for curved solutions

Parametrized (an-)harmonic oscillator

• gauge symmetries for qn = 0, tn arbitrary

• background gauge parameters
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• symmetries broken for qn != 0
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x1 ∼ ε−1 (0.2)
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E. Perturbative expansion 
[BD, Höhn 09]
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linear order:

Regge calculus

• gauge symmetries for flat solutions

• background gauge parameters
position of vertices in flat background

• symmetries broken for curved solutions

Parametrized (an-)harmonic oscillator
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• background gauge parameters
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x1 ∼ ε−1 (0.2)

Sij(x0) yi
g(x0) = 0, yi

g(x0) null vectors with index g (0.3)

xi
O = xg

Oyi
g + xp

Oyi
p coordinate transformation to gauge and physical modes (0.4)
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first non-linear order:
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E. Perturbative expansion 
[BD, Höhn 09]

Theorem:         After solving for the physical modes we have

(
S

∂xi
yi

g

)
∣∣∣second order

= yi
g

∂

∂xi
0

(SHJ)∣∣∣second order
(0.11)

computed in linearized theory!
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∂
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0

(SHJ)∣∣∣second order
(0.11)

computed in linearized theory!

EOM in non-linear theory
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EOM in non-linear theory

in particular:

• first order and second order gauge variables do not appear in EOM

• if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

• EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: Background gauge parameters are getting fixed such that dependence
of Hamilton-Jacobi functional on these parameters is minimal.
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∂A∆
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A∆ = A∆(l) , p∆ =
∂le

∂A∆
pe (0.13)

C∆ = p∆ + ψ∆(l) (0.14)
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Hamilton-Jacobi functional for linearized Regge 

Does the Hamilton-Jacobi functional of linearized Regge calculus depend on background 
gauge?

Yes!   (for a specific example)  [BD, Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for 
positions of vertices.



Although linearized Regge has exact symmetries, 
it is not triangulation independent.

Need to improve even the quadratic part of the Regge action.
[Bahr, BD, He wip]
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EOM in non-linear theory
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gauge parameters

• EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: Background gauge parameters are getting fixed such that dependence
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now background gauge arbitrary 
to non-linear order

improve

improve

It works not only for the harmonic oscillator but also for the anharmonic one!





Repercussions for canonical framework 
and quantization?

 typical problem of lattice approaches: 
anomalous constraint algebra, inconsistent dynamics

a) Canonical formalism reproducing exactly solutions and 
(broken) symmetries of discretized action?

b) Constraints? Constraint algebra? Anomalies?



continuous action discrete action

discretization

discretization

Legendre Legendre

continuous canonical form.
discrete
 canonical form.

discrete
  canonical form.

continuous time,
discrete space,

(anomalous) constraints

discrete time,
discrete space,

(pseudo) constraints

Canonical Framework



Canonical Framework
[Bahr, BD ’09; BD, Höhn 09]

•evolve spatial triangulation locally by tent moves     [Sorkin 75, Barrett et al 97]

•finite time steps
•use action as generating function for time evolution map 
  [consistent discretizations, Gambini & Pullin et al  03-05]

•reproduces (broken) symmetries exactly [Bahr, BD 09] :

 symmetries exact ⇒ eom not independent       ⇒constraints (first class)

                 broken⇒ eom almost not independ. ⇒pseudo-constraints                     

Obtaining anomaly free constraints is equivalent to constructing an 
action with exact symmetries.



Evolving spatial triangulations with tent moves

time evolution moves:

• do not change spatial triangulation/ number of variables

• act local, involving only star of a vertex

• can obtain local (pseudo-) constraints based at vertices

[ Sorkin 75, Barrett et al 97]

add tent pole on 
vertex

vertex with star in bigger 
triangulation

connect vertices, obtain tent



Canonical Framework
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lengths {len, e = e(vni), i = 1, . . . ,N} and tn−1, tn has four null vectors YI , I = 1, . . . , 4, whose
components we will denote by (Y tn−1

I , Y tn
I , {Y e

I }).
In the following we will show that from these null vectors we can define null vectors for

other Hessians that will appear in the dynamics of the linearized theory. To begin with we will
eliminate the lengths of the tent poles as these function are auxiliary variables. To this end we
define the ‘effective action’

S̃(len−1, l
e
n, len+1, l

b) := Sn−1(Tn−1(l
e
n−1, l

e
n, lb), len−1, l

e
n, lb) + Sn(Tn(len, len+1, l

b), len, len+1, l
b)

= S̃n−1(l
e
n−1, l

e
n, lb) + S̃n(len, len+1, l

b) (5.1)

where we have solved the associated equations of motion for the length of the tent poles, so that
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(Tn−1(l

e
n−1, l

e
n), len−1, l

e
n) ≡ 0,

∂Sn

∂tn
(Tn(len, len+1), len, len+1) ≡ 0 . (5.2)

The following arguments will show that the {Y e
I } define the null vectors of the Hessian of

the ‘effective action’. Taking the derivative of these equations (5.2) with respect to len we obtain
the identities

∂2Sn−1

∂tn−1∂len
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∂tn−1∂tn−1

∂Tn−1

∂len
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∂2Sn
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= 0 , (5.3)
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)−1
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. (5.4)

On the other hand, following from the fact that the YI are null vectors of the Hessian of
S = Sn−1 + Sn (we will apply the Einstein summation convention for the index e) we have

Y e
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From the last two equations in (5.5) we obtain the components Y tn−1

I and Y tn
I as functions of

Y e
I
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I = −Y e
I
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. (5.6)

(Here we assume that the second partial derivatives of the action with respect to tn−1 and tn
do not vanish. This is generically the case for the Regge action.)
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Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)
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where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6

vn

vn+1

1

2

3

4

Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6

vn

vn+1

1

2

3

4

Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6

vn

vn+1

1

2

3

4

Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6

vn

vn+1

1

2

3

4

Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6

canonical (tent move) 
transformation:

use       as generating 
function for canonical 

transformation

vn

vn+1

1

2

3

4

Figure 1: The tent move in 3d applied to a vertex vn in a 2d Cauchy hypersurface.

motion for these edges into a canonical form. To this end denote by

Sn = −
∑

∆⊂
◦

T n

A∆

(

2π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂
◦

star(vn+1)

A∆

(

π −
∑

σ⊂Tn

θσ
∆

)

−
∑

∆⊂star(vn)∩star(vn+1)

A∆

(

−
∑

σ⊂Tn

θσ
∆

)

(3.1)

the Regge action for the added piece of 4d triangulation Tn (with boundary terms). With

∆ ∈
◦

star(vn) (or ∆ ∈
◦

star(vn+1)) we mean triangles that are in star(vn) but are not part of
star(vn+1) (or vice versa). There are also triangles which are part of both Σn and Σn+1. If one
performs several consecutive tent moves at the vertices vn, vn+1, . . . , then these triangles are
part of each of the triangulations Tn,Tn+1, . . . . Hence, we choose the associated boundary term
without any factor of π, as we cannot say how many pieces T are added. (Also if tent moves
at neighboring vertices are performed then the action associated to these moves provides the
necessary factors of π for these triangles.)

With Sn−1 we will denote the action (again with boundary terms) of the original 4d triangu-
lation without the piece Tn. (Alternatively, one can assume that a tent move at vn−1 has already
been performed. Then Sn−1 is the action associated to Tn−1. Again, this does not matter for
the equations of motion.) The equations of motion can be written as

0 =
∂Sn

∂tn

0 =
∂Sn−1

∂len
+

∂Sn

∂len
(3.2)

where by tn we denote the length of the tent pole t = e(vnvn+1) and len is the length of the edge
e = e(vni), i = 1, . . . ,N . Using Sn as a generating function, we define the momenta canonically
conjugate to len, len+1, tn, tn+1 by

pn
t := −

∂Sn

∂tn
pn

e := −
∂Sn

∂len

pn+1
t :=

∂Sn

∂tn+1
pn+1

e :=
∂Sn

∂len+1
. (3.3)

6



4-valent vertex: flat dynamics

equation for the tent pole

solution

the link, i. e. the boundary of the star, into operations on the 4D triangulation. To begin with
the simplest case of a 4–valent vertex v has the boundary of a tetrahedron as link. The full 3D
star consist of 4 tetrahedra sharing the vertex v. This triangulation can be embedded into a 4D
triangulation by adding a fifth tetrahedron so that we obtain a 4–simplex.

A 1−3 Pachner moves on the link of the vertex v adds a vertex w and subdivides a triangle,
say with vertices 1, 2 and 3 into three triangles (w, 1, 2), (w, 1, 3) and (w, 2, 3). Accordingly the
tetrahedron (v, 1, 2, 3) in the star of v is subdivided into three tetrahedra by adding the vertex
w to the triangle (1, 2, 3) and adding four edges (v, w), (w, i), i = 1, 2, 3 and accordingly three
triangles (v, w, i) and replacing (1, 2, 3) with three triangles ((w, i, j)..

The initial 3D star is realized as the boundary of a 4D triangulation, therefore the tetrahe-
dron (v, 1, 2, 3) is in this boundary. A 1 − 3 Pachner move on the triangle (1, 2, 3) in the link
corresponds to gluing a 4–simplex (v, 1, 2, 3, w) onto the tetrahedron (v, 1, 2, 3) so that the new
boundary contains the three tetrahedra (v, i, j, w) with i, j = 1, 2, 3. The tetrahedron (v, 1, 2, 3)
is now in the bulk of the triangulation. We did not, however, produced any triangles in the bulk.

A 2−2 Pachner move on the link flips the common edge of two triangles, that is two triangles
(1, 2, 3) and (1, 2, 4) sharing an edge (1, 2) are replaced by two triangles (1, 3, 4) and (2, 3, 4). In
the 3D link the tetrahedra (v, 1, 2, 3) and (v, 1, 2, 4) are replaced by (v, 1, 3, 4) and (v, 2, 3, 4).

We have to change the 4D triangulation such that the edge (1, 2) is not part of the 3D star
of v anymore. One possibility is to glue a 4-simplex (v, 1, 2, 3, 4) onto the tetrahedra (v, 1, 2, 3)
and (v, 1, 2, 4) so that the triangle (v, 1, 2) is now an inner triangle in the 4D triangulation, i.e.
is not part of the boundary. This allows for the possibility to have a non–vanishing deficit angle
associated to the triangle (v, 1, 2). To avoid this to happen, we have to choose the length of the
edge (1, 2) (which is not in the star of v and hence we can choose it length freely) such that the
deficit angle vanishes.

Note that the 2 − 2 Pachner moves are inverse to each other, i.e. performing two Pachner
moves on the same pair of triangles results in the identity operation. Hence – if the edge (1, 2)
is already part of the 4D triangulation a 2 − 2 Pachner move can also be realized by ‘taking
away’ a simplex (v, 1, 2, 3, 4). Alternatively one can view this operation as gluing a 4–simplex
‘from below’/ with opposite orientation’, ...

3 − 1 Pachner move? Glue (v, 1, 2, 3, 4) to three?? tetrahedra. Four edges (v, 4) and (i, j)
i = 1, 2, 3 are not part of the star of v anymore but also we obtain FOUR? inner triangles
??,i, j = 1, 2, 3. So that we can adjust the length of these edges to avoid curvature on the three
inner edges.

Do we need 3−1? What is the proof that we may not? Is there a more direct construction??

ε∆ = 0 (12.7)
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boundary contains the three tetrahedra (v, i, j, w) with i, j = 1, 2, 3. The tetrahedron (v, 1, 2, 3)
is now in the bulk of the triangulation. We did not, however, produced any triangles in the bulk.

A 2−2 Pachner move on the link flips the common edge of two triangles, that is two triangles
(1, 2, 3) and (1, 2, 4) sharing an edge (1, 2) are replaced by two triangles (1, 3, 4) and (2, 3, 4). In
the 3D link the tetrahedra (v, 1, 2, 3) and (v, 1, 2, 4) are replaced by (v, 1, 3, 4) and (v, 2, 3, 4).

We have to change the 4D triangulation such that the edge (1, 2) is not part of the 3D star
of v anymore. One possibility is to glue a 4-simplex (v, 1, 2, 3, 4) onto the tetrahedra (v, 1, 2, 3)
and (v, 1, 2, 4) so that the triangle (v, 1, 2) is now an inner triangle in the 4D triangulation, i.e.
is not part of the boundary. This allows for the possibility to have a non–vanishing deficit angle
associated to the triangle (v, 1, 2). To avoid this to happen, we have to choose the length of the
edge (1, 2) (which is not in the star of v and hence we can choose it length freely) such that the
deficit angle vanishes.

Note that the 2 − 2 Pachner moves are inverse to each other, i.e. performing two Pachner
moves on the same pair of triangles results in the identity operation. Hence – if the edge (1, 2)
is already part of the 4D triangulation a 2 − 2 Pachner move can also be realized by ‘taking
away’ a simplex (v, 1, 2, 3, 4). Alternatively one can view this operation as gluing a 4–simplex
‘from below’/ with opposite orientation’, ...

3 − 1 Pachner move? Glue (v, 1, 2, 3, 4) to three?? tetrahedra. Four edges (v, 4) and (i, j)
i = 1, 2, 3 are not part of the star of v anymore but also we obtain FOUR? inner triangles
??,i, j = 1, 2, 3. So that we can adjust the length of these edges to avoid curvature on the three
inner edges.

Do we need 3−1? What is the proof that we may not? Is there a more direct construction??
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For higher valent vertices              , momenta depend (weakly) on variables  at next time step                  
⇒  pseudo constraints.
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is already part of the 4D triangulation a 2 − 2 Pachner move can also be realized by ‘taking
away’ a simplex (v, 1, 2, 3, 4). Alternatively one can view this operation as gluing a 4–simplex
‘from below’/ with opposite orientation’, ...
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‘Dynamics’ for a 4-simplex [BD, Ryan 08, BD, Hoehn 09] 

•3d surface of a 4-simplex: five 4-valent vertices
•apply constraints to every vertex

geometric meaning?

dihedral angles

•symplectic coordinate transformation:
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computed in linearized theory!

EOM in non-linear theory

in particular:

• first order and second order gauge variables do not appear in EOM

• if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

• EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: Background gauge parameters are getting fixed such that dependence
of Hamilton-Jacobi functional on these parameters is minimal.
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‘Dynamics’ for a 4-simplex [BD, Ryan 08, BD, Hoehn 09] 

•constraints fix the momenta to agree with the dihedral angles as defined by lengths

•are first class! (despite very complicated form of dihedral angles)

•generate deformation of hypersurface (via vertex translations): Hamiltonian and diffeomorphism 

constraints

•3d surface of a 4-simplex: zero physical degrees of freedom: no 4d curvature 
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Higher-valent vertex: (linearized) dynamics [BD, Hoehn 09] 

For higher valent vertices              , momenta depend (weakly) on variables  at next time step                  
⇒  pseudo constraints.

the link, i. e. the boundary of the star, into operations on the 4D triangulation. To begin with
the simplest case of a 4–valent vertex v has the boundary of a tetrahedron as link. The full 3D
star consist of 4 tetrahedra sharing the vertex v. This triangulation can be embedded into a 4D
triangulation by adding a fifth tetrahedron so that we obtain a 4–simplex.

A 1−3 Pachner moves on the link of the vertex v adds a vertex w and subdivides a triangle,
say with vertices 1, 2 and 3 into three triangles (w, 1, 2), (w, 1, 3) and (w, 2, 3). Accordingly the
tetrahedron (v, 1, 2, 3) in the star of v is subdivided into three tetrahedra by adding the vertex
w to the triangle (1, 2, 3) and adding four edges (v, w), (w, i), i = 1, 2, 3 and accordingly three
triangles (v, w, i) and replacing (1, 2, 3) with three triangles ((w, i, j)..

The initial 3D star is realized as the boundary of a 4D triangulation, therefore the tetrahe-
dron (v, 1, 2, 3) is in this boundary. A 1 − 3 Pachner move on the triangle (1, 2, 3) in the link
corresponds to gluing a 4–simplex (v, 1, 2, 3, w) onto the tetrahedron (v, 1, 2, 3) so that the new
boundary contains the three tetrahedra (v, i, j, w) with i, j = 1, 2, 3. The tetrahedron (v, 1, 2, 3)
is now in the bulk of the triangulation. We did not, however, produced any triangles in the bulk.

A 2−2 Pachner move on the link flips the common edge of two triangles, that is two triangles
(1, 2, 3) and (1, 2, 4) sharing an edge (1, 2) are replaced by two triangles (1, 3, 4) and (2, 3, 4). In
the 3D link the tetrahedra (v, 1, 2, 3) and (v, 1, 2, 4) are replaced by (v, 1, 3, 4) and (v, 2, 3, 4).

We have to change the 4D triangulation such that the edge (1, 2) is not part of the 3D star
of v anymore. One possibility is to glue a 4-simplex (v, 1, 2, 3, 4) onto the tetrahedra (v, 1, 2, 3)
and (v, 1, 2, 4) so that the triangle (v, 1, 2) is now an inner triangle in the 4D triangulation, i.e.
is not part of the boundary. This allows for the possibility to have a non–vanishing deficit angle
associated to the triangle (v, 1, 2). To avoid this to happen, we have to choose the length of the
edge (1, 2) (which is not in the star of v and hence we can choose it length freely) such that the
deficit angle vanishes.

Note that the 2 − 2 Pachner moves are inverse to each other, i.e. performing two Pachner
moves on the same pair of triangles results in the identity operation. Hence – if the edge (1, 2)
is already part of the 4D triangulation a 2 − 2 Pachner move can also be realized by ‘taking
away’ a simplex (v, 1, 2, 3, 4). Alternatively one can view this operation as gluing a 4–simplex
‘from below’/ with opposite orientation’, ...

3 − 1 Pachner move? Glue (v, 1, 2, 3, 4) to three?? tetrahedra. Four edges (v, 4) and (i, j)
i = 1, 2, 3 are not part of the star of v anymore but also we obtain FOUR? inner triangles
??,i, j = 1, 2, 3. So that we can adjust the length of these edges to avoid curvature on the three
inner edges.

Do we need 3−1? What is the proof that we may not? Is there a more direct construction??
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boundary contains the three tetrahedra (v, i, j, w) with i, j = 1, 2, 3. The tetrahedron (v, 1, 2, 3)
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is already part of the 4D triangulation a 2 − 2 Pachner move can also be realized by ‘taking
away’ a simplex (v, 1, 2, 3, 4). Alternatively one can view this operation as gluing a 4–simplex
‘from below’/ with opposite orientation’, ...

3 − 1 Pachner move? Glue (v, 1, 2, 3, 4) to three?? tetrahedra. Four edges (v, 4) and (i, j)
i = 1, 2, 3 are not part of the star of v anymore but also we obtain FOUR? inner triangles
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Higher-valent vertex: (linearized) dynamics [BD, Hoehn 09] 

•constraints give relation between intrinsic and extrinsic geometry

•are first class! (despite very complicated form of dihedral angles)

•generate linearized deformation of hypersurface (via vertex translations): Hamiltonian and 

diffeomorphism constraints

•preserved by linearized tent move dynamics (analogous to quadratic Hamiltonian)

•split into gauge and physical variables (relation to linearized curvature on inner triangles) 





1) action with exact symmetries: 

-proper first class constraints, gauge freedom

2) action with broken symmetries:

-pseudo constraints with weak dependence on lapse/shift

3) linearized theory inherits symmetries of solution

-exact constraints in linearized theory

-background gauge gets fixed at lowest non-linear order

Repercussions:



Conclusions

• discrete actions generally break diffeomorphism symmetries

• regaining symmetries by coarse graining,  renormalization 

• canonical framework exactly mimics covariant symmetries: 
constraints and pseudo-constraints

• perturbative expansion subtle: background gauge fixed if 
symmetries are broken



Prospects

• understand triangulation (in-)dependence and investigate 
non-locality properties of improved actions

• generalize curved simplices: improved action adapted to 
background solution (application to cosmology)

• improved quantum action/ renormalization in spin foams

• canonical quantization: improve constraints

• Explore general mechanisms and conditions for 
regaining gauge symmetries.


