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Outline

© Intro to twistor theory up to 1980.
® Twistor-strings and scattering amplitudes.

@® Twistor actions as string field theories (non-perturbative
formulation).

@ Plebanski action as space-time form of such action.

® The Einstein Chern-Simons twistor action for the ASD
sector.

0 Derivation of the gravity MHV amplitude.
@ The gravity twistor action (tentative).
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Twistor Correspondences

Quantum gravity requires a pregeometry for space-time.
Penrose’s Proposal:
Twistor space is the fundamental arena for physics.
Flat correspondence:
o Complex space-time M = C*, coords x4, a=0,1,4=0',1/
flat metric ds? = dx** dxB8'e pge wp/, ea5 = c(ap €tC..

o Twistor space T = C*, coords Z® = (w”, 74), a=(AA).
Projective twistor space

PT = {T—0}/{Z ~ \Z, rec*} = CP?

= degrees of freedom of massless spinning particle
e Incidence relation
AA
A .

{Point x € M} +— {Ly = CP' c PT}, hgs coords my.

WA = ix
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Massless fields

Towards physics on twistor space

Massless fields of helicity n/2 «» twistor ‘functions’ of
homogeneity —n — 2

f(Z) e H'(PT,0(-n—-2)),  f(\Z)=\""2f(2)
Linearized gravity:
(h2(2),h-6(2)) € H'(0(2)) & H'(O(~6)).
ASD part, Weyl™ = 0 « hp(Z), SD part, Weyl~ = 0 < h_g(2)

Maxwell/ linearized Yang Mills:
(h(2), f-4(2)) € H'(0) & H'(O(-4)).

ASD part, Ft =0 «+ fp(Z), SD part, F~ =0 <> f_4(2)

Clearly massive chiral asymmetry.
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The non-linear graviton
Physics encoded in deformations of complex structures

Theorem (Penrose, 1976)

. anti-self-dual  deforma-
Deformations of complex\| 11} yi5ns of conformal struc-
structure, PT' ~» T

ture (M, n) ~ (M, [g])-
For Einstein g € [g], .7 must have a holomorphic Poisson
structure { , }, bivector of weight —2.

Main ideas: We deform 2.7 by plate tectonics or changing 0.
Ricci-flat linearised deformations H'(0(2)) Y HY(T'OPT).
The CP's in 2.7 survive deformation. Define space-time by

M = {moduli space of degree-1 CP's ¢ 2.7}.

X,y € M connected by a light ray < Incidence CP, N CP), # 0.
~» ASD conformal structure, [g], Weyl™ = 0 on M.
Yang-Mills: ASD Yang-Mills on M « hol vector bundles PT’.
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The googly problem and quantization

Googly problem: only have ASD data, need SD part also.
Quantize anyway!

e But, how do we quantize complex structures?
For fuzzy points, quantize CP's as maps CP' — PT.

e ~ Holomorphic string theory: Payoff, quantization of the
CP's leads to quantization of the complex structures. But

e Anomalies: String theory requires Calabi-Yau.
Witten: Super-Twistor space PTy = CP3* is Calabi-Yau.

e Bonus: Such string theories depend on both C-structure
and ‘B-field’ 9b € H' (PT4, Q2) — encodes googly data.

e For N = 4, ASD Yang-Mills multiplet contains SD part also.

e Obtain data for full N = 4 conformal supergravity or
Yang-Mills.
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Twistor amplitudes

Half-Fourier transform

Super-twistor space PT = CP3* has homogeneous coordinates
Z = (w,m,n) € T:=CH0 x o4

Amplitudes functions of null supermomenta P = (74, 7a, n).
Half-Fourier transform amplitudes from momentum space

n
-A(Za):/A(Pa H 2raefava - g—1 .. n, #of particles.

i.e., just in variables 7 <+ w, (7, 7 unchanged).
Turns analytic structure into geometric structure

MHV degree:
e Amplitude = 0 if particles all have — helicity or single +.
e Maximally helicity violating is + + — — — ... —, non-zero.

e N™MHV has (m+ 2) + helicity particles.



The MHV amplitude

Nair (1986)

Parke-Taylor formula for N' = 4 super Yang-Mills MHV
amplitude becomes twistor-string path integral for worldsheet
instantons of degree one

A(Z)/ d®8( Yy Y4) ﬁ53\4 (Zay Z(0a))doa
877 Jgaisygn Vol GL(2 b a— Oa 1

restricts Z; to lie on the line Z(o) = Yy + o Y;.

n-1 -

Figure: Twistor support of MHV amplitude on line in PT.



Twistor-string theory
Witten 2003

Tree-level N"MHV: (Roiban, Spradlin & Volovich, 2004)
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Twistor-string theory
Witten 2003

Tree-level N"MHV: (Roiban, Spradlin & Volovich, 2004)

A(Za) _/ [T d*Y, . { °4(Za, Z(0a)) doa
? Mo n@rd) VOIGL(2) 2% (0a—0a1)

where Z(o) now has degree 1 + m

d
Z(o) = ) Yo :CP' 5 PT, ocecCcCCP
r=0

Conjecture: N"MHV amplitudes at g-loops <« integrals over
space of degree d maps of genus g curves to twistor space with

d=m+1+g

(Proved now for leading singularities of pure N' =4 YM <«
nodal curves, Bullimore, M. & Skinner hep-th/0912.0539.)
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Twistor-string for Einstein (super-)gravity?

The existing non-trivial twistor-strings contain Yang-Mills and
Conformal supergravity, i.e., spacetime action

S(lgl) = / (Weyl)?

Conformal SUGRA unphysical
e ghosts
e wrong equs of motion,

want Einstein SUGRA at most.

Current programme: Construct twistor-action for Einstein
gravity and reverse engineer corresponding twistor-string.
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Twistor actions; a non-perturbative approach
hep-th/0507269, 0604040, 0702035

The twistor actions = twistor-string field theories.
e For YM and conformal gravity can write action as

Srunt = Sasp + Smuv

Sasp contains kinetic terms & interactions of ASD sector,
Smuv contains remaining interactions of full theory.

e We reformulate on twistor space where ASD sector is of
Chern-Simons type (reflecting complete integrability).

Two special gauges
1. leads directly to space-time action
2. axial on twistor space, not accessible from space-time.
e linearizes ASD sector, reduces Sasp to kinetic terms;
+ complete integrability of ASD sector.
e Suvinv = generating function for MHV amplitudes.
¢ leads to MHV formalism as Feynman rules:
scalar propagators and MHV amplitudes as vertices.



Maximal Helicity Violating (MHV) amplitudes for gravity

As before, MHV amplitudes are + + — — —--- —;
using spinor helicity notation:

(12) == piaps, [12] == praps’, (1123] = p1aPs% paar -

we have
1 8
M(1+72—,3_,...,n—1—,n+) =% (Z P,') [1n— 1][[nn]_ 1n][n1]

1 T (KPet + o+ Poyln]
M .
{”,-”:1[fi+1],£12 [kn] ez

e Conjectured by Berends, Giele & Kuijf (1988) using Kawai
Llewellyn Tye string theory relations between gravity and
Yang-Mills.



MHYV formalism

Bjerrum-Bohr et. al. (2006) argue that all gravity amplitudes are
generated by MHV vertices and scalar propagators.

e Similar results true and proved for Yang-Mills and
conformal gravity.

¢ Big simplification; difficult to see from space-time action.

e Uses recursion relations & asymptotics of amplitudes.

¢ Proof is controversial; asymptotics break down at 12
points, Elvang & Freedman.



Chiral action for expansion about ASD sector
Abou-Zeid, Hull hep-th/0511189

Use Plebanski-Palatini formulation with variables (on .#*):
o e tetrad of 1-forms s.t.

/ /
ds® = eM o BB EABEAB

e Map = I'ap) the SD spin connection 1-forms.
Action
S = / ZA,B, (drA/B/ =+ /£2 Fg,, A FB/C,> R
M

where $48" — ¥ A e84,
Field equations:
x°T x4 = primed spin connection 1-form; Ricci= 0.



The ASD sector and perturbations around it
ASD sector: Set k= 0, Spsp = [ , ZAB'dl 4, ~ field equs
d¥*B — 0= metricis ASD, and

/Dl

drap Ae™ =0,= dMyp = Yapop™

and Y g ¢ p is linearized SD Weyl spinor on ASD background.



The ASD sector and perturbations around it
ASD sector: Set k= 0, Spsp = [ , ZAB'dl 4, ~ field equs

d¥*B — 0= metricis ASD, and

el

dryp Ae™ =0,= dMyp = Yapop P
and Y g ¢ p is linearized SD Weyl spinor on ASD background.

Remaining interactions:

Syny = / K2YAB A Mo A Fg,' .
M

e All — amplitude = 0 «» consistency of ASD sector.
e One +, rest — amplitude = 0 «> integrability of ASD sector.

e MHV amplitude <~ I = I'y + I'», asymptotic plane waves on
ASD background, also aymptotic to sum of plane waves.



Twistor action for ASD gravity
M. & Wolf hep-th/0706.1941

i _ _AB_ 9 9
On PT have Poisson structure {, } =&"® 5755 .

Fields Y48 and I' 4 5 correspond respectively to
heQ'(2), and B=Badw?ecQ}'(-4)

h defines almost complex structure 9, = d + {h, -}
e Action

Sasplh, B] = / {oh+ {h,h},-} IBA 3z
PT
¢ with field equations

— B — 0 A\

* = integrability 9; = 0 and dB € H} (%7, 0(~6)) ® d®w.



Twistor action for ASD gravity
M. & Wolf hep-th/0706.1941

i _ _AB_ 9 9
On PT have Poisson structure {, } =&"® 5755 .

Fields Y48 and I' 4 5 correspond respectively to
heQ'(2), and B=Badw?ecQ}'(-4)

h defines almost complex structure 9, = d + {h, -}
e Action

Sasplh, B] = / {oh+ {h,h},-} IBA 3z
PT
¢ with field equations

- B - 0 A\

* = integrability 9; = 0 and dB € H} (%7, 0(~6)) ® d®w.

Complete integrability: Choose .# coordinates (‘axial gauge’)
~ {{h, h},-} 1 B = 0; equations become linear.



A direct calculation for the MHV amplitude

Sub integral formula Ty g = fCﬂ”l wame B A [7mdr] into Sypy

Syny = / dwf\dng[Tﬁ d7T1][7T2 d7T2][7T1 7['2]281 A Bo
M xCP} xCP}

here for x € .#, CP}, is corresponding dx-holom CP' in 2.7
Choose momentum eigenstates for B;, i = 1,2 and let hbe a
sum of momentum eigenstates; integrate and expand to get

- ) [1n]®
M2t =0 (S0 e

1 T KIPigt £+ Poyln]
— r - ;
{I‘I,f’_1[//+1]kl_[2 [kn] tle...n-2)

the BGK MHYV formula derived from first principles.
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MHYV Twistor action for gravity

This formulation of anti-self-dual gravity works ‘off-shell’
and can include interactions of full gravity and more.

The MHV vertices are generated by Syny (B, h].
So for full theory set

Srkun[B, h] = Sasp[B, h] + Sunv[B, h]

an action that ~» the MHV formalism perturbatively.
o N = 8 version possible; Saspg), has holomorphic
Chern-Simons form for group of complex poisson diffeos.
Problems
o Off-shell, but gauge fixed; doesnt express full symmetries.

¢ Does not (yet) give self-contained proof of MHV formalism;
if MHV formalism for gravity is incomplete, then so is this.
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Summary and outlook

Summary
o Self-contained proof of the BGK MHV gravity amplitudes.
o Twistor gravity action that yields Gravity MHV formalism.
Outlook

e Twistor actions for Yang-Mills and conformal gravity are not
gauge fixed and do give self-contained proof of MHV
formalism for Yang-Mills and conformal gravity;

e so full gauge invariant twistor action should exist;
if MHV formalism is incomplete, it would give completion.

o Action <& string field theory for an Einstein twistor-string?

e Can we connect with Ashtekar/Connection variables to
give weak coupling expansion of Loop quantum gravity?



Thank Youl!
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