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First of all...

I will always have in mind LQG, spinfoams, 
simplicial gravity, etc.

I will try to explore the implications that the 
analysis of CM systems can have for these 

scenarios.



Background

• QG scenarios based generally on discrete 
microscopic constituents (even just as 
tools, e.g. regulators)

• The microscopic dynamics is assigned

• The case of small number of constituents is  
understood (e.g. asymptotics & single 4-
simplex)  

Ref.: all the other talks



General problem

• Continuum semiclassical gravity is the endpoint of 
the analysis.

• What is the macroscopic/continuum/classical limit 
of QG?

• Context in which the same problems arise: 
Condensed Matter (CM)



The Problem in CM

• In CM one is asking a very basic question: Given a set of a 
certain number of quantum particles in a given region of 
space, what is the ground state of the system.

• As a side issue: how to pass from discrete to continuum

• The microscopic dynamics (atomic physics) is known 
exactly (at least in principle).
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How to solve the problem?

• No general rules, few analytical techniques

• Some methods (mean field approx, symmetries...) 
variously applied and improved

• Sometimes they turn out to be wrong

• Experiments and numerical approaches are 
providing new insights and challenges for the 
development of accurate theoretical models



I: warm up with crystalline solids



Crystals

• A very simple example (but already complicated 
enough) of CM system is represented by crystals

• Described by regular lattices with atoms/ions 
sitting on the nodes

• Classification of all the possible lattices based on 
symmetries (crystallographic groups)

Landau-Lifshitz #7
Kittel (solid state)



Continuum limit: Elasticity

• Natural problem: elasticity properties of certain 
macroscopic bodies. Other possibilities (optics, 
thermal, etc.)

• On large scales, the discrete lattice is replaced 
with a continuum density function (coarse 
graining). 

• All the microphysics is encoded and summarized 
into some macroscopic parameters. Ideally, they 
could be computed from Van der Waals forces.



Elasticity/2 : collective fields

Displacement from equilibrium configuration

xi → xi + ξi(x) dxi → dxi +
∂ξi(x)
∂xj

dxj

ds2 → ds2 + 2
∂ξi(x)
∂xj

dxjdxkδik + O(ξ2)

Mechanical properties encoded into the free energy

σij = λijhkuhkConstitutive
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Strain tensor

F = F0 +
∫

V
σiju

ij d3x

F = F0 +
∫

V
λijhkuijuhk d3x

σij → Fi(V ) =
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ij Stress tensor



λijhk = aδijδhk + b (δihδjk + δikδjh)

In general the structure of the elastic modulus tensor
will depend on the microscopic structure (symmetries of the 
lattice)

Isotropic case

This tensor encodes all the macroscopic mechanical 
properties of the continuum (e.g. sound waves).

Elasticity/3



Comments

• There are no theorems that prove that the ground 
state of the system should be a crystal (plausibility 
arguments)

• Some intuition come from atomic physics (He vs 
Li, but see Hg)

• This intuition is not enough!

• Allotropic forms: for C you have, for instance, both 
diamond (insulator) and graphite (conductor)



Coarse graining

• Crystals, but also fluids, are inhomogeneous on 
scales small enough.

• To go for the continuous representation one 
should perform a coarse graining

• Find a scale L, such that any quantity, averaged over 
a cell of size L, has small fluctuations.

• This scale is statistical in nature, not necessarily 
dynamical



In practice
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The effective continuum theory (e.g. differential 
equations for continuous density) is a theory for the 
coarse grained density, not for the microscopic one.

Constant in each cell 
in which the body is partitioned



Comments

• Microscopic symmetries and/vs macroscopic ones:

• Quantum mechanics not really relevant.

• Renormalization group: how the effective theory 
changes when we change the coarse graining

• Concrete example: take Regge calculus (but other 
discrete approaches as well) and try to address the 
problem of coarse graining.

• What is the effective action after coarse graining? 

• What is the fate of symmetries?
Bahr and Dittrich (Regge calculus) 2009

Bombelli, Corichi, Winkler (How to reconstruct a manifold out of a graph) 
2004,2009



II: Inclusion of Quantum Mechanics



Bose Einstein Condensates

• Macroscopic system in which quantum mechanics 
is crucial

• At sufficiently low temperature, a system of 
bosons condenses.

• Macroscopic occupation number of the ground 
state (for single particle)

Pethick and Smith
Fetter and Walecka

Abrikosov,Gorkov, Dzyaloshinski



General framework
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Formalism: 
second quantization

Condensation via mean field

Ψ̂ ≈ ψI + χ̂ 〈Ω|Ψ̂|Ω〉 = ψ

i! ∂

∂t
ψ = − !2

2m
∇2ψ − µψ + κ|ψ|2ψ

Gross-Pitaevski equation for the condensate (neglecting the fluctuations)

Note that: Ψ̂|0〉 = 0 Ψ̂|Ω〉 "= 0
atomic Fock vacuum ground state

General setting: dilute, weakly interacting Bose gas 
Operators creating/destroying

 bosons (atoms)

condensate wavefunction



More about MFA

• MFA out of coherent states, peakedness around a given 
classical complex field.

• Example of how the microscopic theory goes onto a 
continuum fluid description

• Gross-Pitaevski goes onto continuity and Euler equation

|Ω〉 ≈ exp(zâ†0)|0〉 |z|2 = N0

Ψ̂(x)|Ω〉 =
√

N0u0(x)|Ω〉 = ψ(x)|Ω〉

ψ =
√

nc exp(−iθ/!)

|ψ(x)|2 = nc(x) !v ∝ !∇θ

Madelung representation



Comments

• The mean field approximation can be seen as the 
guess that the ground state is a coherent state.

• The continuum limit follows immediately

• There is no obvious coarse graining scale

• Coherent state just an approximation (presence of 
interactions). Beyond mean field methods required for 
certain experimental conditions

• Coarse graining is needed for BEC (failure related to 
large fluctuations).



What about QG?

• Coherent state for QG as a route to classical 
spacetime? 

• There is no coarse graining scale: is the use of 
semiclassical states enough to get continuum GR?

• LQG, spinfoam & semiclassical states 

• What about GFT? The sum over the discretizations 
already implemented: what about coherent states?

• What are the physical consequences for excitations 
around semiclassical states? (i.e. are there collective 
d.o.f.?)

Oriti 2007



III: Large N



Thermodynamic limit...

• Thermodynamics: one ignores the microstates of the 
system, and tries to describe it via a small number of 
global variables (N,p,V,T,S...).

• Thermodynamic limit: one takes the limit of infinitely 
large system (e.g. N,V formally becoming infinite) 
keeping fixed intensive quantities (e.g. number 
density)



... and phase transitions

• The state of a macroscopic system is characterized 
by certain state functions. 

• Phase transition: discontinuities of these functions 

• Critical exponents: scaling laws describing the 
critical behavior

f(t) ∼ tα t =
Tc − T

Tc



Comments

• Phase transitions are strictly related to the 
thermodynamic limit. Absent for systems with 
finite number of d.o.f. 

• Clear case in which the macroscopic regime is 
qualitatively different from the few-body case

• Universality: at critical point many microscopically 
different systems have the same critical exponents 
(insensitivity to microphysics.)



Matrix models

• Hermitian NxN matrices

• Potential

• “Classical theory”: gauge field theory in 
zero dimensions.

M = M†

V (M) =
∞∑

k=0

gk

k
tr(Mk)

V ′(M) = 0

V (M)→ V (M)
M → U†MU

U†U = I
}

Classical EOM



Matrix models/2

• Statistical mechanics

• Feynman diagrams: perturbative expansion is linked to 
two dimensional compact surfaces (sum over all finite 
polygonulations)

• Proposal: use it as the definition of the partition 
function for two dimensional quantum gravity

Z =
∫

dM exp(−NV (M))

Di Francesco, Ginsparg, Zinn-Justin 
hep-th/9306153

N ∼ β =
1

kBT
N ∼ 1

!



Diagrammatics

Propagator

Cubic vertex

i h
j k

‘t Hooft NPB 1974



Diagrammatics/2



Diagrammatics/2



Diagrammatics/2



Matrix models/3

• The graphs have a weight which depends on the 
Euler characteristic of the corresponding dual 
triangulation

• Large N limit: only planar surfaces are contributing!

• But for the continuum limit one has to go for the 
double scaling limit

• Case in which the sum over the discretizations is 
not enough to get a very refined continuum limit.

• Besides the large N, also tuning of the coupling 
constants to some critical value.

A(Γ) = N2−2ha(g)



Saddle point evaluation

• One can always diagonalize an Hermitian matrix

• Large N/semiclassical limit of the partition function: saddle 
point approximation 

• Crucial feature: effect of the measure of the path integral 
(genuinely “quantum” in nature)

V ′(λi) = 0 ∀i = 1, ..., N

Z =
∫ (

N∏

i=1

dλi

)
∆2(λ) exp



−N
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Vandermonde determinant (Faddeev-Popov)

Z =
∫

dM exp(−NV (M))

M = U†ΛU Λ = diag(λ1, ...,λN )



“Hydrodynamics” of the eigenvalues

• Equations for the saddle point

• Large N: the density of eigenvalues (collective field)

• The large N limit (the saddle point) as an equation for 
continuous

• The density of eigenvalues encodes the properties of the 
thermodynamical limit (large N expansion) and all the critical 
properties
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Sakita, Jevicki 1980,1981



Comments

• Matrix models: an example in which the “quantum” theory is 
qualitatively different from the classical case even in the 
semiclassical regime (single matrix vs 2D QG)

• Obvious relevance for GFT  (generalization to Boulatov and 
Ooguri).

• What is the technical point that turns a GFT into a theory for 
gravity on macroscopic continuum spacetime? 

• Ongoing programs in perturbative renormalization (Freidel, 
Gurau, Oriti), condensation in GFT (work in progress)?

• What are the implications for spinfoams/LQG? Is the 
continuum limit a sort of phase transition (thermodynamic 
limit involved!)? 

Livine, Perez and Rovelli 2003
Oriti 2007



Wrapping up...

• Not covered topics like kinetic theory, quantum 
phase transitions, superconductivity, etc.

• Bottomline: “More is different”.

• Knowing the microscopic d.o.f. and their dynamics 
is not enough even in the “simple” case of CM

• Even the fate of symmetries is not completely 
clear (crystal, QCD, diffeomorphism inv.).

• One has to use several strategies (numerical, 
heuristics, experiments) to circumvent the 
impossibility of doing analytical calculations

P.W. Anderson, 1972



The pessimistic slide

• In fact, besides the big problem of obtaining the 
continuum limit, we should face an additional 
challenge.

• The inverse problem: given the macroscopic 
dynamics (GR and modifications), what are the 
specific signatures of the underlying dynamics?

• Typical situation: the microscopic dynamics is 
(partially) washed away when we go for the 
macroscopic limit. 



• After all, you can work on CM and you can 
understand a lot of the physical properties of the 
systems considered.

• Perhaps among the machineries elaborated for CM 
there is the right tool to attack the continuum 
semiclassical limit of QG.

The optimistic slide

Yes, we can!


