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Centre de Physique Théorique de Luminy, Marseille
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Coherent loops and holomorphic foams

Coherent spin-networks (arXiv:0912.4054)
Holomorphic vertex amplitudes for quantum gravity (to appear very soon)

Collaboration with E. Bianchi, E. Magliaro

Coherent spin-networks are introduced via a heat-kernel technique

The labels are the ones used in Spin Foam semiclassical calculations

The set of labels can be viewed as SL(2,C) elements → coincide with the gauge invariant
projection of Hall’s coherent states for SU(2)

We study the properties of semiclassicality an find that they reproduce a superposition over
spins with nodes labeled by Livine-Speziale coherent intertwiners. The weight associated to
spins is a Gaussian with phase, as originally proposed by Rovelli

Associated to the holomorphic representation of Loop Quantum Gravity

New: holomorphic representation of Spin Foams

Conclusions and discussion
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Semiclassical states in Spin Foams

A key ingredient in the semiclassical calculations are the semiclassical states. They are peaked on
a prescribed intrinsic and extrinsic geometry of space. The original idea of Rovelli was to take a
superposition over spins of spin-network states, with a simple ansatz for the weight associated to
each link:

cj(j0, ξ) = exp
`
− (j − j0)2

2σ0

´
exp(−iξj) (1)

The spin j0 is the classical value of the area of the surface cut by the link. The angle ξ is the
variable conjugate to the spin, the 4-dimensional dihedral angle coding the extrinsic curvature.

The dispersion is chosen to be given by σ0 ≈ (j0)k (with 0 < k < 2) so that, in the large j0
limit, both variables have vanishing relative dispersions. Those kind of states where used for the
calculations with the Barrett-Crane SFM.

On the other hand, Rovelli and Speziale introduced an ansatz for the semiclassical tetrahedron
(superposition over virtual spins at each node):

ck(k0, φ) = exp
`
− (k − k0)2

2τ0

´
exp(−iφk) (2)

The virtual spin k0 is the classical value of the 3-dimensional dihedral angle between two faces of
the tetrahedron. The phase φ is needed to peak on the correct value all the dihedral angles.
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Livine-Speziale coherent intertwiner

The Rovelli-Speziale ansatz can be introduced through the mathematical theory of coherent
states for SU(2). A coherent state is defined by:

~J · ~n |j, ~n〉 = j |j, ~n〉 (3)

There is a phase ambiguity |j, ~n〉 → eiα|j, ~n〉. CS (3) minimize

〈J2〉 − 〈J〉2 = j (4)

Livine-Speziale (N-valent) coherent intertwiner is

|ja, ~na〉 =

Z
g .⊗Na=1|ja, ~na〉dg (5)

Their components on the usual virtual spin basis are:

Φi(~na) = vi ·
“
⊗Na=1 |ja, ~na〉

”
(6)

When N = 4, the coefficients (6) reproduce the Rovelli-Speziale ansatz in the large spin limit.
The states (5) have good semiclassical properties, e.g.

〈ja, ~na|V ( ~J )|ja, ~na〉 = V (j~n) + corr. (7)

The volume operator gives the classical volume of a tetrahedron, for j � 1.
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Graviton propagator from the new Spin Foams

The new Spin Foam models give non trivial dynamics to the intertwiner d.o.f. To test their
semiclassical limit, we can use a boundary state with a Gaussian weight associated to spins, and
nodes labeled by Livine-Speziale intertwiners.
Our candidate semiclassical state (Bianchi-Magliaro-CP) was:

|Ψ〉 =
X
jab,ia

exp
`
− (jab − j0)2

2σ0

´
exp(−iξjab)Φia (~nab)|jab, ia〉 (8)

Recall our definition of LQG graviton propagator. It is the connected 2-point function of
electric-flux operators (indices omitted) acting at 2 different nodes a, b

G(a, b) = 〈Ea · EaEb · Eb〉 − 〈Ea · Ea〉〈Eb · Eb〉 (9)

With the state (8) for a 4-simplex, we found, in the large j0 limit with γj0 fixed:

G̃(a, b) =
M

l2
+ corr. (10)

with M the tensorial structure of the standard propagator of perturbative quantum gravity. In
other words, we showed at least in this simplified context that the new SFM, together with our
ansatz for the boundary semiclassical state, overcome the problem of BC SFM.

1st question: can we find a top-down derivation of our states (8) ?
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Canonical framework

On the other hand, within the canonical framework, Thiemann and collaborators have strongly
advocated the use of complexifier coherent states.

When restricted to a single graph, they are labeled by an SL(2,C) element per each link. Their
peakedness properties (Thiemann-Bahr) have been studied in detail. However the relation of
SL(2,C) labels with LS coherent states, and with the Rovelli ansatz remained unexplored.

In the literature there is confusion on which kind of semiclassical states are the correct ones:
Thiemann’s complexifier coherent states or the ones used in Spin Foams (e.g. graviton
propagator) ?

2nd question: can we clarify this confusion?

1st answer = 2nd answer

Thiemann’s coherent states coincide with our artigianal ansatz for the graviton propagator !

More precisely: they coincide in a particular limit, and with a particular choice of the heat-kernel
time which is fixed in terms of SL(2,C) labels.

Trick: write SL(2,C) in terms of geometric labels of area, extrinsic curvature, and 3d unit vectors
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Coherent spin-networks

Consider a general graph Γ. Coherent spin-networks are defined as follows: we consider the
gauge-invariant projection of a product over links of Hall’s heat kernels,

ΨΓ,Hab
(hab) =

Z `Y
a

dga
´ Y
ab

Ktab (ga hab g
−1
b , Hab) (11)

The notation refers to a complete graph, just for convenience. These are the coherent states
associated to the Segal-Bargmann transform for theories of connections introduced by Ashtekar,
Lewandowski, Marolf, Mourao, Thiemann in 1994.

We rediscovered them following a completely different path; the path we followed (not in the
paper) came with a particular interpretation of the SL(2,C) labels and with a particular way of
taking the semiclassical large distance limit.

The main observation is the following: every SL(2,C) element can written in terms of

(η, ~n, ~n′, ξ) H = n ezτ3 ñ−1 z = ξ + iη (12)

A positive real number η, two unit vectors ~n, ~n′, an angle ξ. ~n is the (unit-)flux of the electric

field ~E through a surface intersected by the link, as viewed from the first node. ~n′ the flux viewed
from the second node. Finally, η is related to modulus of the electric field, namely to the area of
the surface. Exactly the labels used in Spin foams!
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Coherent spin-networks (2)

The coherent spin-network can be expanded on the spin-network basis

ΨΓ,Hab
(hab) =

X
jab

X
ia

fjab,ia ΨΓ,jab,ia (hab) (13)

with components

fjab,ia =
“Y
ab

(2jab + 1)e−jab(jab+1)tabΠ(jab)(Hab)
”
·
“Y

a

via

”
(14)

We are interested in its asymptotics for ηab � 1. The crucial observation is that in this limit, we
have the following asymptotic behavior

jab

Π (e−izabτ3 )mm′ = δmm′e
−imzab ∼ δmm′ e+ηabjab δm,jab

e−iξabjab (15)

Therefore, introducing the projector P+ = |jab,+jab〉〈jab,+jab| on the highest magnetic
number, we can write (15) as

jab

Π (e−izabτ3 ) ∼ e−iξabjabe+ηabjabP+ (16)

The projection on the highest magnetic number is the key for the link with coherent states of
SU(2), hence with the Livine-Speziale intertwiners: SU(2) coherent states are defined as the
(rotations of the) highest magnetic number states.
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Coherent spin-networks (3)

Next step: notice that

−j(j + 1)t+ j η = −
`
j − η − t

2t

´2
t+

(η − t)2

4t
(17)

so defining

(2j0ab + 1) ≡ ηab

tab
and σ0

ab ≡
1

2tab
(18)

we find the following asymptotics for coherent spin-networks:

fjab,ia ∼
“Y
ab

exp
`
− (jab − j0ab)2

2σ0
ab

´
e−iξabjab

” “Y
a

Φia (nab)
”

(19)

These are exactly the semiclassical states we considered for the graviton propagator. In particular,
their intertwiners are the Livine-Speziale ones. The parameters ξ were chosen so to reproduce the
extrinsic curvature, so also in this more general context ξ must be interpreted an an extrinsic
angle, as originally proposed by Rovelli.

This result confirms the geometric interpretation of our variables and extends the validity of the
semiclassical states used in Spin Foams well beyond the simplicial setting: coherent spin-networks
are defined in full LQG.
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Flux and holonomy operators

In the large η limit, the expectation value of the area operator is easily computed

〈A〉 =
(Ψγ,ξ+iη , ÂΨγ,ξ+iη)

(Ψγ,ξ+iη ,Ψγ,ξ+iη)
= γL2

P

p
j0(j0 + 1) (20)

and confirms the interpretation of η as the quantity that prescribes the expectation value of the
area. The Wilson loop operator acts on basis vectors as

Ŵγ χ
(j)(h) = χ( 1

2 )(h)χ(j)(h) = χ(j+ 1
2 )(h) + χ(j− 1

2 )(h) (21)

As a result, we find

〈Wγ〉 = 2 cos(ξ/2) e−
t
8 (22)

Therefore, in the limit t→ 0 compatible with η large, the parameter ξ can be interpreted as the
conjugacy class of the group element h0 where the Ashtekar-Barbero connection is peaked on.
Similarly

∆A ≡
q
〈A2〉 − 〈A〉2 =

1

2
γL2

P

√
2σ0 (23)

∆Wγ ≡
q
〈W 2

γ 〉 − 〈Wγ〉2 = sin(ξ/2)
1√
2σ0

(24)

If we require that the relative dispersions vanish in the large j0 limit, this fixes the scaling

t ∼ (j0)−k 0 < k < 1 (25)

C. Perini (CPT, Marseille - Roma Tre) Zakopane 2010 10 / 21



Coherence properties

Coherent spin-networks satisfy the following coherence properties

1 Are eigenstates of the annihilation operator associated to a link e

Ĥe = e−tÂ
2
e ĥe e

tÂ2
e (26)

2 Saturate the associated Heisenberg relations

3 Form an overcomplete basis

Point 3 is very important, because it means that every LQG state can be expressed as a
superposition of states with semiclassical labels. Of course, coherent spin-networks do not have in
general a Regge-like interpretation unless some constraints on their labels are satisfied (i.e.
closure condition at each node, and gluing constraints).

The resolution of identity (we give it for a loop state but is general) isZ
ΨHt (h)ΨHt (h′)dνt(H) = δ(h, h′) (27)

The measure dνt is related to the Haar measure dH on SL(2,C)

dνt = Ω2t(H)dH (28)

and Ωt is the SU(2)-averaged heat kernel of SL(2,C) (not the an. cont. of the SU(2) one).

C. Perini (CPT, Marseille - Roma Tre) Zakopane 2010 11 / 21



Holomorphic representation for LQG

Coherent s.n.’s lead naturally to an holomorphic representation for LQG. Consider a single copy of
SU(2), to simplify the notation. The scalar product in H = L2(SU(2), dg) defines a
correspondence between a state Ψ ∈ H and a holomorphic function Ξ, defined

Ξ : H 7−→ 〈ΨHt ,Ψ〉 (29)

There is more. The correspondence is a unitary map (isometric, onto)

L2(SU(2), dg) 7−→ H L2(SL(2,C),ΩtdH) (30)

To be more explicit, the SU(2)-averaged kernel is

Ωt(H) =

Z
SU(2)

Ft(Hg) dg (31)

where Ft is the heat kernel over SL(2,C). Ωt can be viewed as the heat kernel on
SL(2,C)/SU(2).

What is now available is a representation (Ashtekar et al. 1994) for Loop Quantum Gravity where
states are holomorphic functions of classical variables Hab that admit a geometric interpretation
in terms of areas, extrinsic angles and unit-fluxes,

(ηab, nab, nba, ξab) (32)

the variables generally used in the Spin Foam setting.
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Spin Foams and vertex amplitudes (1)

Spin Foams: candidate models for nonperturbative quantum gravity. Provide quantum amplitudes
for a gravitational process happening inside a region of spacetime.
Spin foams are built over a cellular decomposition of the spacetime manifold.

Z[Γ] =
X
jf ,ie

Y
f

Af (jf )
Y
e

Ae(jf , ie)
Y
v

Av(jf , ie) (33)

j

m
k

o

p n

The vertex amplitude Av is the elementary amplitude associated to a single spacetime cell.
Typical vertex amplitude: combinatorial symbol of the recoupling theory of angular momentum
⇒ function of spins labelling the spin-network (colored graph) on the boundary of the cell.

Example: 3D Ponzano-Regge model

Av = {6j} (34)

amplitude for a tetrahedron
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Spin Foams and vertex amplitudes (2)

Physical models are based on some 4-dimensional generalization of the 6j-symbol. In particular,
the Euclidean models are built with the “square” of the Wigner 15j-symbol and suitable fusion
coefficients.

The fusion coefficients implement the constraints on the quantum numbers that turn the
topological BF theory into general relativity.

Example: 4D EPRL

Av EPRL =
X
i+a ,i
−
a

15j(j+, i+)15j(j−, i−)f(i1, i
+
1 , i
−
1 ) . . . f(i5, i

+
5 , i
−
5 ) (35)

j+ =
1 + γ

2
j j− =

|1− γ|
2

j (36)

+ +

+

++

+

− −

iL i iR

j1 j2

j3j4

|1−γ|j1
2

|1−γ|j2
2

|1−γ|j3
2

|1−γ|j4
2

(1+γ)j1
2

(1+γ)j2
2

(1+γ)j3
2

(1+γ)j4
2
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Abstract vertex amplitude (1)

We propose a general abstract definition of vertex amplitude independent of the basis. Define the
propagation kernel as the following state in KΓ = L2(SU(2)l/SU(2)n, dng) supported on the
tetrahedron, or 4-simplex graph:

PR:

WPR(hab) =

Z Y
a

dga
Y
ab

P (hab, gag
−1
b ) g ∈ SU(2) (37)

where
P (h, g) = δ(hg−1) (38)

EPRL:

WEPRL(hab) =

Z Y
a

dGa
Y
ab

P (hab, GaG
−1
b ) G ∈ SO(4) (39)

where

P (h,G) =
X
j

(2j + 1)Tr
“ j

Π(h) Y
j±

Π (G)Y †
”

(40)

and Y is the embedding map Hj ↪→H(j+,j−) with components (CG coeff.)

Ym
+m−

m = 〈j+,m+; j−,m−|j,m〉 (41)
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Abstract vertex amplitude (2)

We define the abstract vertex amplitude as the linear functional associated to W (hab) (Riesz
representation):

W (Ψ) = 〈W,Ψ〉, Ψ ∈ KΓ (42)

The 6j-symbol and the standard EPRL vertex amplitudes are recovered evaluating the functional
on a spin-network basis:

{6j} = WPR(ψjab
) = 〈WPR,Ψjab

〉 (43)

VEPRL(jab, ia) = WEPRL(ψjab,ia ) = 〈WEPRL,Ψjab,ia 〉 (44)

Ψjab,ia (hab) = ⊗
ab

jab

Π (hab) · ⊗
a
via (45)

In 3d via = va are the unique normalized intertwiners associated to 3-valent nodes. In 4d the
spin ia labels the virtual spin of the 4-valent node a.

This perspective opens the possibility to define other useful representations of spin foam vertex
amplitudes. Before introducing the new representation, we review very briefly some asymptotic
formulae.

C. Perini (CPT, Marseille - Roma Tre) Zakopane 2010 16 / 21



Asymptotics analysis of Wigner Symbols

In the large spin limit

PR model
{6j} ∼ A cos(SR +

π

4
) (46)

where SR(je) is the boundary Regge action for an oriented tetrahedron with edge lengths je,
that is:

S(je) =
X
e

jeθe. (47)

The angle θe is the exterior 3d dihedral angle between the two triangles sharing the edge e.
The formula (46) sums over the two possible orientations and this is the origin of the cosine.

BC model
{10j} ∼ A cos(SR) +

π

4
+D (48)

where SR is the (area) Regge action for a 4-simplex and D are the contributions of
degenerate configurations which dominate in the asymptotic regime.

EPRL with LS intertwiners

V3d(j, ~n) ∼ AeiγSR +Ae−iγSR + C1e
iSR + C2e

−iSR (49)

The first two form the usual cos term; the other two correspond to vector geometries.
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Holomorphic representation

We argue that the undesired terms in the asymptotic formulae are an artifact of the basis which
diagonalizes the intrinsic curvature and not the extrinsic curvature, so it permits different classical
solutions for fixed boundary spins.

We introduce a new holomorphic representation (Bianchi-Magliaro-CP)

The new representation is simply defined as the evaluation of the vertex functional on the
coherent spin-network (overcomplete) basis:

W (Hab) = W (ΨΓ,Hab
) (50)

The label Hab ∈ SL(2,C) contains all the physical information: intrinsic + extrinsic curvature ⇒
not only areas and normals but also extrinsic angles!

The holomorphic vertex amplitude has information about the intrinsic and extrinsic geometry of
the boundary of the elementary cell.

The 6j-symbol, the 10j-symbol and the generalized 15j-symbols of the new spin foam models are
the evaluation of the vertex functional on states which are sharply peaked on spins, and
consequently maximally spread in the extrinsic curvature.

The uncertainty of extrinsic curvature is the reason of the cosine and degenerate terms in the
asymptotic formulae.

Main result

The asymptotics of the new holomorphic representation is a single “exp iS” term
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Applications of holomorphic amplitudes

What we can compute?

There is a precise sense in which the vertex expansion of QG transition amplitudes could be
interpreted: we have integrated out small wave-lengths, small with respect to the typical scale of
the boundary states (this scale is fixed by their peakedness properties). This picture makes sense
if some properties of renormalizability hold in some regime, and this is an important research
direction (Freidel, CP-Rovelli-Speziale, Magnen-Noui-Rivasseau-Smerlak).

What we can compute now?

As soon as we introduced the new holomorphic representation, it was applied to a simple model
in spin-foam cosmology (Bianchi-Rovelli-Vidotto).

At lowest order, the EPRL holomorphic amplitude for the transition between two homogeneous
dipoles is

W (z, z′) ∼ zz′e−z2−z′2

Despite the simplicity of this expression, is turns out that it is annihilated by the Hamiltonian
constraint!

We believe that other results will come soon.

C. Perini (CPT, Marseille - Roma Tre) Zakopane 2010 19 / 21



Conclusions

We have shown that coherent spin-networks for Loop Quantum Gravity reproduce the
semiclassical states used in the Spin Foam framework.

Coherent spin-networks coincide with Thiemann’s complexifier coherent states with a natural
choice of complexifier operator.

It is possible that coherent spin-networks can be obtained via geometric quantization (cft.
Freidel-Speziale, to appear), and that the two coincide on a subset. This would be an
instance of Guillemin-Sternberg’s ‘quantization commutes with reduction’.

Our work brings together many (sometimes conflicting) ideas that have been proposed in the
search for semiclassical states in Loop Quantum Gravity.

Given a space-time metric (e.g. Minkowski or Schwarzschild), we can smear the
Ashtekar-Barbero connection on links of the graph and the electric field on surfaces dual to
links. This finite amount of data can be used as labels for the coherent states.

The fact that in the large spin limit they are ’effectively’ labeled by Livine-Speziale coherent
intertwiners guaranties that they are actually peaked on a classical expectation value of
non-commuting geometric operators, e.g. the volume operator.
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Conclusions

We introduced the propagation kernel and the associated abstract vertex functional for spin
foam models in 2+1 and 3+1 dimensions. This basis-independent approach permits to
introduce other useful representations of spin foam vertex amplitudes

We defined the holomorphic representation as the vertex functional in the basis of coherent
spin-networks.

In the semiclassical limit, the new holomorphic representation selects a single “exp iS” term,
as opposed to the standard vertex amplitudes

The “problem of the cosine” and of degenerate terms is an artifact of the basis which
diagonalizes the extrinsic curvature, with maximal spread in the extrinsic curvature. The
undesired terms are there because of this uncertainty

The holomorphic representation contains all the classical geometric information of the
boundary of the spin foam elementary cell

Outlook: extend these concepts to the full state sum of quantum gravity models... work in
progress

Application in loop cosmology: dipole transition amplitude

Thanks !
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