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Motivation
Brown – Kuchař Scalars

Motivation

Status of Operator Constraint Approach to LQG. I.

Hamiltonian Constraint Operator must be non – anomalous

⇒ Operator necessarily modifies graph on which it acts

All semiclassical tools developed so far insufficient to establish
correctness of semiclassical limit

Group averaging of Hamiltonian constraints too difficult due to ∞ no. of
constraints

⇒ physical HS not under sufficient control

Commutant (Dirac observables) not under sufficient control

⇒ Cannot do any physically interesting computations
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Motivation
Brown – Kuchař Scalars

Status of Operator Constraint Approach to LQG. II.

Master Constraint Operator must be spat. diffeo. inv.

⇒ Operator must not modify graph on which it acts

Semiclassical tools apply, correct semiclassical limit established [Giesel, TT

06]

Group averaging of Master constraint under better control (only one
constraint)

But physical HS still difficult to obtain

Double – Commutant (Dirac observables) not under sufficient control

⇒ Still cannot do any physically interesting computations
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Motivation
Brown – Kuchař Scalars

Idea:

Use suitable matter in order to gauge fix ⇔ pass to the reduced phase
space (Higgsing the diffeo group)

Quantise directly the reduced phase space

No constraints, no anomalies, no group averaging any more

All phase space variables are Dirac observables

The chosen HS rep. is the physical HS

Automatically get physical, true Hamiltonian

Semiclassical Limit established [Giesel, TT 07], see next talk

Now can do physically interesting computations
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Motivation
Brown – Kuchař Scalars

Words of Caution:

In order to obtain managable expressions, scalar fields are preferred
(using geometrical scalars leads to spatially non local expressions)

While physical Higgs/SUSY/Dark Matter offer scalar fields, may not be
realised in nature

On the other hand, anyway Higgsed away, only influences the algebraic
form of physical Hamiltonian, see next talk

Have to make consistent restrictions on the phase space of the matter
field in order that gauge fixing well defined

In particular, scalar field must fill all spacetime (never and nowhere
vanishing energy density)

Despite these restrictions, this is a relatively small price to pay
compared to the complications associated with operator constraint

Strategy: Use mathematically convenient matter model to begin with to
establish in – principle – proof, later refine physics of matter model
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Words of Caution:

In order to obtain managable expressions, scalar fields are preferred
(using geometrical scalars leads to spatially non local expressions)

While physical Higgs/SUSY/Dark Matter offer scalar fields, may not be
realised in nature

On the other hand, anyway Higgsed away, only influences the algebraic
form of physical Hamiltonian, see next talk

Have to make consistent restrictions on the phase space of the matter
field in order that gauge fixing well defined

In particular, scalar field must fill all spacetime (never and nowhere
vanishing energy density)

Despite these restrictions, this is a relatively small price to pay
compared to the complications associated with operator constraint

Strategy: Use mathematically convenient matter model to begin with to
establish in – principle – proof, later refine physics of matter model

Thomas Thiemann Quantum Dynamics of LQG



Reduced Phase Space Quantisation
Physical Coherent States

Semiclassical Volume
Spin Foams on Cubulations

Spin Foam Measure

Motivation
Brown – Kuchař Scalars
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Brown – Kuchař Scalars

Imagine universe filled with test observers (non interacting point
particles) in geodesic motion

Specifying metric tensor (and observable matter fields) relative to these
observers are Dirac observables

Problem: test observers are mathematical idealisation, hence must
couple point particles to gravity

Solution: Brown – Kuchař Lagrangian

LBK =
p

| det(g)| ρ [gµν Uµ Uν + 1], Uµ = −∇µT + Wj ∇µSj

Consistent (gauge invariant) restriction: det(∂S/∂x) 6= 0

Thomas Thiemann Quantum Dynamics of LQG
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LBK =
p

| det(g)| ρ [gµν Uµ Uν + 1], Uµ = −∇µT + Wj ∇µSj

Consistent (gauge invariant) restriction: det(∂S/∂x) 6= 0

Thomas Thiemann Quantum Dynamics of LQG



Reduced Phase Space Quantisation
Physical Coherent States

Semiclassical Volume
Spin Foams on Cubulations

Spin Foam Measure

Motivation
Brown – Kuchař Scalars
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LBK =
p

| det(g)| ρ [gµν Uµ Uν + 1], Uµ = −∇µT + Wj ∇µSj

Consistent (gauge invariant) restriction: det(∂S/∂x) 6= 0

Thomas Thiemann Quantum Dynamics of LQG



Reduced Phase Space Quantisation
Physical Coherent States

Semiclassical Volume
Spin Foams on Cubulations

Spin Foam Measure

Motivation
Brown – Kuchař Scalars
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Brown – Kuchař Scalars

Summary of a long analysis:

Reduced phase space coordinatised by usual gravitational conjugate
pair (Aj

a,E
a
j ) (and standard matter) subject only to Gauß constraint but

no longer to spatially diffeo constraint and Hamiltonian constraint!

Physical Hamiltonian

H =

Z

d3x
q

|C2 − qab Ca Cb|

Is invariant under active diffeos, no gauge diffeos

Motivates to choose AIL representation as Physical Hilbert space

H can be quantised using standard techniques

H Tγ =
X

v∈V(γ)

Hγ,v Tγ ; Hγ,v =

q

|C2
γ,v − [Cj

γ,v]2|

Since HHγ ⊂ Hγ , can establish semiclassical limit [Giesel’s talk]

Now can do scattering theory (eg Fermi’s Golden Rule)

Tfi =< ψf, H ψi >

Notice: ψi, ψf, H are physical states/Dirac observables
Thomas Thiemann Quantum Dynamics of LQG
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Recently, also SF researchers became interested in coherent states ...

Perelomov coherent states for SU(2) [Livine, Speziale 07] and partly SU(1,1)
[Conrady, Hnybida 10] enter FK model

Hall coherent states for SL(2,C) [Bianchi, Magliaro, Perrini 10] for twisted
geometries [Freidel, Krasnov, Livine 09], [Freidel, Speziale 10]

Hall coherent states were used 15y before already in LQG to provide
Segal – Bargmann representation [Ashtekar, Lewandowski, Marolf, Mourão, TT 95]

Inspired Complexifier Machine to Generate Coherent States with built –
in semiclassical properties from a sinlge Input [Sahlmann, TT, Winkler 00], [Bahr, TT

08]
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The LQG coherent states were severely criticised by SF researchers eg

In [Bianchi, Magliaro, Perrini 10]

“However, the geometric interpretation of the SL(2,C) labels [of the
STW states] and the relation with semiclassical states used in Spin
Foams has largely remained unexplored.”

In [Freidel, Speziale 10]

“However, [the STW states] also have significative limitations, which in
particular include difficulties with projecting them at the gauge invariant
level [Bahr, TT 08], as well as severe restrictions on the topology of the
graph [Flori, TT 08]. Another open point, of interest to us, is the lack of a
direct geometric interpretation of the labels at the gauge-invariant level.”

I am puzzled, because in papers quoted by authors it is shown in detail

Complexifier Machine precisely tells precisely the
geometric interpretation of the SL(2, C) labels involved
No problem at all to project STW states to gauge invariant
HS [Bahr’s talk]

Restriction on topology from dynamical considerations, do
not follow from kinematics, see next topic
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Complexifier Machine

Given a phase space M = T∗(Q):

Choose some function C(q, p) s.t. i. C ≥ 0 and C = 0 ⇔ ||p|| = 0 ii.
limp→∞ C/||p|| = ∞ iii. [C/~] dimensionfree

Define complex polarisation of phase space

z(q, p) := exp(−i XC) · q

Choose rep. q̂, p̂ of q,p on HS H = L2(Q,dµ), define Annihilation
Operators

ẑ := exp(−Ĉ/~) q̂ exp(Ĉ/~)

Define Coherent States

ψq,p := [eC/~ · δx]x→z(q,p)

Remark: The choice of C will be guided by the Hamiltonian which H
should be a simple function of z, z̄
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ẑ := exp(−Ĉ/~) q̂ exp(Ĉ/~)

Define Coherent States

ψq,p := [eC/~ · δx]x→z(q,p)

Remark: The choice of C will be guided by the Hamiltonian which H
should be a simple function of z, z̄

Thomas Thiemann Quantum Dynamics of LQG



Reduced Phase Space Quantisation
Physical Coherent States

Semiclassical Volume
Spin Foams on Cubulations

Spin Foam Measure

History
Complexifier Machine

One can show

Theorem

i. annihilation operator eigenstates z ψq,p = z(q, p) ψq,p

ii. Unquenched, minimal uncertainty states for
x = [z + z†]/2, y = −i[z − z†]/2
iii. Peaked at x(p, q) = ℜ(z(p, q)), y(p, q) = ℑ(z(p, q))
iv. Ehrenfest property < [z, z†] >p,q= i~{z, z∗}(q, p)
iv. Resolution of identity

1H =

Z

M

dν(z, z∗) |ψz > < ψz|

Single input C (guided by dynamics) guarantees whole list of properties
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All known coherent states come from a complexifier:
Harmonic oscillator: C =∝ p2/2
Hall model C ∝ Tr(p2)/2

KG field: C ∝
R

d3x π
p

−∆ + (m/c~)2
−1

π

Maxwell field C ∝
R

d3x Ea
⊥

√
−∆

−1
Ea

⊥

Varadarajan r-Fock states C ∝
R

d3x Ea
fr⊥

√
−∆

−1
Ea

fr⊥

In all of these examples the complexifier is quadratic in momenta

Let us also make this Ansatz and see what we get!
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Fix partition P of Σ into polyhedra p with faces S

Define for certain LS

C :=
1

2κ

X

S∈∂P

1
L2

S

[Ej(S)]2

Delta distribution
δA =

X

s

Ts(A) < Ts, . >

Complex polarisation (complex connection)

Z[A,E](x) = e−iXC · A(x)

Coherent state
ψA,E = [e−C/~ δA′ ]A′→Z(A,E)

Notice: Coherent state depends on phase space point (A,E) of classical
continuum phase space

Problem: ||ψA,E|| = ∞ since HAIL not separable, however ||ψγ;A,E|| <∞
where cut – off states (shadow states [Ashtekar, Lewandowski 01])

ψA,E = ⊕γψγ;A,E
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LQG is a continuum theory, all graphs are involved, need all ψγ;A,E

C cylindrically consistent operator because P fixed, all ψγ;A,E

unambiguously defined in terms of C

ψγ;A,E quite involved for general γ, but simplifies for γ dual to P
In particular, for any e ∈ E(γ) get explicit interpretation of SL(2,C)
labels

ge := [A′(e)]A′→Z(A,E) =: Z[A,E](e) = A(e1) exp(E(Se)/L
2
Se) A(e2)

Notice: Do not need to guess interpretation of ge, follows
unambiguously from C! Compare with [Freidel, Speziale 10]

ge = ge(A,E) function on phase space of the continuum, not some
discretisation thereof. To compute PB between ge’s use continuum. Of
course: compatible with holonomy flux algebra
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Notice: Interpretation of z(q, p) crucial, otherwise coherent st. useless

Example: Take harm. osc. coherent states

|z >l= e−|z|2/2
X

n

zn

√
n!

|n >l, l2 =
~

mω

Correct interpretation z(q, p) = q − ip l2/~

Suppose you do not know Cl and choose random interpretation
z′(q,p) = q3/l′2 − ip l′2/~

Then violate Ehrenfest property (wrong symplectic structure)

< ψz′(q,p), qψz′(q,p) >=
q3

l′2
, < ψz′(q,p), pψz′(q,p) >=

l′2

l2
p

< ψz′(q,p),
[p, q]

i~
ψz′(q,p) >= 1 6= {< p >,< q >} = 3

q2

l2

By construction, the complexifier avoids misinterpretations
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Compare with interpretation proposed in SF papers

Only interpretation on a single graph dual to some polyhedronal
(simplicial) partition (which one?)

Only interpretation in terms of discretised phase space (no continuum)

Proposal

ge = ne,b(e) exp([je − iξe]σ3/2) n−1
e,f(e), ne,p = nj

e,pσj, [nj
e,p]

2 = 1

T∗(SU(2)) decomposition

Xe = jene,b(e)σ3n−1
e,b(e), he = ne,b(e) eξeτ3 ⇒ ge = eXe he

Use precisely the STW state for γ

Geometrical interpretation (continuum and T∗(SU(2)) match)

Xe =
1

L2
Se

A(e1) E(Se) A(e1)
−1, he = A(e)
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Irrespective of interpretation

Theorem [Sahlmann, TT, Winkler 00]

i. Let γ be dual to P then with te = ℓ2
P/L

2
e

ψγ;A,E = ⊗e ψe;A,E, ψe;A,E =
X

j

dj e−te j(j+1)/2 χj(ge(A,E)·)

ii. Let ge = Hehe, He = exp(Xj
eσj) left polar decomposition then

ℓ2
p < Rj

e >= L2
eXj

e, < A(e) >= he

Notice: in [Freidel, Speziale 10] PB for local coordinates ξe, je, ne,b(e), ne,f(e)

derived from PB for Xe, he (precise match)

Thus the labels proposed by SF researchers can be translated into the
STW labels on suitable graphs and the symplectic structures coincide
by construction
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There is really nothing new! All the theorems and calculations from
STW can be literally copied.

In particular: literally all the calculations in [Bianchi, Magliaro, Perrini 10] have
already been done (and much, much more)

Gauß group averaging carried out explicitly in [Bahr, TT 07] does not get
simplified by switching to new variables

At this stage, there is no restriction at all on γ, it may not even be dual
to any triangulation

Just to avoid confusion:
No Regge constraints [Dittrich, Ryan 07] arise in LQG because we are not on
a fixed (dual) triangulation, all graphs and all surfaces must be allowed
to obtain closed holonomy flux algebra like in the classical theory, there
is no overcounting of dof
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simplified by switching to new variables

At this stage, there is no restriction at all on γ, it may not even be dual
to any triangulation

Just to avoid confusion:
No Regge constraints [Dittrich, Ryan 07] arise in LQG because we are not on
a fixed (dual) triangulation, all graphs and all surfaces must be allowed
to obtain closed holonomy flux algebra like in the classical theory, there
is no overcounting of dof
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Preparation

Recall

Volume operator plays pivotal role to define quantum dynamics of LQG
and LQC (singularity avoidance!), in particular to define co-triad – like
operators

Two volume operators have been proposed [Rovelli, Smolin 95], [Ashtekar,

Lewandowski 95]

Only AL Volume passes the triad test [Giesel, TT 05]

V(R) =

Z

R
d3x

p

| det(E)| ⇔ E(S) =

Z

S
sgn(det(E)) {A,V} ∧ {A,V}

Explicit expression (take all edges with outgoing orientation)

V(R)γ =
X

v∈V(γ)∩R

Vv, Vv =

s

| 1
48

X

e∩e′∩e′′=v

σ(e,e′, e′′) ǫjkl Rj
e Rk

e′ Rl
e′′ |

Coefficient 1
48 completely fixed by triad test (not fixed by regularisation)
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Computation

Want to consider graphs of arbitrary valence n

Coherent states managable only when graph dual to partition

Choose regular partition in terms of tetrahedra n=4, cubes n=6,
octahedra n=8

Compute expectation value to zeroth order in ~

Surprisingly, square root can be dealt with Giesel’s talk

Basically, every Rj
e replaced by L2

eXj
e ≈ Ej(Se)
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Let P0 standard polyhedron in R
3 with standard faces S0 and

Y : P0 → P embedding

Classical volume for sufficiently small polyhedra

Vol[P] ≈
q

| det([Y∗Ej](vP)| Vol0(P0)

Likewise classical flux

Ej(S) ≈ [Y∗E]Ij(vP) FI(S0), FI(S0) =
1
2

Z

S0

ǫIJK dtJ ∧ dtK

Accordingly

< V(P) >≈
q

| det([Y∗Ej](vP)| ×

×
v

u

u

t|1
8

X

1≤A<B<C≤n

σ(eA, eB, eC) ǫIJK FI(SA
0 ) FJ(SB

0 ) FK(SC
0 )|
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Quantum/classical ratio just depends on Euclidian computation

< V(P) >

V(P)
≈ κn,

κn =

q

| 1
8

P

1≤A<B<C≤n σ(eA, eB, eC) ǫIJK FI(SA
0 ) FJ(SB

0 ) FK(SC
0 )|

V0(P0)

End result for tetrahedron, cube and octahedron

κ4 = 3

√
2

4
> 1, κ6 = 1, κ8 =

3

2
√

2
> 1
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Discussion:

One expects limn→∞ κn = ∞ too many triples contribute, overcounting

Cubic graphs dynamically preferred in the semiclassical limit

One cannot temper with 1/48 (co-triad test)

One could temper with te (rescale classical flux label in Xj
e)

But then areas have incorrect expectation value

Crucial that now SF also on arbitrary cell complexes are possible
[Kaminski, Kiesilowski, Lewandowski 09]

In particular: Motivation to formulate SFM on Cubulations
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Motivation

Based on [Baratin, Flori, TT 08]

Big issue in SFM: correct implementation of simplicity constraint

In principle easy: Integrate over Plebanski Lagrange multiplier

Z :=

Z

[DA DB Dλ] ei
R

[Tr(B∧F)+λαSα(B)] =

Z

[DA DB] δ[S(B)] ei
R

[Tr(B∧F)]

Since B eiSBF = −i δ
δF eiSBF formally

Z =

Z

[DA DB] δ[S(
δ

δF
)] eiSBF =

Z

[DA] δ[S(
δ

δF
)] δ[F]

Simplicity constraints still Abelian at this stage

Now something funny happens: Discretisation F 7→ A(α) − 1 replaces
δ
δF 7→ Xα and simplicity constraints become non – Abelian, anomalous

Model becomes inconsistent. Proposals for cures by Master Constraint
[Engle, Perreira, Rovelli 07] or Gupta – Bleuler – like methods [Freidel, Krasnov 07]

But clearly these proposals cannot be justified from first principles
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Spin Foam Measure

Motivation
Details

Idea:

If we honestly want to impose the simplicity constraint we must keep
δ[S(B)]

Solving the δ distribution leads back to the Palatini – Holst action
modulo mesure factors, see next topic

Might as well start with Holst PI

Z =

Z

[DA De] ei
R

Tr(Fγ∧e∧e)

As pointed out in [Mikovic 05]: integral over e is oscillatory Gaussian, can
be performed

Care is due, since result depends critically on signature of 16 x 16
matrix Fγ

One ends up with a final integral of the form

Z =

Z

[DA] [
eiπind(Fγ )/4

p

| det(Fγ)|
Upon discretisation, a new spin foam model is born with no manifest
similarity to EPR or FK
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Details

As motivated by previous topic, discretise on cubulation, works for
either signature

Every manifold can be cubulated

For sufficiently nice manifolds (admitting finite atlas) choose an atlas
and consider its stratification

Choose a regular cubulation (like in lattice gauge theory) in the interior
of any chart (away from lower dimensional strata) and invent some
gluing cubulation in the neighbourhood of the lower dimensional strata

Non – regular “boundary” cubes contribute little as compared “bulk”
cubes

Use naive continuum limit as in lattice gauge theory rather than sum
over cubulations

Discretise both tetrads and connections on 1 – skeleton of cubulation
⇒ preserves gauge invariance, will not use graph dual to cubulation
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Regular cubulation: vertices v ∈ Z
4, directions mu = 0,1, 2, 3, links

lµ(v), plaquettes

∂fµν(v) = lµ(v) ◦ lν(v + µ) ◦ lµ(v + ν)−1 ◦ lν(v)−1

Discrete variables

eI
µ(v) :=

Z

lµ(v)
[A(lµ(v, x))]IJ eJ(x), Gµν

IJ(v) = ǫµνρσTr([∗TIJ] A(∂fρσ(v))

Discrete action

S =
1

2κ

X

v∈Z4

eI
µ(v) eJ

ν(v) Gµν
IJ(v)

Use compound index A = (µ, I), B = (ν, J) then block diagonal

S
~

=
1

2ℓ2
P

X

v

eT(v) G(v) e(v)
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Generating functional of n – point functions

Z(j) =

Z

[
Y

v,µ

[dµH(A(lµ(v))] [d4eµ(v)]] e
i

2ℓ2
P

P

v eT(v) G(v) e(v)
ei

P

v jT(v) e(v)

Integrating out tetrad yields

Z(j) =

Z

[
Y

v,µ

[dµH(A(lµ(v))]][
Y

v

eiπind(G(v))/4

p

| det(G)(v)|
] e−i

ℓ2
P
2

P

v jT(v) G−1(v) j(v)
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Remarks:

Looks like generating functional for free field theory

But not a quasi – free “state” because of averaging over G

Wick identities hold in averaged sense, all odd n – point functions vanish

“Graviton propagator” from 4 – point function

< gµ1ν1(v1) gµ2ν2(v2) >= ℓ4
P < Tr([G(v1)

−1]µ1ν1([G(v2)
−1]µ2ν2) >

′

If wanted, can formally expand in terms of irreps
⇒ octagon diagramme (involves 48 irreps of Spin(4) or Spin(1,3))

To make contact with LQG HS have to gauge fix (time gauge)

Many questions remain, e.g. singularities from G
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Octagon diagramme for vertex amplitude:

8 corners = adjacent edges, 24 lines between corners = plaquettes using

those edges

l+0

l+1

l+2

l+3l−0

l−1

l−2

l−3

Thomas Thiemann Quantum Dynamics of LQG



Reduced Phase Space Quantisation
Physical Coherent States

Semiclassical Volume
Spin Foams on Cubulations

Spin Foam Measure

Path Integrals from Canonical Quantisation
Results for Holst action

Path Integrals from Canonical Quantisation

The only safe route to a path integral formulation with manifest relation
to canonical theory starts from the reduced phase space

Studied by Field theorists in great detail, e.g. [Henneaux, Teitelboim 95]

Special care for gauge theories with 2nd class constraints

It is possible to unfold the path integral to the kinematical phase space,
but generically this leads to corrections to the naive measure, formally
(q′, p′ kinematical phase space coordinates not including Lagrange
multiplicators)

Z(j) =

Z

dµL(q
′, p′)

p

det({S,S}) | det({F,G})| δ[F] δ[S] δ[G] eiˆ(q′,p′) ei j·Q

Gauge fixing conditions G (clocks and rods) select preferred true
degrees of freedom Q (Dirac observables)

Scattering theory wrt corresponding reduced (physical) Hamiltonian
selected by G uses n – point functions and collision theory (Haag –
Ruelle, LSZ) [Han, TT 09]
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The only safe route to a path integral formulation with manifest relation
to canonical theory starts from the reduced phase space

Studied by Field theorists in great detail, e.g. [Henneaux, Teitelboim 95]

Special care for gauge theories with 2nd class constraints

It is possible to unfold the path integral to the kinematical phase space,
but generically this leads to corrections to the naive measure, formally
(q′, p′ kinematical phase space coordinates not including Lagrange
multiplicators)
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Further corrections arise when exponentiating the δ distributions via
Lagrange multipliers: The canonical action after Legendre transform
only depends on canonical Hamiltonian and primary (first and second
class) constraints.

One must get rid of the secondary second class constraints in order to
produce the wanted exp(iS). General technique developed by [Henneaux,

Slavnov 94]

Final result

Z(j) =

Z

dµL(q,p) ρ(q,p) δ[G(q, p)] | det({F,G})| eiS(q,p) ei j·Q

The measure factor ρ is generically not covariant [Fradkin, Vilkovisky, .... 70’s]
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Results for Holst action

Explicit computation of ρ performed for Holst action [Engle, Han, TT 09] to
make contact with new spin foam models

Result (full phase space variables: tetrad and connection)

ρ =
p

| det(g)|3
p

det(q)

As expected, measure factor ρ not covariant

PI no longer invariant under 4D diffeos but only under gauge
transformations generated by the constraints (they agree on shell) [Han 09]

Agrees with result for Plebanski action [Buffenoir, Henneaux, Noui, Roche 04] upon
variable change e ↔ B and imposing simplicity constraints

These measure modififications must be taken into account for spin foam
models
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