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Plan of the Talk

Part I: Reduced Dynamics of GR

@ Reduced phase space for GR by means of four massless Klein —
Gordon scalar fields

@ (Naive) LQC generalisation
@ One massive scalar field & Dirac quantisation for diffeo [pomagala's talk]

@ More general action involving scalar fields, Dirac quantisation
techniques [Kuchar, Torre]

@ Similarities and differences to BK dust Model

Part II: Semiclassical Limit

@ Quantum dynamics generated by physical Hamiltonian
@ How to compute semiclassical expectation values

@ Idea of Semiclassical perturbation theory
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@ Part I: Reduced Dynamics of GR

1. Choose reference matter fields
2. Derive equivalent set of constraints adapted to reference fields
3. Construct observables and physical Hamiltonian Hppys

@ This can then be used as starting point for quantisation

Kristina Giesel Loop Quantum Gravity



Reference Matter fields

Dynamics in General Relativity

@ Dynamics in GR at gauge invariant level: Relational formulation

@ Introduction of reference fields maps GR into a true Hamiltonian
system

@ Hcan = 0 whereas Hypys # 0

@ Conceptual clearer way to make contact to sectors where dynamical
effects of (quantum) gravity is negligible

@ This allows to access directly the physical Hilbert space in the QT

v
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Reference Matter fields

Matter reference fields

@ Complete quantum model for GR coupled to BK dust exist [k,
T.Thiemann 0711.0119]

@ Current LQC models use K.G. scalar field clock

@ Also standard Higgs mechanism uses scalar fields, however with
Mexican hat potential

@ The reference fields can be used to reduce the constraints of GR
classically (Goldstone bosons)

@ Will BK mechanism also work?

@ Deparametrisation: Generator of evolution is time indepedent

@ How does the corresponding Hyp,y look like for full GR?
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Four K.G. scalar field

GR coupled to four scalar fields

@ Action
3
S=88+8™ 48" =98 +85"+ /d“XZ | det(guw )™ @pen
J=0

@ Perform (34-1) split, then we have (pa,q®) and (7, ©”)

@ Constraints:

det(q)
2

tot __ g m Lp" _ J, . J_ab
c = c¢d+c"+c” =c+ E q
2 det PaPb

tot __ g m ! . J
c, = c¢,tec, ¢l =icq+ 7TL]§0’a

@ Solve constraints for clock momenta, then ¢; =7y +hy J=0,..,3
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Solving constraints for the momenta

Reference system

@ ¢l good reference system if det(gpi) #0 J,u=0,.,3
o Diffeo: pipl =62 j=1,2,3

Trj = ij;a(ca + TrO(p?a)

@ Reinsert 7j into c™*

- 770*2%% (co + 0@y (ca + T09p%) + 2+/det(g)c

+det(q) Y _ g0’ 0%
J

@ quadratic equation for g
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Solving constraints for the momenta

Equivalent set of constraints

°
c*t = 7o +h(a,p,¢’) ¢ = 7 + hj(a, p,¢”)
hy = o, (ca + o)
1
h _2 4~ /a2 —4ch
2c  2c
a = Z PoPyPCa, =1+ Z PR e e}
b = 2y/det( c+Z<pJgoJcacb+det aszaawb
j
@ We chose =+ for g such that 0 < gbo = 1(\1]710( 5 o > 0, hence
et(q
N>0
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Comparison with BK dust model

BK dust model

@ Recall four scalar fields (P, T), (P;,S)) j=1,.3
c*®* = P+h(q,p) c}m = P; + hj(q,p, T, Sj)

@ Here all dust field dependence cancels in h, mainly due to the fact
that Pj = WJP

@ Deparametrisation: time independent physical Hamiltonian Hppys

Scalar field model
°

¢ = m+h(a,p.¢% @) ¢ =m+hila,p ¢’ ¢)

@ Here clock fields occur in h and h;

@ However, only in form of spatial derivative, this helps, different for
instance for massless scalar fields
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Construction of Observables

1.) Spatial diff'-invariant quantities

@ Pull back from coord. manifold M to scalar field manifold S

dab — Gij == Gab@l}, PP — pl = det(dy! /0x)p* L ol

Aj(o,t) = [ d®x| det(Ig! (x) Ix)[d(! (%), 09)qan (X) @ (%) ] (%)
@ local in o but non — local in x

o ok —s 6k and ¢ —

Hence h = h(g,p, ¢°) and h = h;(q, D, ¢°)

@ again only spatial derivative of the clock field ©° are involved
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Construction of Observables

2.) Full Observables
° QIJ (07 T) = eXp(fS dga/@{étc’ta }) . 611_] (ta O') }ﬁ:‘rftpo

@ More complicated than in the dust case due to @JQ terms in h

@ Similar situation here: Physical Hamiltonian

thySZ/dBO'H(O') with
S

H(o) = \/ . (2\/det(Q)C + O bk + det(Q)Qii(Sij)
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Comparison of dynamics with BK dust model

BK dust model
°
Hypys — / PBoH(o) with H(o) = 1/C? — QICIC,
S
Scalar field model
°

thysz/d3UH(a) with
s

H(o) = \/ - (2«/det(Q)C + C;Cy i + det(Q)Qiiéij)
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Quantisation

Quantisation using LQG techniques

@ Hamiltonian density

H(o) = \/ . (2\/det(Q)C + C;Cydik + det(Q)QiJ51j>

@ In LQG representation finite diffeos U(¢) are not weakly continuous
@ Consequently, infinitesimal diffeos C'j cannot be implemented

@ Hppys for scalar field clocks cannot be promoted to an operator in
Hiqa

@ Is this a problem? No

@ Because One could also use Dirac quantisation for diffeos [ bomagala's
talk]

@ However, it shows that they are classical clocks that are not allowed
in QG if LQG representation is used
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@ Part Il: Semiclassical Limit

e Once we have an operator I:ka1yS we would like to analyse its
semiclassical limit, (1, Hypyst))

o Details on coherent states [Bahr's talk]

o Hpuys involves Volume operator

e Semiclassical Computation not possible analytically,
approximation techniques necessary
— Semiclassical perturbation theory

@ Discuss semiclassical perturbation theory for the example of

Hphys in the dust model
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Example: Cubic Graph

Operator for Hpnys

@ Physical Hamiltonian Hpnys , 7 = (1,75)

ﬁphys = ZE‘* Z ) ’ énﬂu [?;Tr(TMA(ag)A(e%) [A(eg)—l’vv])] 2

P yev(a

@ Volume operator:

Vv = V/leane Tr (E(S3)E(SP)E(SS))|

@ Here two problems:

e 1. Square root
e 2. Volume operator
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Problem 1. and 2.

@ Discuss problem 2. related to Volume operator

@ Problem 1. is then just a special application of the techniques
developed for volume operator

@ Problem 2. also occurs for Master constraint operator
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Problem

Problem with SU(2) Calculations

@ Hppys involves 4/ |OV|

We want to calculate
(1), My ) ~ (phah[h ™", /V ], hah[h™, /V]9)
(¥, Ovp) ~ (1, hoh[h=1, V ]y, hoh[h =1, V,]oh)

@ of general form (v, p1(h)Fy(V,)p2(h) Eo(V,)ps(h)w)

@ Volume operator

1 -
V, = fg\/|48 Z 60(61,62,63)6”kEZ‘(el)Ej(eg)Ek(eg)|

eiNezNeg=v

o Vy = /|Qu], then V, = (Q2)%, V7, = (@})¢
in general Fi(V,) = (Q*)

@ Problem: We cannot calculate (¥(Q?)%1)) analytically
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Naive Idea for a Solution

Naive Idea for approximation

@ red not computable, computable
@ Define:
=——1
@ The operator is bounded from below, > —1

0 <, >, <, )1 > can be computed exactly [winkier, Thiemann]

@ Functions of volume operator

Fr(Vy) = (Q2)% = | 29 fr(zr), fr(zr) = (1+z0)?

Power expansion of ¢ — f(t) = (1+1¢)?, -1 <t < o0

ORS ”i( : >tnv (7 )=y atzatpoie
n—=
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Spectral Theorem

Expansion in terms of x; operator

@ Use the spectral theorem for operator valued function fr(xy)

e = [ awasw = [TueS0 (4 ) e as

[1+§(§) | :

where E is the projection valued measure associated with

@ Coherent state matrix elements of are computable
[Winkler, Thiemann]

@ Of course, the second equality is wrong if t ¢ (—1,1) !

@ Naive idea false, must be substituted by a rigorous argument.
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Rigorous Argument

Rigorous Argument

@ For each k£ > 0 there exists 0 < (B < oo, such that

1= forp1(t) = Bt T2 < f(t) < farga(t) =

for —1 <t < oo where denotes the partial Taylor series of
f(t)=(141)% 0<q< 7 up to to order t*.

@ Polarisation identity

R((Y1, fripe)) = i((’t/fl + Y2, frpr+2)— (Y1 — Y2, frp1—1ba))
Yy P

@ Estimation (/,  are computable!)

OIS B )
< R, Sr ) < 3 (e 17 0ed = o, fr 90))

N
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Rigorous Argument

@ Define

° is proportional to fluctuation of operator Q with f := (Q?)4

@ Then one can show

R, (f =) < @+, AfYg) = @—, Afy)

@ Idea: Even if we cannot compute (1, {1)), | is good approximation
provided matrix elements of are small
@ If necessary iterative use of above estimation, these terms are of

higher order in i
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Example

Application of estimation

o Consider f := (Q2)4
=21+ (Q*=N)/N) =21 +x)% I = (¥Q%)
o Define (k=0) case:
fo =291 +qx), f_:=AY1+qx— (1 -q)x?)
o Consider coherent state 1), then
(i) =Xx1 and (pf ¢) = A(1-(1-q)[(1/3*)(v Q" ¥)-1])
® Hence (¢, f4) = (¢, Q")+ o(h)

@ Means: If we are interested only in lowest order we can simply

replace (1, (Q*)44) by (1, Q7 ¢)d
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Iteration & Error Control

Iteration for more complicated matrix elements
Start with (¢, p1(h)F1(V)p2(h) F2(V)ps(h) )
Use Fl(V) ~ f1

(¥, p1(h) fip2(h) fapa(h) )

R := (¢, p1(h)fip2(h)fops(h) ¥) = (¥1, f1eha) 1 := P19, ¥ = fapsy

Now apply lemma

‘%(R) “ R, ‘ < Rs + Ry

Now apply the lemma to R5, R3 and Ry etc.

@ Each iteration term will produce new terms R, Rg, ... for which the
order of h is increased for non — computable terms
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Iteration & Error Control

Start with (b, py (h)F1 (V)pa(h)F(V)ps(h)e)

@ 1. Decide up to which order in A we want to calculate expectation
value, assume A*

2. Check how many f are involved

@ 3. Then number of iterations is known in order to ensure that non —
computable terms of o(A"*) In general more than two f’s

(¥, pr(R)F1(V)p2(R) F2(V)ps(h)ih) = R(f1, f2)
We can show that (also for general case)

R(fi, fa) = (@,p1/ip2(h) [2p3(h)) + o( B
= (¢,p1f, p2(h) p3<h>w>+o<h’“>

Explicit expression for ( is not needed

@ We can reexpress R(f1, f2) in terms of computable quantities
+ corrections of higher order than h¥
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Physical Hamiltonian

Back to the start of part Il

o We want to calculate () Hppys 1) to zero order in h

o () Hypnys ¥) is of the form (¢ 1/|0| )

@ Problem 1.: Square root: Use Semiclassical perturbation theory for
q=1/4

® Then (¢ 1/|0]9) = (¥ O9)%1 + o(h) = 1/ (¥ O ) + o(h)

@ Now (3, My 9) ~ (hohh™", v/V ]9, hohh ™, \/V ])
<1/%Ov¢> ~ <hah[h71,V\,]¢,hah[h71,v\,]¢>

@ Hence for terms involved in O apart from q = 1/2 instead of
q = 1/4 similar calculation for M

@ For M we know already that semiclassical limit (h°) is correct

e So <’¢ I:Iphys w> = thys + 0(h)
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Summary & Conclusions

Part |: Reduced Dynamics of GR

@ Reduced phase space for GR by means of four Klein — Gordon scalar
fields

@ Compared with dust model

@ It turns out that GR & massless scalar fields cannot be quantised in
Hrqa

@ Requirements for choice of clocks wrt form how diffeos enter Hppys

Kristina Giesel Loop Quantum Gravity



Summary & Conclusions

Part Il: Semiclassical Limit

@ Discussed computational problems that occur for SU(2) case

@ Introduced Semiclassical perturbation theory

@ Allows to approximate non — computable terms by computable ones
@ Error due to substitution is of higher order in &

@ Can be used to show that semiclassical limit of M and I:Ip}lyS for
dust model is correct

@ Also interesting for quantum spacetimes in fulll theory (for LQC
[Ashtekar, Kaminski, Lewandowski])

@ Since (v, Nz{z) and (¢, Ne 1) will also involve similar terms
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