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Plan of the Talk

Part I: Reduced Dynamics of GR

Reduced phase space for GR by means of four massless Klein –
Gordon scalar fields

(Naive) LQC generalisation

One massive scalar field & Dirac quantisation for diffeo [Domagala’s talk]

More general action involving scalar fields, Dirac quantisation
techniques [Kuchar, Torre]

Similarities and differences to BK dust Model

Part II: Semiclassical Limit

Quantum dynamics generated by physical Hamiltonian

How to compute semiclassical expectation values

Idea of Semiclassical perturbation theory
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Part I: Reduced Dynamics of GR

1. Choose reference matter fields
2. Derive equivalent set of constraints adapted to reference fields
3. Construct observables and physical Hamiltonian Hphys

This can then be used as starting point for quantisation
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Reference Matter fields

Dynamics in General Relativity

Dynamics in GR at gauge invariant level: Relational formulation

Introduction of reference fields maps GR into a true Hamiltonian
system

Hcan ≈ 0 whereas Hphys 6= 0

Conceptual clearer way to make contact to sectors where dynamical
effects of (quantum) gravity is negligible

This allows to access directly the physical Hilbert space in the QT
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Reference Matter fields

Matter reference fields

Complete quantum model for GR coupled to BK dust exist [K.G.,

T.Thiemann 0711.0119]

Current LQC models use K.G. scalar field clock

Also standard Higgs mechanism uses scalar fields, however with
Mexican hat potential

The reference fields can be used to reduce the constraints of GR
classically (Goldstone bosons)

Will BK mechanism also work?

Deparametrisation: Generator of evolution is time indepedent

How does the corresponding Hphys look like for full GR?
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Four K.G. scalar field

GR coupled to four scalar fields

Action

S = Sg + Sm + Scl = Sg + Sm +
∫

d4X
3∑

J=0

√
|det(gµν)|gµνϕJ

µϕ
J
ν

Perform (3+1) split, then we have (pA, qA) and (πJ, ϕ
J)

Constraints:

ctot = cg + cm + cϕ
J

=: c+
3∑

J=0

π2
J

2
√

det(q)
+

√
det(q)

2
ϕJaϕ

J
b q
ab

ctota = cga + cma + cϕ
J

a =: ca +
3∑

J=0

πJϕ
J
,a

Solve constraints for clock momenta, then c̃J = πJ + hJ J = 0, .., 3

Kristina Giesel Loop Quantum Gravity



Solving constraints for the momenta

Reference system

ϕj good reference system if det(ϕJ
µ) 6= 0 J, µ = 0, .., 3

Diffeo: ϕa
j ϕ

j
b = δab j = 1, 2, 3

πj = ϕj
,a(ca + πoϕ

0
,a)

Reinsert πj into ctot:

0 = π2
0 +

∑
j

ϕajϕ
b
j(cb + π0ϕ

0
,b)(ca + π0ϕ

0
,a) + 2

√
det(q)c

+ det(q)
∑
J

qabϕJ,aϕ
J
,b

quadratic equation for π0
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Solving constraints for the momenta

Equivalent set of constraints

ctot = π0 + h(q,p, ϕJ) ctot
j = πj + hj(q,p, ϕJ)

hj = ϕj
,a(ca + πoϕ

0
,a)

h = − a
2c
± 1

2c

√
a2 − 4c2b

a =
∑

j

ϕ0
bϕ

b
j ϕ

a
j ca, c = 1 +

∑
j

ϕ0
aϕ

0
bϕ

a
j ϕ

b
j

b = 2
√

det(q)c +
∑

j

ϕa
j ϕ

b
j cacb + det(q)qab

∑
J

ϕJ
,aϕ

J
,b

We chose ± for π0 such that 0 ≤ ϕ̇0 = Nπ0√
det(q)

, π0 ≥ 0, hence

N ≥ 0
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Comparison with BK dust model

BK dust model

Recall four scalar fields (P,T), (Pj,Sj) j = 1, ..3

ctot = P + h(q,p) ctot
j = Pj + hj(q,p,T,Sj)

Here all dust field dependence cancels in h, mainly due to the fact
that Pj = WjP

Deparametrisation: time independent physical Hamiltonian Hphys

Scalar field model

ctot = π0 + h(q,p, ϕ0, ϕj) ctot
j = πj + hj(q,p, ϕ0, ϕj)

Here clock fields occur in h and hj

However, only in form of spatial derivative, this helps, different for
instance for massless scalar fields
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Construction of Observables

1.) Spatial diff’-invariant quantities

Pull back from coord. manifold M to scalar field manifold S

qab → qij := qabϕ
a
i ϕ

b
j , pab → pij := det(∂ϕj/∂xi)pabϕi

aϕ
j
b

q̃ij(σ, t) =
∫
M d3x|det(∂ϕj(x) ∂xi)|δ(ϕj(x), σj)qab(x)ϕa

i (x)ϕb
j (x)

local in σ but non – local in x

ϕk
a −→ δkj and ϕ0

a −→ ϕ̃0
j

Hence h̃ = h(q̃, p̃, ϕ̃0) and h̃j = hj(q̃, p̃, ϕ̃0)

again only spatial derivative of the clock field ϕ0 are involved
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Construction of Observables

2.) Full Observables

Qij(σ, τ) = exp(
∫
S d3σβ{c̃tot, .}) · q̃ij(t, σ)

∣∣
β=τ−ϕ0

More complicated than in the dust case due to ϕ0
j terms in h̃

Similar situation here: Physical Hamiltonian

Hphys =
∫
S

d3σH(σ) with

H(σ) =
√
−
(

2
√

det(Q)C + CjCkδjk + det(Q)Qijδij

)
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Comparison of dynamics with BK dust model

BK dust model

Hphys =
∫
S

d3σH(σ) with H(σ) =
√

C2 −QijCiCj

Scalar field model

Hphys =
∫
S

d3σH(σ) with

H(σ) =
√
−
(

2
√

det(Q)C + CjCkδjk + det(Q)Qijδij

)
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Quantisation

Quantisation using LQG techniques

Hamiltonian density

H(σ) =
√
−
(

2
√

det(Q)C + CjCkδjk + det(Q)Qijδij

)
In LQG representation finite diffeos Û(φ) are not weakly continuous

Consequently, infinitesimal diffeos Ĉj cannot be implemented

Hphys for scalar field clocks cannot be promoted to an operator in
HLQG

Is this a problem? No

Because One could also use Dirac quantisation for diffeos [ Domagala’s

talk]

However, it shows that they are classical clocks that are not allowed
in QG if LQG representation is used
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Part II: Semiclassical Limit

Once we have an operator Ĥphys we would like to analyse its

semiclassical limit, 〈ψ, Ĥphysψ〉
Details on coherent states [ Bahr’s talk]

Hphys involves Volume operator
Semiclassical Computation not possible analytically,
approximation techniques necessary
−→ Semiclassical perturbation theory

Discuss semiclassical perturbation theory for the example of
Ĥphys in the dust model
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Example: Cubic Graph

Operator for Hphys

Physical Hamiltonian bHphys , τµ = (1, τj)

bHphys =
~
`4p

X
v∈V(α)

vuut˛̨̨ 4X
µ=0

ηµµ
h 3X

a=1

Tr
“
τµA(αa

v)A(ea
v)
ˆ
A(ea

v)−1,Vv

˜”i2 ˛̨̨
Volume operator:

Vv =
p

|εabcTr (E(Sa
v)E(Sb

v)E(Sc
v))|

Here two problems:

1. Square root
2. Volume operator
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Problem 1. and 2.

Discuss problem 2. related to Volume operator

Problem 1. is then just a special application of the techniques
developed for volume operator

Problem 2. also occurs for Master constraint operator
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Problem

Problem with SU(2) Calculations

Hphys involves
√
|Ôv|

We want to calculate
〈ψ, M̂v ψ〉 ∼ 〈ψ hαh[h−1,

√
Vv]ψ,hαh[h−1,

√
Vv]ψ〉

〈ψ, Ôvψ〉 ∼ 〈ψ,hαh[h−1,Vv]ψ,hαh[h−1,Vv]ψ〉

of general form 〈ψ, p1(h)F1(Vv)p2(h)F2(Vv)p3(h)ψ〉

Volume operator

Vv := `3p

√
| 1
48

∑
e1∩e2∩e3=v

εv(e1, e2, e3)εijkEi(e1)Ej(e2)Ek(e3)|

Vv :=
√
|Qv|, then Vv = (Q2

v)
1
4 ,
√
Vv = (Q2

v)
1
8

in general FI(Vv) := (Q2
v)
qI

Problem: We cannot calculate 〈ψ(Q2
v)
qIψ〉 analytically
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Naive Idea for a Solution

Naive Idea for approximation

red not computable, green computable

Define:

xI :=
Q2
v

< ψ,Qvψ >2
− 1

The operator xI is bounded from below, xI ≥ −1

< ψ,Qvψ >, < ψ,Qnvψ > can be computed exactly [Winkler, Thiemann]

Functions of volume operator

FI(Vv) = (Q2
v)
qI = |< ψ , Qvψ >|2qI fI(xI), fI(xI) = (1 + xI)q

I

Power expansion of t 7→ f(t) = (1 + t)q, −1 ≤ t <∞

f(t) := 1 +
∞∑
n=1

(
q
n

)
tn,

( q

n

)
=(−1)n+1 q(1−q)..(n−1+q)

n!
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Spectral Theorem

Expansion in terms of xI operator

Use the spectral theorem for operator valued function fI(xI)

fI(xI) =
∫ ∞
−1

fI(t)dE(t) =
∫ ∞
−1

[1 +
∞∑
n=1

(
q
n

)
tn] dE(t)

= [1 +
∞∑
n=1

(
q
n

)
xnI ]

where E is the projection valued measure associated with xI .

Coherent state matrix elements of xI , x
n
I are computable

[Winkler, Thiemann]

Of course, the second equality is wrong if t /∈ (−1, 1) !

Naive idea false, must be substituted by a rigorous argument.
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Rigorous Argument

Rigorous Argument

For each k ≥ 0 there exists 0 < βk <∞, such that

f−I := f2k+1(t)− βkt2k+2 ≤ f(t) ≤ f2k+1(t) =: f+
I

for −1 ≤ t <∞ where fk(t) denotes the partial Taylor series of
f(t) = (1 + t)q, 0 < q ≤ 1

4 up to to order tk.

Polarisation identity

R(〈ψ1 , fI ψ2〉) =
1
4

(〈ψ1 + ψ2︸ ︷︷ ︸
ψ+

, fI ψ1+ψ2〉−〈ψ1 − ψ2︸ ︷︷ ︸
ψ−

, fI ψ1−ψ2〉)

Estimation (f±I are computable!)

1
4
〈ψ+ , f

−
I ψ+〉 − 〈ψ− , f+

I ψ−〉)

≤ R(〈ψ1 , fI ψ2〉) ≤
1
4

(〈ψ+ , f
+
I ψ+〉 − 〈ψ− , f−I ψ− 〉)

for more complicated matrix elements such at M̂ and Ĥphys always
non – computable terms on rhs
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Rigorous Argument

Define

f̄ :=
1
2
(
f+ + f−

)
, ∆f :=

1
4
(
f+ − f−

)
∆f is proportional to fluctuation of operator Q with f := (Q2)q

Then one can show∣∣∣R〈ψ1 , (f − f̄)ψ2〉
∣∣∣ ≤ 〈ψ+ , ∆f ψ+〉 − 〈ψ− , ∆f ψ+〉

Idea: Even if we cannot compute 〈ψ, fψ〉, f̄ is good approximation
provided matrix elements of ∆f are small

If necessary iterative use of above estimation, these terms are of
higher order in ~
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Example

Application of estimation

Consider f := (Q2)q

f = λq
(
1 + (Q2 − λ)/λ)

)q = λq
(
1 + x

)q
, λq := 〈ψQ2ψ〉

Define (k=0) case:

f+ := λq(1 + qx), f− := λq(1 + qx− (1− q)x2)

Consider coherent state ψ, then

〈ψ f+ ψ〉 = λq and 〈ψ f− ψ〉 = λq(1−(1−q)[(1/λ2)〈ψQ4 ψ〉−1])

Hence 〈ψ, f ψ〉 = 〈ψ , Q2 ψ〉q + o(~)

Means: If we are interested only in lowest order we can simply
replace 〈ψ , (Q2)q ψ〉 by 〈ψ , Q2 ψ〉q
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Iteration & Error Control

Iteration for more complicated matrix elements

Start with 〈ψ, p1(h)F1(V )p2(h)F2(V )p3(h)ψ〉

Use F1(V ) ∼ f1

〈ψ, p1(h)f1p2(h)f2p3(h)ψ〉

R := 〈ψ,p1(h)f1p2(h)f2p3(h)ψ〉 = 〈ψ1 , f1 ψ2〉 ψ1 := p1ψ, ψ2 := f2p3ψ

Now apply lemma ∣∣∣R(R)− R2

∣∣∣ ≤ R3 + R4

Now apply the lemma to R2,R3 and R4 etc.

Each iteration term will produce new terms R5, R6, ... for which the
order of ~ is increased for non – computable terms

Kristina Giesel Loop Quantum Gravity



Iteration & Error Control

Start with 〈ψ,p1(h)F1(V)p2(h)F2(V)p3(h)ψ〉

1. Decide up to which order in ~ we want to calculate expectation
value, assume ~k

2. Check how many f are involved

3. Then number of iterations is known in order to ensure that non –
computable terms of o(~k) In general more than two f ′s

〈ψ, p1(h)F1(V )p2(h)F2(V )p3(h)ψ〉 = R(f1, f2)

We can show that (also for general case)

R(f1, f2) = 〈ψ, p1f̄1p2(h)f̄2p3(h)ψ〉+ o(~k)
= 〈ψ, p1f

+
1 p2(h)f+

2 p3(h)ψ〉+ o(~k)

Explicit expression for β is not needed

We can reexpress R(f1, f2) in terms of computable quantities
f+
1 , f

+
2 + corrections of higher order than ~k
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Physical Hamiltonian

Back to the start of part II

We want to calculate 〈ψ Ĥphys ψ〉 to zero order in ~

〈ψ Ĥphys ψ〉 is of the form 〈ψ
√
|Ô|ψ〉

Problem 1.: Square root: Use Semiclassical perturbation theory for
q = 1/4

Then 〈ψ
√
|Ô|ψ〉 = 〈ψ Ôψ〉2q + o(~) =

√
〈ψ Ôψ〉+ o(~)

Now 〈ψ, M̂v ψ〉 ∼ 〈hαh[h−1,
√

Vv]ψ,hαh[h−1,
√

Vv]ψ〉
〈ψ, Ôvψ〉 ∼ 〈hαh[h−1,Vv]ψ,hαh[h−1,Vv]ψ〉

Hence for terms involved in Ô apart from q = 1/2 instead of

q = 1/4 similar calculation for M̂

For M̂ we know already that semiclassical limit (~0) is correct

So 〈ψ Ĥphys ψ〉 = Hphys + o(~)
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Summary & Conclusions

Part I: Reduced Dynamics of GR

Reduced phase space for GR by means of four Klein – Gordon scalar
fields

Compared with dust model

It turns out that GR & massless scalar fields cannot be quantised in
HLQG

Requirements for choice of clocks wrt form how diffeos enter Hphys
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Summary & Conclusions

Part II: Semiclassical Limit

Discussed computational problems that occur for SU(2) case

Introduced Semiclassical perturbation theory

Allows to approximate non – computable terms by computable ones

Error due to substitution is of higher order in ~

Can be used to show that semiclassical limit of M̂ and Ĥphys for
dust model is correct

Also interesting for quantum spacetimes in fulll theory (for LQC
[Ashtekar, Kaminski, Lewandowski])

Since 〈ψ, N̂ψ〉 and 〈ψ, N̂a ψ〉 will also involve similar terms
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