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A relation r : X — Y is a triple (X, Y; Gr(r)) where X, Y are sets and
Gr(r)C Y x X.
If r: X—>Y then r7 : Y —> X is defined by

(x,y) € Gr(rT) <= (y,x) € Gr(r).

A domain of risaset D(r):={x e X:3dy € Y(y,x) € Gr(r)}
An image of ris aset Im(r) :=={y € Y :3x € X(y,x) € Gr(r)}
A composition r : X—>Y,s:Y—>Z,sr: X—>Z:

Gr(sr) :={(z,x):dy e Y:(z,y) €s, (y,x) €r}
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Groupoids — definition

Groupoid I = E consists of a set I, two relations m : T x [ —>T,
e: {1} —»T, E := Im(e) C T satisfying conditions:
m(m x id) = m(id x m) (1)
m(e x id) = m(id x e) = id (2)

and such that m" (E) C T x T is a graph of an involution s : T — T
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Groupoids — definition

From (1) and (2) it follows:
e (e1,e) € D(m) <= e = e and then e = m(e, e)
@ There exist unique mapping e, eg : I — E defined by the conditions
(g.er(g)) € D(m) and (e.(g),g) € D(m) and then
m(g, er(g)) = m(eL(g),8) = g and e = e;(e) = er(e).
° (g1,82) € D(m) =
[er(g1) = eL(g2) , e(m(gr, g2)) = eL(g1) , er(m(e1, 82)) = er(g2)]

er is source or domain and e; is target or range.
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Groupoids — definition

The existence of s gives additionally:

o e.(s(g)) = er(g), er(s(g)) = eL(g),
o m(g,s(g)) = ew(g), m(s(g),8) = er(g)
e er(g1) = el(g) = (g1,42) € D(m) i.e.
D(m) = {(e1. &) : er(g1) = er(g2)}
° (s(g3)ig1.8) € m <= (g3:5(82).5(81)) € m
(i.e. s(g182) = s(82)s(81))
e mis a mapping D(m) — T
If E consists of one point then D(m) =T x I, mis a mapping and I is a
group.
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Groupoids — definition
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Operations on groupoids

o Cartesian product: 'y = E;, > = Ey then 1 x [, = E; X Ep with
operations defined “coordinatewise” .
But this is not a categorical product.

@ Disjoint union of groupoids is a groupoid.

@ Restriction: for a subset F C E the set e, }(F) N ez (F) is a
groupoid with the set of units F.
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Groupoids — structure

Orbits On the set of units E define the relation:
€1 ~ € <— 3"}/ : eL('y) =e1, eR('y) = &

This is an equivalence relation, its classes are called orbits of T'.

[e] = er(e ' (e)) = eL(eg ' (e))

For an orbit O C E, aset o := e[l(O) = e,;l(O) C I is a groupoid -
transitive component of I

Any groupoid is a disjoint union of transitive components.

Isotropy groups

For e € E a set ] }(e) Neg'(e) is a group — isotropy group of e.
Points in the same orbit have isomorphic isotropy groups.
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Groupoids — structure

Example of transitive groupoid:
X - aset, G -agroup

M=XxGxX, E:={(x,e,x) : xe X} ~X
eR(X7g7.y) = (y)e7y)a eL(X,g7}/) = (Xu e,x)

-1

inverse . s(x,g,y) = (y,g ", x)

multiplication : (x,g,y)(y, h,z) == (x, gh, z)
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Groupoids — structure

In fact, this is the most general example:

Let I be a transitive groupoid. Choose ey € E and a section

p: E— e[l(eg) of right projection (restricted to e[l(eo)) such that
p(eg) = eo; let G be the isotropy group of eg. The mapping:

Ex GxE>(e,g,e)+— s(p(er))gp(e) €T

is an isomorphism.

February 2, 2015
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Bisections

Definition
A set B C T is a bisection iff it is a section of left and right projection over

E.

Subsets of a groupoid can be “multiplied”: for A, B C I we define
AB :={m(a,b):ac A be B,(a,b) € D(m)}.

This operation turns the set of bisections into a group: neutral element is
the set of identities and B~ = s(B). This multiplication of subsets can
be used to characterize bisections:
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Bisections

Let I = E be a groupoid and A C T.
e A is a section of eg over eg(A) iff As(A) C E;
e A is a section of e, over e (A) iff s(A)A C E;
e A is a bisection iff s(A)A = As(A) = E.

Bisections act on a groupoid by I' 3 v — B~y := vy, where 7/ is a unique
element in B with eg(?’) = er(v) (i.e. {By} = B{y} using multiplication
of subsets). This action preserves right fibers i.e. egr(B7y) = er(y) and

maps left fibers into left fibers.
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Definition
A morphism of groupoids T = E, and ' = E’ is a relation h: [ — T’
that satisfies:

hm = m'(h x h),s’"h=hs, he = ¢

It follows that a morphism h: I —>T" defines:
a mapping (base mapping) p: E' — E
and for every ¢’ € E’ mappings

!

he(e') : eg(fa(€')) — eg '(€)

hi(e) e (fu€)) = &7 (€)
In particular D(h) is a union of transitive components and Im(h) is a
(wide) subgroupoid of I".
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Morphisms
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Examples of morphisms

@ Groups If I and I’ are groups, then any morphism is a group
homomorphism.

@ Sets If I is a “set-groupoid” (i.e. I = E), then any morphism
h:T—>T"is h=fT for some mapping f : E/ — I'. In particular
[ := {1} is the initial object.

@ The (left) regular representation The relation /: —T x I given by
(1,72:93) €1 <= (ni73,72) €m
is a morphism from I to the pair groupoid I x I
I'={(my2,72:m) : 1,72 €T, er(11) = er(12)}
@ For any groupoid ' the mapping
F>ye(e(v),er(y) € EXE

is a morphism (to the pair groupoid).
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Examples of morphisms (cont)

@ Transitive components. If [’ C I is a union of transitive components
and i : " — [ is the inclusion map, then i” : T —T" is a morphism.

@ Restriction of morphism to its domain. If h: { —>T5 is a morphism
with a domain D(h), then the relation h|p(y : D(h) —>T2 is a
morphism.

e Wide subgroupoids. If 'y C I is a wide subgroupoid (i.e. E C I'1),
the inclusion i : ['; — T is a morphism.

@ Isotropy group bundle. This is a special case of the previous example.
Let I be a groupoid, [ := U eL_l(e) N e,;l(e) its isotropy group
ecE
bundle and i : " — T the inclusion. Then i : "' —>T is a morphism.
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Examples of morphisms (cont)

o Cartesian product A cartesian product of groupoids is defined in a
natural way (coordinatewise). The relations

ih={(n.em):mel,eck},

iz ={(e1,72:72) 1 &1 € E1, 72 € T2}
are morphisms

il : Fl—brl X rg, i2 . rszrl X F2

But projections 71(m2) : I'1 X I'a — [1(2) are not morphisms. So
cartesian product of groupoids is not a product in categorical sense (it
is rather like a tensor product).

Piotr Stachura (Katedra Zastosowari Matemz Short and biased introduction to groupoids. February 2, 2015 17 / 38



Examples of morphisms (cont)

@ Group actions If a group G acts on a set X, then the relation

{(gx;x;8): g€ G,xe X}

is a morphism from G to X x X. Any morphism G —> X x X is of
this kind.

@ Morphism into groups If G is a group and h: [ —=> G is a morphism,
then fh(Ez) =: ep and the orbit of e is {ep}, i.e.
e; '(e0) = ex'(eg) =: T, and h is a group homomorphism 'y — G.
In particular if X has more then 1 element the set of morphisms from
X x X to G is empty.

@ Morphism from groups. If G is a group and I is a groupoid, then

morphisms h: G—=>T are just group homomorphisms from G to a
group of bisections of T.
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Examples of morphisms (cont)

@ “Inner automorphisms” If B C I is a bisection, the mapping
Adg:T>g— BgBlerl
is a morphism and AdgAdc = Adgc.

e If h:T—=>T"is a morphism, B, C C T are bisections, then h(B) is a
bisection,

h(B)h(C) = h(BC), h(s(B)) = s'(h(B)) and

h Adg = Adyg)h

o If M, N are manifolds and f : N — M is a smooth map, then
T*f: T*M—> T*N is a morphism (cotangent lift).
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Properties of morphisms

Proposition

Let h: T —> A be a morphism of groupoids and G, Gy C I subgroupoids.
@ h(G) C A is a subgroupoid;
@ IfGN Gy =0 then h(G) N h(Gy) = 0;
© h|g: G—>h(G) is a morphism.

© If h is surjective and G is a transitive component then h(G) is a union
of transitive components.

v

A morphism is determined by its value on any fiber in every transitive
component (contained in its domain).

Let I = E and A = F be groupoids and h, k :  —> A morphisms.
Assume I is transitive and for some e € E: h|_—1,_y = k|_-1,.y. Then
h B €r (e) €r (e)
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Actions and morphisms

A groupoid I' == E can act on a set X equipped with a mapping to E.

Definition

Let ' = E be a groupoid, X a set and p : X — E a mapping. Define the
set

Fexp X i={(7,x) €T x X : er() = p(x)}.

An action of T on X is a mapping: Tepx, X 3 (7,x) — vyx € X that
satisfies:

p(x)x = x m1(72x) = (7172)x

i.e. if one side is defined, the other is also and then they are equal.
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Actions and morphisms (cont)

Action of I on itself by multiplication:
p:Toavy—el(y)eE

@5 (y1,7) >y el

Action of I on its set of units.
p:Ede—eckE

{(v,e) el xE:er(y)=¢€}>(y,e) —e(y) €E

Action on the isotropy group bundle. X := [’ — the isotropy group bundle
of I'; p:= e; and the action:

{(v:7) 1 er(7) = ee()} 2 (1,7) = 's() e T
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Actions and morphisms (cont)

Actions from morphisms. Let h: { —> T be a morphism with the base
map fp: Ep — E;. Put p:=1f,-¢e : 2 — E; The mapping

(71,72) = m2(hr(e2)(71),72), e = er(72)

is an action of ['{ on 5.
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Actions and morphisms (cont)

If we use relations the definition of a groupoid action can be presented in a
more group-like style:

Definition

Let I = E be a groupoid and X a set. An action of I on X is a relation
® : [ x X—> X that satisfies:

O(m x id) = (id x ), d(e x id) = id.
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Actions and morphisms (cont)

Next proposition states the equivalence of both definitions.

Let ® : T x X—> X be an action in a sense of def. 0.8. Then

© For every x € X there exists unique e € E such that (x;e; x) € ®, i.e.
® defines a mapping p: X — E;

D(®) =Tepx, X,

(yiv,x) € ® = p(y) = ecly),

ir,x) €® = (xs(7),y) € &,

® s a mapping D(®) — X, this mapping is an action of I on X in
the sense of def. 0.7;

If T acts on X in a sense of def. 0.7, the relation
& = {(vx;7,x) : er(y) = p(x)} is an action in the sense of def. 0.8.
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Actions and morphisms (cont)

If h is an action of [ on X then

Gr(h) == {(vx,x;7) : er(7) = p(x)}

defines a morphism h: T —> X x X.
Conversely, if h: I —> X x X is a morphism, then

h{(y,x) - er(7) = fa(x)} 3 (7, %) = ec(hr(X)(7)) € X

defines an action of [ on X.
So actions of groupoids on sets are just morphisms into pair groupoids
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Actions and morphisms (cont)

Let h:{—>T> be a morphism and @ : 1 x [, —>T» be the related
action. This action commutes with multiplication in 5, i.e.

¢h(id X m2) = m2(¢h X Id)

Conversely, any action ® : I'; x ',—=> T, that commutes with m; defines
a morphism by:

h = {(®(71,72)s(72); 1) : (11,72) € D(P)}

So morphisms are actions that commute with groupoid multiplication —
exactly as for group homomorphisms

Piotr Stachura (Katedra Zastosowari Matemz Short and biased introduction to groupoids. February 2, 2015 27 / 38



Action groupoids, morphisms and functors

Groupoids are special categories and “standard” definition of morphism is
a functor, i.e map f : [ — A such that

f(E) C F (F is a set uf units in A)

7,7 €T® = f(7),f(7') € AP and then f(17') = F(7)F (7).
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Action groupoids, morphisms and functors

Let & : I x X—> X be an action of a groupoid [ == E on X with a base
map p : X — E. The following definitions make sense:

Eo = {(p(x),x) : x € X},

so : D(®) 3 (7, x) = (s(7), P(7,x)) € D(®),

me : D(®) x D(®) —> D(®),

Gr(me) == {(7172,x; 71, ®(72, X), 72, X) : (71,72) € D(m), (72, %) € D(®)}

(D(®), mo, se, Ee) is a groupoid; it is called the action groupoid for the
action ® and is denoted by I x4 X.

Piotr Stachura (Katedra Zastosowari Matemz Short and biased introduction to groupoids. February 2, 2015 29 / 38



Action groupoids, morphisms and functors

Let = E and A = F be groupoids and h: [ —> A a morphism.
Composition of h with the mapping (morphism)

A >0 — (e(d),er(d)) € F?

gives a morphism I —> F2, i.e. the action ¢, : T x F—>F.
Its domain is D(¢n) := {(7,f) : er(y) = pn(f)} and the action is

(7, f) — e (hf(7))-

The morphism h defines also a mapping

D(¢n) > (v, f) — hi(y) € A,

this mapping is a functor from the action groupoid I x4, F to A.
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Action groupoids, morphisms and functors

Conversely:
an action ¢ of ' on F and a functor K : I x4 F — A satysfying

K(e,f) = f for (e,f) € D(¢) N (E x F)
defines a morphism h: [ —> A by

Gr(h) = {(K(7,f),7): (7, f) €T <y F}
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Morphisms as functors between action categories

Definition

Let T be a groupoid; a I-set is a pair (X, ®), where X is a set and ® an
action of I on X. Let (X,®) and (Y,WV) bel-sets. Amapf: X — Y is
equivariant iff f® = W(id x f).

l-sets with equvariant maps as morphisms form a category.
If we think of actions as of morphisms to pair groupoids, an equivariant
map f : X — Y is characterized by

(f x id)hy = (id x fT)hy

for hy :T—>X2and hy : T —> Y2
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Morphisms as functors between action categories.

A morphism h: [ —> A defines a functor H, from A-sets to I-sets by
composition: having an action of A on X i.e. morphism k : A— X2 and
a morphism h: I —> A, we have an action of [ on X by kh: r—o X2
This functor doesn’t change sets and equivariant maps, in other words, if
Forr, Forp are forgetful functors to the category of sets (i.e

Forr(X,®) = X and Forr(f) = f, where f is an equivariant map between
M-sets X and Y) it satisfies Fora H, = Forr.

Conversely any such functor defines a morphism of groupoids:

Proposition

Let H be a functor from [ -sets to A-sets satisfying FornH = Forr. There
exists unique morphism h : A——>T, such that H is the composition with h.
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Differential groupoids

Manifolds: smooth, Hausdorff, paracompact, second countable.
Submanifold=embedded submanifold

r: X—=> Y is a differential relation if Gr(r) is a submanifold in Y x X.
Tangent lift If r : X —> Y then Tr: TX —>TY

Gr(Tr):=TGr(r) C TY x TX

Cotangent lift T*(r): T"X —>T*Y:

(B,a) € T*(r) < V(v,w) € Gr(Tr) : B(v) = a(w)
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Differential groupoids (cont)

Transversality Let r: X—>Y ands: Y —> Z.
Relations r, s have simple composition if

V(z,y) € Gr(sr)3ly e Y : (z,y)es, (y,x)er

Relations s, r have transverse ( s + r) composition iff
@ Ts and Tr have simple composition;
@ T*s and T*r have simple composition;
@ sr is a differential relation.

A relation r : X —> Y is a differential reduction iff r = fiT for i : C — X
— inclusion map of a submanifold C and f : X — Y — surjective
submersion. (i.e. r is a surjective submersion from a submanifold in X).
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Differential groupoids (cont)

Differential groupoids

@ [ a manifold:

e m, e, s differential relations;

e m differential reduction;

em+ (mxid), mA (idxm), mA (idxe), mA (e xid);
Then e, er are surjective submersion.
Morphisms

h: T—>T' differential relation; m" + (h x h) and h 4 e.Then
f, : E' — E is smooth.
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Symplectic groupoids

Let ' == E be a differential groupoid. T is symplectic groupoid if T is
symplectic and m: [ x [ —T is a symplectic relation.

Then E is a Poisson manifold in a canonical way:

There exists unique Poisson bracket on E such that eg : [ — E is a
Poisson map.

If I, are symplectic groupoids, then morphisms are morphisms of diff
groupoids which are symplectic relations. Base maps of morphisms of
symplectic groupoids are (complete) Poisson maps.
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Tangent and cotangent lifts If [ =2 E is a differential groupoid then

TT = TE is a differential groupoid with the structure (Tm, Te, Ts) and
T*T = (TE)? is a differential groupoid with the structure

(T*m, T*e,—T*s).

e If X = X is a manifold then its cotangent lift is T*X = X (bundle
of groups).

o If G is a group then T*G =2 g* is a transformation groupoid G x g*
with the coadjoint action.

T and T* are functors on the category of differential groupoids (in fact
T* is a functor to the category of symplectic groupoids).
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