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Abstract

No robust mathematical formalism exists for nonperturbative quantum field theory. However, the

attempt to rigorously formulate field theory may help one understand its structure. Multiple approaches

to axiomatization are discussed, with an emphasis on the different conceptual pictures that inspire each

approach.
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1 Introduction

1.1 Personal perspective

What is quantum field theory? Rather than ask how nature truly acts, simply ask: what is this theory?

For a moment, strip the physical theory of its interpretation. What remains is the abstract mathematical

arena in which one performs calculations. The theory of general relativity becomes geometry on a Lorentzian

manifold; quantum theory becomes the analysis of Hilbert spaces and self-adjoint operators. What, then is

quantum field theory?

The appropriate arena for calculations remains unclear. Many physicists believe that quantum field

theory is precisely a quantum theory. Indeed, we use the language of Hilbert spaces and operators to

conduct calculations. But to a mathematician, there is rarely an actual Hilbert space or operator in sight.

Path integrals, too, are understood by analogy rather than precise mathematics. Under the critical eye,

quantum field theory amounts to a set of rules for manipulating formal integrals and operator symbols to

obtain scattering amplitudes. Of course, the critic is wrong: physicists wield a variety of heuristic notions

about the perceived mathematical structures beneath these rules.

Many physicists feel that these loose notions are sufficient. Maybe we understand our theory perfectly

well, so that rigor is an unnecessary luxury. On the other hand, I take the view that mathematics is clarity;

mathematics is knowledge of structure. If we seek strong mathematical foundations, it is not because we

are over-anxious about ε’s and δ’s. When Born realized that Heisenberg’s inscrutable calculations were best

cast in the language of matrices, he found a more suitable arena for quantum mechanics. And when von

Neumann identified Hilbert spaces as the appropriate setting for both matrix and wave mechanics, the new

formalism not only clarified calculations but also fostered insight on the logic behind the theory.

Yet rigorous formalism often comes only after the discovery process, not during or before. Is quantum

field theory unready for axiomatics? For instance, ’t Hooft suggested that if Wightman’s rigid axioms for

field theory had gripped the physics community in the 1950s, physicists may have missed new ideas like

Yang-Mills and string theory. Still, rigor need not stifle the imagination. The appropriate mathematical

setting will even suggest new avenues for generalization.

Critics of rigorous approaches also ask, why try to formalize a theory which may be only effective?

And while any physical theory is necessarily an approximation, the structure of the theory need not be

“approximate.” At the least, we should be able to formalize the perturbative renormalization techniques

used everyday. In fact, there is already significant work in this direction [1]. Nonetheless, few believe

quantum field theory has a mathematical structure revealed in its entirety by perturbative expansions. For

example, the expected mass gap in 4D Yang-Mills theory may be “invisible to perturbation theory” [2].

Finally, rigor will also foster a fruitful relationship with mathematics. As Witten speculated, “...the

relation between mathematics and physics will remain unsatisfactory unless the program of constructive

field theory is resumed in some form” [2].

1.2 Goals and outline

In what follows, I survey multiple rigorous approaches to quantum field theory (QFT). The material requires

modest familiarity with QFT as conventionally taught – the first few chapters of [3], for example. Modest
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breadth of mathematical knowledge will also be helpful. Otherwise, this paper should serve as a gateway for

the uninitiated.

I will begin by sketching various heuristic pictures of QFT. These pictures are alternately associated with

the Schrödinger wavefunctional, the algebra of local observables, the path integral, and the Fock space. Each

of these emphasizes a different way of thinking about field theory, and each indicates a different avenue for

formalization. The reader already comfortable with the relationships between the wavefunctional, the path

integral, and canonical quantization may skip this section. After these sketches, we identify the problems

with our naive mathematical expressions that prevent us from easily formalizing the theory. Then I present

different sets of axioms for QFT: those of Wightman (for the standard Hilbert space picture), Haag-Kastler

(for the algebraic picture), and Osterwalder-Schrader (for the Euclidean path integral picture). Finally, I

discuss difficulties and outlook.

I probably will not spoil the ending if I reveal now: the approaches surveyed ultimately fail to model the

field theories we use. Each approach presents coherent axioms but few working examples. The axioms might

begin,“The mathematical data of a quantum field theory consists of a Hilbert space H, a self-adjoint Hamil-

tonian operator H acting on H,” and so on. Given a particular quantum field theory with some spacetime

and Lagrangian, the challenge is then to construct this theory within the language of the axioms. To compli-

cate matters, the rigorous theory may not have an object that explicitly looks like the familiar Lagrangian

– we might never write down a φ4. So how do we recognize the that a rigorous formulation describes what

we call φ4-theory? It seems all we may ask is that the scattering amplitudes in our reformulation agree

with perturbative calculations. Ideally, the rigorous theory will also allow us to prove non-perturbative facts

inaccessible to perturbative techniques.

To date, constructions exist for free theories (the scalar bosonic Klein-Gordon field, the spin-1/2 Dirac

field) as well as some interacting theories in lower dimensions. What, then, do the axioms achieve? First,

we can prove a few interesting results about any model that does satisfy the axioms. For instance, the spin-

statistics and CPT theorems follow from both the Haag-Kastler and Wightman axioms. More importantly,

each approach provides a new perspective on field theory. Yet still, there are few examples of well-defined

interacting theories. Why have axiomatic constructions failed? Without specifying an answer, let the failure

simply be a warning. The warning is: no one knows the exact way to think about quantum field theory.

Some pictures are more naive or inconsistent, and some are more robust, but none is necessarily correct.

2 Sketches of quantum field theory

We begin with a quick tour of different pictures of quantum field theory, without attempting to make them

rigorous. Most of the expressions we write down will be naive, formal expressions, indicated with the symbol

≈. The expressions will be misleading if taken literally. Usually, the technical difficulties will concern

convergence or topology, but these issues may indicate profound problems.

2.1 Locality through tensor products

To arrive at our first picture, we ask: where is the notion of spatial locality in quantum mechanics? When we

model a single particle with Hilbert space L2(R3), the R3 represents space, but it is hard to define a notion

of locality in this setting. When we measure the position x̂ of the particle, this measurement appears to act
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globally, probing the wavefunction over all of space before collapsing it to a point. And for a free particle,

wavefunctions with compact support may appear localized, but they will time-evolve to have infinite support

within any nonzero time. Note that our Hilbert space L2(R)3 naively looks like a direct sum over space,

L2(R) ≈ span({|x〉 ,x ∈ R3}) ≈
⊕
R3

C. (1)

Evidently, the direct sum is not the appropriate structure for locality. Meanwhile, in the general quantum

theory of Hilbert spaces and observables, where one may model experiments without an explicit notion of

space, there is still an abstract notion of locality. This notion is usually encoded by tensor products. A

physical system with subsystems A and B has Hilbert space HA ⊗ HB, where the tensor factors HA and

HB are the Hilbert spaces associated with the individual subsystems. Observables of the form OA ⊗ 1 are

dubbed local to A. In particular, locality means locality with respect to a subsystem. These subsystems

may represent different spatial regions, or they may be more abstract. Under the standard interpretation,

observers local to a subsystem will only have access to the corresponding local observables. One may also

turn this around: the so-called locality of an observer is determined by which observables she can access.

In QFT, we seek a quantum theory that encodes spatial locality, a prominent aspect of our experience.

Our first picture of QFT is then a Hilbert space with a subsystem assigned to every point in space. With

this structure, we may consider observers local to different regions in space. Which Hilbert space should we

use to represent the individual subsystems? Most generally, we might choose the generic countably-infinite-

dimensional Hilbert space. (There is only one, up to isomorphism; see Section 3.1.) Equivalently, we accord

a continuous degree of freedom to each point in space: at every point x ∈ R3 we have a Hilbert space Hx

with a continuum of naive basis elements {|z〉x , z ∈ R}. Ignoring the difficulties of an uncountably-indexed

tensor product, we arrive at the Hilbert space

H ≈
⊗
x∈R3

Hx (2)

Hx ≈ span({|z〉x , z ∈ R} ≈ L2(R).

Though I presented loose physical motivation for this picture, I will not claim the reasoning was sound. Some

authors present conventional QFT as the inevitable marriage of special relativity and quantum theory [4, 5],

often starting from a particle-based perspective and arriving at fields after developing some particle-based

notion of locality. But it is difficult to make strong claims at the interface of different physical theories unless

both are placed within a common axiomatic setting. Here, we are more interested in the structure of the

theory, regardless of precise motivations.

So far, our notion of locality is spatial, not spatio-temporal. We imagine working in the Schrödinger

picture, where we have time-independent observables. Without ambiguity, an operator Ox : Hx → Hx is

understood also as a local operator Ox : H → H. If an observer is at location x, she may make measurements

with observables Ox. Meanwhile, states evolve in time and may be entangled. When we later venture from

the Schrödinger picture, terminology will become more complicated.
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2.2 Schrödinger (wavefunctional) representation

We have our Hilbert space; where are the fields? First we find a basis for H. Consider a finite tensor product⊗
i∈S Ai of finite-dimensional Hilbert space Ai = span({|j〉i , j ∈ T}. (Thus index sets S and T are finite.)

Then we may formally identify the basis of the composite space as the set of maps {φ : S → T},⊗
i∈S

span({|j〉i , j ∈ T} = span({φ : S → T )}. (3)

In other words, the basis for a tensor product may be given as the Cartesian product of the bases of the

tensor factors. For the Hilbert space H of Equation (2), S and T correspond to R3 and R. By analogy, we

might say that maps {φ : R3 → R} form a basis for H. If we do not want our states to vary wildly between

nearby tensor factors, we might restrict our basis to C(R3), the space of continuous maps R3 → R. Then

H ≈
⊗
x∈R3

Hx ≈ span(C(Rn)). (4)

We might call φ : R3 → R a field configuration, although the nomenclature is nonstandard. Field configu-

rations should not be confused with quantum field operators. We might also call C(R3) the configuration

space, in analogy to ordinary quantum mechanics. (There, we use the Hilbert space L2(R3) to model a

particle with classical configuration space R3.)

If we had a measure µ on the configuration space, then we could define H as the space of square-integrable

complex-valued functions of the field,

H ≈ L2(C(R3), µ). (5)

In fact, if we had a true measure, the above expression would be well-defined. (See Section 3.5 for an

introduction to this topic.) You might call an element of this space a wavefunctional, in analogy with the

wavefunction of non-relativistic quantum mechanics. In ordinary quantum mechanics, an element ψ ∈ L2(R3)

may be specified by a wavefunction ψ : R3 → C, which gives a complex number for each point x. Meanwhile,

an element Ψ ∈ L2(C(Rn)) may be specified by a wavefunctional Ψ[φ], which gives a complex number for

each field configuration φ : R3 → R. The naive basis elements |x〉 of L2(R) are analogous to the elements

|φ〉 of H.

We have now met the so-called Schrödinger representation or wavefunctional picture of QFT. Though

less common than other formalisms, the Schrödinger representation is sometimes used for field theory on

curved spacetime. For a non-rigorous but comprehensive exposition of the formalism including QED, a

good reference is Hatfield [6]. One may be tempted to think of the wavefunctional Ψ[φ] as a probability

amplitude for some classical field φ to be found in various configurations, directly analogous to the position

wavefunction of non-relativistic quantum mechanics. However, this interpretation is not promising. Would

this global wavefunctional collapse when measured by any observer? Does all interference then disappear?

Instead, we will focus on the local observables Ox.

Let us explore the tensor product structure (TPS) given by Equation (2) from the wavefunctional per-

spective. (We will call this the spatial TPS, in contrast to other tensor product structures considered later.)

Consider a partition of space into two disjoint regions, R3 = A
⊔
B. Then the configuration space splits

into a direct sum of vector spaces, C(R3) = C(A)⊕ C(B), which is a Cartesian product of underlying sets.
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In turn, L2(·) of a Cartesian product of sets (in particular, a direct sum of vector spaces) yields a tensor

product – recall, for instance, that L2(R2) = L2(R⊕ R) = L2(R)⊗ L2(R). So we have

H ≈ L2(C(R)) ≈ L2(C(A))⊗ L2(C(B)). (6)

In the notation of Equation (2), the space L2(C(A)) corresponds to HA ≈
⊗

x∈AHx, and likewise for

L2(C(B)). More generally, to any region A we assign a Hilbert space HA, and for any two disjoint regions

A and B we have

HAtB = HA ⊗HB (7)

This identity should also be evident directly from Equation (2).

To further understand the TPS of the Schrödinger representation, we can ask what it means for the

wavefunctional to be in an unentangled product state. A product state is a simple tensor, a state of the

form a⊗ b⊗ c... . From Equation (2), a product state Ψ ∈ H should be of the form

Ψ ≈
⊗
x∈R3

fx, (8)

where fx : R → C, zx 7→ fx(zx) is understood to be an element of Hx, in the sense of a wavefunction.

Translating to the Schrödinger representation, an unentangled state is of the form

Ψ[φ] ≈
∏
x∈R3

fx(φ(x)). (9)

For instance, if Ψ[φ] is the “δ-function” wavefunctional concentrated at the field configuration φ = φ0, we

have fx ≈ δ(φ(x)− φ0(x)). Hence the corresponding state |φ0〉 is a product state.

We would like to introduce local operators, local with respect to a point in space. Generically, an operator

local to x = x0 will be of the form
⊗

x∈R3\{x0}
⊗
Ox0 , for some operator Ox0 : Hx0 → Hx0 . Again, we may

also refer to Ox0 as an operator on H. Recalling Hx ≈ span({|z〉x , z ∈ R}, introduce the multiplication and

differentiation operators

ẑx :Hx → Hx, fx(zx) 7→ zxfx(zx) (10)

−i ∂̂
∂zx

:Hx → Hx, fx(zx) 7→ −i ∂
∂zx

fx(zx).

We may consider these as local operators on H, where they act on wavefunctionals like

(ẑxΨ) [φ] = φ(x)Ψ[φ] (11)(
−i ∂̂
∂zx

Ψ

)
[φ] = −i δ

δφ(x)
Ψ[φ]

and where the last expression denotes a functional derivative.
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Inspired by the above, define

φ̂(x) ≡ ẑx (12)

π̂(x) ≡ −i ∂̂
∂zx
≡ −i δ̂

δφ(x)
.

Call φ(x) a field operator and π(x) a conjugate momentum field operator. (I now take the liberty of dropping

the hat notation for operators.) We might alternatively call them operator-valued fields, because we have an

operator for each point x ∈ R3. The field operators act on Hx analogously to the traditional position and

momentum operators of quantum mechanics, and they satisfy the canonical commutation relations (CCR):

[φ(x), φ(y)] = 0 (13)

[π(x), π(y)] = 0

[φ(x), π(y)] ≈ iδ3(x− y).

For fixed x ∈ R3, algebraic combinations of π(x) and φ(x) should generate the algebra of all operators local

to Hx. For one reason why, consider the operators

αx = 1√
2
(φ(x) + iπ(x)) (14)

α+
x = 1√

2
(φ(x)− iπ(x)).

These act like ladder operators on Hx, raising and lowering the energy eigenstates of the simple harmonic

oscillator Hamiltonian Hx = α+
xαx + 1

2 = 1
2 (φ(x)2 + π(x)2). Any operator may then be constructed by

algebraic combinations of the raising and lowering operators. (This fact may still require some thought.)

When we arrive at the more conventional picture of QFT in Section 2.6, we will find that the φ(x)

operators are precisely the conventional field operators. Meanwhile, if we began with the conventional

picture of QFT using field operators φ(x), we could then reconstruct the states |φ0〉 ∈ L2(C(R3)) by asking

for the simultaneous eigenstates of operators φ(x) with corresponding eigenvalues φ0(x). (The field operators

φ(x) form a complete set of commuting observables.)

Armed with operators local to spatial points, we can write a local Hamiltonian. Just as in condensed

matter formalism, we call a Hamiltonian local when it is the sum of operators local to subsystems. The

time-evolution operator is then the tensor product of the time-evolution operators on each subsystem. Such

Hamiltonians are sometimes called ultra-local, and they are usually uninteresting: nothing moves. More

precisely, if observables local to different regions are uncorrelated, they will remain uncorrelated for all time.

More general local Hamiltonians will also include interaction terms that couple neighboring subsystems;

here, that means interaction terms acting on Hx ⊗ Hx+∆x. When we assign subsystems to spatial points,

the notion of neighboring subsystems is vague, but we may imagine that operators like ∂xφ(x)|x=x0
=

lim∆x→0
1

∆x (φ(x0 + ∆x)− φ(x0)) couple neighboring points. The generic local Hamiltonian then looks like

H =

∫
x∈R3

{combinations of φ(x), π(x), and their spatial derivatives} d3x. (15)

For instance, we will soon discuss the “free” Hamiltonian of Equation (24). The term “free” is best
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understood from the particle perspective of Section 2.6, where the free Hamiltonian is understood to describe

free (non-interacting) particles moving through space. The term also indicates that the Hamiltonian is only

quadratic in the field operators, whereas higher powers are considered interaction terms. One may formally

calculate the vacuum wavefunctional for the free Hamiltonian, obtaining [6]

Ψ0[φ] ∝ e−G[φ] (16)

where

G[φ] =
∫
R3×R3 φ(x)g(x,y)φ(y) d3x d3y,

g(x, y) =
∫
R3

1
(2π)3ωke

ik·(x−y) d3k,

ωk =
√

k2 +m2. (17)

Recalling Equation (9), we see that the ground state would be a product state if g(x, y) ∝ δ(x − y), but

in fact the ground state here is highly entangled. This should be no surprise, given that the Hamiltonian

couples neighboring subsystems. When physicists speak of vacuum entanglement in field theory, it is often

in this sense, with respect to the spatial TPS.

2.3 Poincaré invariance and microcausality

In addition to being local, our Hamiltonian should satisfy what is called microcausality, and predictions

should furthermore be Poincaré-invariant. These are conditions on the time-evolution specified by the

Hamiltonian. To define microcausality, consider operators Ox and Ox′ local to Hx and Hx′ respectively.

Until now, the development has been imagined in the Schrödinger picture; Ox and Ox′ are static operators

used to represent local operations defined for all time. Now let us work in the Heisenberg picture, where

formally the states and operators of both pictures will coincide at t = 0. That is, φ(x, t) ≡ U(t)−1φ(x)U(t)

and π(x, t) ≡ U(t)−1π(x)U(t) for time-evolution operator U(t).

We must be careful when thinking about the locality of operators in Schrödinger and Heisenberg pictures.

If the Schrödinger-picture operator Ox is local to x in the sense of the spatial TPS of Equation (2), then the

Heisenberg-picture operator Ox(t) is also local to x when t = 0, precisely because Ox(t = 0) = Ox. But the

operator U−1(t)OxU(t) is generically not local to x for some value of t 6= 0.

On the other hand, if we were thinking in the Heisenberg picture, we would call Ox(t) a local observ-

able. That is, it models the Schrödinger-picture observable Ox used at time t by an observer local to x.

For a Heisenberg-picture state |ψ〉, or equivalently a Schrödinger-picture state |ψ(t = 0)〉, 〈ψ|Ox |ψ〉 is the

expectation value for an observer locally measuring Ox at time t. So when we call some operator local or

non-local, we must have in mind which picture we are using. I will denote a Heisenberg-picture operator

Ox(t) ≡ Ox for x = (x, t) ∈ R4 and call this operator local to x. (Note the distinction between the symbol

x ∈ R4 and the bold-faced x ∈ R3, which will be used to indicate operators in different pictures.) We might

simultaneously say that Ox is non-local to x ∈ R3, where we temporarily consider Ox = U(t)−1OxU(t) as a

Schrödinger-picture operator.

Although we will not pursue it, another way to deal with these different notions would be to define a

TPS that evolves in time, so that the locality of an operator is only specified with respect to a certain time.
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Some authors (see [7]) adopt the perspective that tensor product structures on Hilbert spaces are naturally

induced by specifying commuting sub-algebras of accessible observables. Indeed, this perspective may make

the most sense from an operational perspective, where we often take observables describing operational setups

as primitive, rather than positing a pre-existing TPS on a Hilbert space. (In field theory, this perspective

has the additional advantage that it gives us a new way to think about space: space “emerges” when we

abstractly specify our algebra of observables along with which observables are accessible and compatible.)

If the accessible observables are then evolving in time with the Heisenberg picture, the relevant TPS should

as well. This time-dependent Heisenberg picture of locality would also prompt us to say that Ox is local to

x for x ∈ R4, just as in the above paragraph.

With this notation, microcausality is the statement that

[Ox, Ox′ ] = 0 for (x− x′) spacelike. (18)

If an operator is local to x, it will not stay local, but microcausality implies that the support of the operator

grows no faster than the speed of light. Here, the support of an operator is the set of tensor factors on

which the operator acts non-trivially, and we then associate these tensor factors with a region of space. In

other words, the support of an operator is the smallest spatial region with respect to which the operator is

local. Under the conventional interpretation adopted here, microcausality means that operations (unitary

transformations and measurements) performed by local observers cannot affect measurement outcomes in

a spacelike-separated region. The fact that local Hamiltonians most easily satisfy microcausality is the

probably best motivation for local Hamiltonians.

Meanwhile, defining Poincaré invariance of the theory is less straightforward. The difficulty is conceptual:

in the framework described so far, there has been no indication of what a boosted observer will observe.

We require additional theoretical or empirical input. Drawing on intuition from special relativity, we may

suppose that if one observer performs an operation Ox local to x ∈ R4, another observer will consider it

as some operation O′gx local to gx, for the appropriate Poincaré transformation g : R4 → R4. Here, g is

an element of the Poincaré group G = R1,3 o SO(1, 3). Thus what one observer calls π(x) or φ(x) another

observer will identify as some combination of π(gx) and φ(gx). More specifically, the change of reference

frame will be encoded by an automorphism of the observables. These automorphisms may be given by a

map

α : G→ Aut(A) (19)

g 7→ αg (20)

such that

αg(Ox) = O′gx (21)

This emphasis on the algebra of local observables and their transformations leads to the program of

algebraic quantum field theory (AQFT). The traditional axioms for AQFT are the Haag-Kastler axioms,

discussed in Section 4.2. Dually, we could consider specifying the Poincaré transformations of the Hilbert

space. We might expect we can implement the automorphisms αg as unitary elements Ug on the Hilbert

space that act by conjugation on the observables. That is, we equip H with a unitary representation U of
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the Poincaré group such that

U : G 7→ {Unitaries on H} (22)

g 7→ U(g)

U(g)−1OxU(g) = αg(Ox) = O′gx.

(To allow for spin, we would need to consider projective representations of G, and we would also need to use

a different Hilbert space Hx. Here, we focus on scalar fields.)

We also need to specify an additional consistency requirement: time-translation via the representation of

the Poincaré group should coincide with Hamiltonian time-evolution. That is, for time-translation gt ∈ G,

we require

U(gt)
−1Ox0,t0U(gt) = eiHtOx0,t0e

−iHt = Ox,t0+t. (23)

In other words, the notations U(gt) and U(t) ≡ e−iHt should coincide.

Meanwhile, in textbook development of field theory, we often begin with fields φ(x) and π(x) that

transform in a prescribed way under rotations and spatial translations. Then we write down some candidate

Hamiltonian H in terms of our fields, possibly with interactions, and this H generates some time-evolution.

Finally, H is called Poincaré-covariant if there is some representation of the Poincaré group for which H

generates time-translations and for which the subgroup of rotations and spatial rotations acts as already

prescribed. From this perspective, Poincaré covariance is a condition on H which may be checked for a given

expression of H in terms of the field operators. Alternatively, one might begin with some representation of

the Poincaré group, and then the Hamiltonian is defined as the generator of time-translation, eliminating

the need for a further consistency check.

Note that a Lorentz-covariant Hamiltonian will not be Lorentz invariant. (Hence I say “Lorentz-

covariant” Hamiltonian but “Lorentz-invariant” theory.) In other words, H will transform non-trivially

under the Lorentz group. One way to see this is that H is the generator of time-translations, and time-

translations and boosts do not commute in the Poincaré group. A Lorentz-covariant Hamiltonian will lead to

a theory with Lorentz-invariant predictions, where here the meaning of Lorentz invariance is tautologically

encoded by Equations (22) and (23).

The above discussion of Lorentz transformations may appear ad hoc. And perhaps it is, because special

relativity has no obvious place in the framework of abstract quantum theory. The story of special relativity

involves clocks, rulers, light, and bodies in motion. From this story, one derives the Lorentz transformations

and how a moving body has different momenta measured by different observers. With this story in mind,

perhaps Lorentz transformations in QFT are more satisfactorily approached from a particle picture. In that

setting, we may define Lorentz transformations by how they act on a single-particle state |k〉 of a given

momentum k ∈ R3. This definition will coincide with the one given above.

Regardless, we have our definition of Lorentz invariance, and it involves the interrelationship given by

Equation (23) between the Hamiltonian and the representation of the Poincaré group. Now, we present an

example of a Hamiltonian and Poincaré group representation that satisfy these requirements: the scalar field

and the free Hamiltonian. By definition, the scalar field φ(x) transforms as φ(x) 7→ φ(Λx) under Lorentz
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transformations. The free Hamiltonian is defined by

H =
1

2

∫
R3

π(x)2 +m2φ(x)2 + |∇φ|2 d3x. (24)

The π(x)2 +m2φ(x)2 term may be thought of as the simple harmonic oscillator Hamiltonian on subsystem

Hx with oscillating degree of freedom |z〉x ∈ Hx, while the |∇φ|2 term couples neighboring oscillators.

We also define π(x) 7→ π(gx) for translations and rotations g. Then consistency with equations (22) and

(23) already determines how the field π(x) must transform under boosts. Specifically, one may calculate

π(x) = ∂tφ(x), so the Lorentz transformation properties of π(x) are determined by those of ∂t and φ(x).

Finally, one may verify that the fields will satisfy the microcausality of Equation (18).

Using the same fields φ(x), π(x) with the same transformation properties under translations and rotations,

one may also define an interacting Hamiltonian such as

H =
1

2

∫
R3

π(x)2 +m2φ(x)2 + λφ(x)4 + |∇φ|2 d3x. (25)

Consistency with equations (22) and (23) will then determine how the fields transform under boosts, and

the fields will satisfy microcausality.

We now pause to collect these notions into our first, loose definition for a scalar quantum field theory.

The axioms should apply to free or interacting theories alike.

Informal axioms (Informal axioms for a real scalar QFT from a Hilbert space perspective). A quantum

field theory consists of the following:

1. A Hilbert space H,

2. self-adjoint field operators φ(x) and π(x) for all x ∈ R3, satisfying the canonical commutation relations

of Equation (13),

3. unitary representation U of the Poinare group G, U : g 7→ U(g), and

4. Hamiltonian H that generates the time-translation of the Poincaré group, i.e. U(gt) = e−itH for

time-translation gt ∈ G.

The field operators and Poincaré group representation must further satisfy

U(g)−1φ(x)U(g) = φ(gx) (26)

for x ∈ R4 and Heisenberg-picture operators φ(x) = φ(x, t) = eitHφ(x)e−itH .

The above axioms are similar in spirit to the Wightman axioms of Section 4.1. Technicalities aside, the

primary distinction of the Wightman axioms is the use of fields smeared over spacetime, as discussed in

Section 3.3.

2.4 Experimental predictions

As we investigate and formalize quantum field theory, we are free to employ whichever mathematical struc-

tures we choose. But our search for the right structure is ill-posed unless we demand certain outputs from
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our theory. These outputs are experimental predictions. For particle physicists using quantum field theory,

the predictions are mostly about scattering. In the conventional Hilbert space framework, the data used

to make these predictions is encoded in the (time-ordered) vacuum expectation values of field operators,

〈Ω| T (φ(xn)...φ(x1) |Ω〉, where T (·) denotes time ordering. This data be understood in terms of the map

(x1, ..., xn) 7→ 〈Ω| T (φ(xn)...φ(x1) |Ω〉 , (27)

also called an n-point correlation function. It is precisely these correlation functions that particle physicists

use to make predictions about scattering experiments. To translate a correlation function into a scattering

prediction, one uses the LSZ formula, which relies on the particle picture. Is this translation from theoretical

formalism to experimental prediction consistent with the elements of interpretation already introduced? In

particular, we have already discussed the interpretation of φ(x) and π(x) as local operators available to an

observer at position x and time t, and we have also specified how to model observers in different inertial

frames. Are these interpretations consistent with the way in which the theory is actually used to produce

scattering experiments? The answer is probably yes; for a related discussion, see Sections II.3 and VI in [13].

Meanwhile, which sort of data do we use to specify a particular quantum field theory? We typically

specify a theory by some Hamiltonian and list of field or particle contents. For a real scalar field theory,

this amounts to specifying the interaction term, such as φ4, whereas in the Standard Model, we specify

several fields and a complicated Lagrangian. Even if one develops a formalism without a Hilbert space or

Hamiltonian, there will likely be some way of describing different models. Then our general framework for

quantum field theory becomes a map

QFT : [Hamiltonian or similar specification] 7→ correlation functions , (28)

where the LHS is a specification such as φ4 or the Standard Model Lagrangian. In each formulation of

quantum field theory we must produce an object like the correlation functions. Of course, new theories of

high-energy physics may characterize models and predictions in a completely different way, so that neither

the LHS nor the RHS of the above retains the same character. But we might not call these theories QFT.

2.5 Path integral picture

From the picture of the wavefunctional and Hamiltonian, we may easily move to the path integral and

Lagrangian formulation. The general procedure for writing a path integral in quantum theory proceeds as

follows. For a Hilbert space H with Hamiltonian H and basis {|ai〉 , i ∈ S} in the Schrödinger picture,

we seek to find an expression for matrix elements U(T )ij = 〈ai|U(T ) |aj〉 of the time-evolution operator

U(T ) = e−iHT . To do so, we write U(T ) ≈ U(ε)n, ε = T
n . Then as n→∞,

U(T )ij ≈ (U(ε)n)ij ≈
∑

(k1,...,kn)∈Sn

U(ε)ik1U(ε)k1k2 ...U(ε)knj (29)

The element (k1, ..., kn),∈ Sn may be rewritten as a map f : {1, ..., n} → S. For large n, we may reinterpret

f as a path f : [0, T ] → S where km = f(mn T ). Hence we reinterpret the RHS above as a sum over paths.

(The paths may be loosely interpreted as either trajectories in space or simply “paths” through the matrix
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entries of U(ε) that constitute the product U(ε)k1k2 ...U(ε)knj .) Meanwhile, the matrix element U(ε)kmkm+1

may be interpreted as a map (km, km+1)→ C, or likewise a map F : (f(t), f ′(t))→ C, recalling f(mn T ) = km.

Then the time-evolution operator generically becomes the path integral

U(ε)ij ≈
∫

f∈C([0,T ])
f(0)=i,f(T )=j

∏
t∈[0,T ]

F [f(t), f ′(t)]Df. (30)

also called a functional integral. The symbol Df indicates some (possibly non-existent) formalization of

the limiting process used to produce this equation from the previous. Assuming F is nonzero, we may use

G = log(F ) to write

U(ε)ij ≈
∫

f∈C([0,T ]
f(0)=i,f(T )=j

exp

(∫ T

0

G[f(t), f ′(t)] dt

)
Df (31)

Again, we have re-expressed the time-evolution operator as a sum over paths f : [0, T ] 7→ S, for Hilbert

space H with a basis set indexed by S. The integrand is the exponential of a functional of f , and this

functional is local in time.1 If H is written in terms of operators q and p obeying the CCR, and if S labels

eigenstates of q, one calculates that G is actually the Lagrangian L that corresponds classically to H via

Legendre transformation.2 We see this in the Feynman path integral for ordinary quantum mechanics.

The above may be extended to the case that H has a TPS given by H =
⊗

x∈X Hx, where Hx has basis

set indexed by S. Then for H local with respect to the TPS, the time-evolution operator becomes an integral

over “paths” f : [0, T ]×X 7→ S, and the integrand is the exponential of a functional local in both time and

X-space.

Returning to our particular Hilbert space H with its spatial TPS, we apply the above statement with

S = R and X = R3. The time-evolution operator becomes an integral over the space of fields configurations

on a band of spacetime [0, T ]×R3, or the space C([0, T ]×R3). Due to the canonical commutation relations of

Equation (13), the local functional C([0, T ]×R3)→ R turns out to be the Lagrangian (density) L classically

associated to the Hamiltonian H. We write

〈φf |U(T ) |φi〉 ≈
∫

ϕ∈C([0,T ]×R3)
s.t.ϕ(0)=φi,ϕ(T )=φf

eiS[ϕ]Dϕ (32)

S[φ] ≈
∫

[0,T ]×R3 L(ϕ(x),∇ϕ(x), ∂tϕ(x)) d4x.

This time-evolution operator will entangle the subsystems associated with different spatial regions, which

may be traced to the fact that H is not ultralocal, due to the presence of the |∇φ(x)|2 term.

In the Schrödinger picture, we have the time-dependent wavefunctional

Ψ[φ, t] =

∫
φi∈C(R3)

∫
ϕ∈C([0,T ]×R3)

s.t.ϕ(0)=φi,ϕ(T )=φ

eiS[ϕ]Dϕ

Ψ[φ, 0]Dφi (33)

1A functional A : C(Rn,R) → R is called local if it may be written as A[f ] =
∫
Rn a(f(x), f ′(x), ..., f (n)(x)) dx for some

function a : Rn → R with n ∈ N.
2This may seem implausible: what does time-evolution by a quantum Hamiltonian have to do with classical mechanics or

the Legendre transformation? But if [x, p] = 1 and H = H(x, p), then we obtain Heisenberg-picture equations ẋ = [x,H] = ∂H
∂p

and ṗ = [p,H] = − ∂H
∂p

, which exactly mirror Hamilton’s equations. This fact is connected to the appearance of the classical

Lagrangian in the path integral.
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Of course, we have been careless with convergence, and the functional integration is not well-defined.

However, imagine that we calculate the expression for U(T ) using a finite-volume spatial box B, so that the

integral runs over field configurations on the finite spacetime region B×T . Now discretize B×T into a finite

lattice L with points (xi, tj) ∈ L. Then U(T ) of Equation (32) becomes an integral over a finite number

of real variables φxitj that represent field values at points in (xi, tj). Hence we have a finite-dimensional

integral over R|L|. One might hope that this integral actually converges. Yet the integral contains factors

almost identical to the following (where some irrelevant constants have been removed):∫
φxitj

∈R
e
−iTφ2

xitj dφxi,tj (34)

These integrals are ill-defined. On the other hand, if we imagine that U(T ) is analytic in T , then we may

evaluate U(T ) for complex T . In the case that Im(T ) < 0, the above integral becomes well-defined; here,

we happen to obtain
√
π/
√
iT for function

√
(·) with branch cut along R−. Although the integral is not

well-defined for Im(T ) = 0, we may formally assign it a value by analytic continuation from the expression

with Im(T ) < 0. In the example, that would mean using the functional form
√
π/
√
iT to assign a value

to the integral for T ∈ R. In this way, the discretized path integral becomes well-defined. In general, the

formal continuum path integral will remain ill-defined. If we characterize the discretization by some cutoff

parameter, the quantities defined by the discretized path integral will be well-defined but cutoff-dependent.

Making sense of the cutoff-dependence is associated with Wilsonian picture of renormalization in perturbative

quantum field theory.

For notational convenience, we define a parameter τ ≡ −iT and use T to denote the real, physical time.

This procedure is called a Wick rotation, and τ is sometimes called imaginary time. The (discretized) integral

expression for U(τ) is then well-defined. In this case, the continuum path integral becomes

〈φf |U(τ) |φi〉 ≈ 〈φf |U(−iT ) |φi〉 (35)

≈
∫

ϕ∈C([0,T ]×R3)
s.t.ϕ(0)=φi,ϕ(T )=φf

e−SE [ϕ]Dϕ ,

SE [φ] ≈
∫

[0,T ]×R3

L(ϕ(x),∇ϕ(x), i∂tϕ(x)) d4x

where SE [φ] is called the Euclidean action. Note the changes in factors of i. Formally, the Euclidean action

looks like the ordinary action but with Euclidean metric replacing Minkowski metric. An easy way to see

how Equation (35) formally comes from Equation (32) is to work with the discretized versions of these

expressions. Consider the discretized expression for Equation (32) – that is, the finite-dimensional integral

described above. This expression will depend on T . If one replaces T with τ = −iT , the resulting expression

is then identical to what is found when discretizing Equation (35). As discussed, this discretized Euclidean

path integral is a well-defined finite-dimensional integral for Im(τ) < 0. To evaluate the matrix elements of

U(T ), we will need to use Equation (35) and analytically continue to U(iτ) = U(T ).

We have defined what we mean by functional integral (at least in the discretized case) by using the

Euclidean formulation. This definition will actually allow us to calculate the vacuum wavefunctional from

the functional integral. To see how, note the following. In the Schrödinger picture, for a Hamiltonian H
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with vacuum state |Ω〉 and vacuum energy E0, then for states |ψi〉 , |ψf 〉, the limit

lim
T→∞

〈ψf |U(T ) |ψi〉 = lim
T→∞

〈ψf | e−iHT |ψi〉 (36)

is generically undefined. However, if we consider the analytically-continued time-evolution operator U(T (1−
iε)) for ε > 0, the limit

lim
T→∞

〈ψf |U(T (1− iε)) |ψi〉 = lim
T→∞

〈ψf | e−iHT (1−iε) |ψi〉 (37)

≈ 〈ψf |Ω〉 〈Ω|ψi〉 e−iE0T e−εE0T

appears well-defined. (It may be computed by expanding |ψi〉 in terms of energy eigenstates.) Now, in our

case, the path integral expression for U(T ) is actually defined for Im(T ) < 0 and then analytically continued

to T ∈ R. So we expect that the path integral expression for 〈ψf |U(T ) |ψi〉 to act as in Equation (37)

when ε→ 0, yielding 〈ψf |Ω〉 〈Ω|ψi〉 e−iE0T . In other words, the path integral expression for U(T ) should be

proportional to |Ω〉 〈Ω| as T →∞. Then we may write

Ψ0[φ] ∝
∫
ϕ∈C([−∞,0]×R3)

s.t.ϕ(0)=φ

eiS[ϕ]Dϕ (38)

where we integrate over the half-spacetime C([−∞, 0]×R3). In this form especially, one may see the vacuum

is invariant up to phase under time-evolution by Equation (32): time-evolution merely extends the domain

of integration in Equation (38) to C([−∞, t] × R3), but this yields the same wavefunctional. If we add a

constant to the Hamiltonian so that the vacuum energy is zero, the phase factor disappears.

Repeating the above reasoning for U(−iT ), one finds a similar Euclidean expression for the vacuum

wavefunctional,

Ψ0[φ] ∝
∫
ϕ∈C([−∞,0]×R3)

s.t.ϕ(0)=φ

e−SE [ϕ]Dϕ (39)

We may use our path integral expression for the vacuum to calculate correlation functions. Consider

the vacuum expectation of field operators in the Heisenberg picture, 〈Ω|φ(xn, tn)...φ(x1, t1) |Ω〉, where we

assume tn > ... > t1. Then

〈Ω|φ(xn, tn)...φ(x1, t1) |Ω〉 = 〈Ω|φ(xn)U(tn − tn−1)...U(t2 − t1)φ(x1) |Ω〉 (40)

where we move to Schrödinger-picture operators on the RHS. Inserting partitions of unity and using Equation

(32) to replace the time-evolution operators, one eventually obtains

〈Ω| T (φ(xntn)...φ(x1, t1)) |Ω〉 = ... (41)

=

∫
ϕ∈C(R4)

eiS[ϕ]ϕ(xn, tn)...ϕ(x1, t1)Dϕ∫
ϕ∈C(R4)

eiS[ϕ]Dϕ
.

The denominator comes from the modulus of the RHS of Equation (38) and provides the right normalization.
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Alternatively, we may use the Euclidean formulation. One finds

〈Ω| T (φ(xn,−itn)...φ(x1,−it1)) |Ω〉 = ... (42)

=

∫
ϕ∈C(R4)

e−SE [ϕ]ϕ(xn, tn)...ϕ(x1, t1)Dϕ∫
ϕ∈C(R4)

e−SE [ϕ]Dϕ
.

Again, to interpret this, we first assume the correlation function on the LHS of Equation (42) is some analytic

function with domain (x1, t1, ...,xn, tn). Then we analytically continue the domain to (x1,−it1, ...,xn,−itn).

Meanwhile, the discretized and finite-volume version of the RHS is well-defined, and we write the formal

continuum limit. Nothing particularly strange has happened. In general, when one cannot calculate values of

some analytic function f : C→ C on the subset R ⊂ C of the domain, it may be easier to find an expression

for f restricted to another part of the domain. Afterward, one may analytically continue the function back

to the subset R ⊂ C. This is a well-posed calculational technique for analytic functions.

The path integral picture is sometimes referred to as the Lagrangian picture, emphasizing the presence of

the Lagrangian in the path integral. Poincaré-invariance is more manifest in this picture. Recall from Section

2.3 that when given fields with specified Poincaré transformation properties, it is nontrivial to check whether

a particular Hamiltonian expressed in terms of the fields is appropriately covariant, but this verification is

needed for a Lorentz-invariant theory. On the other hand, consider a Lagrangian that is Poincaré-invariant,

in the sense that the expression for the action will remain unchanged under a coordinate transformation

x 7→ Λx. We may use the Lagrangian to define correlation functions (without every worrying about a

Hilbert space, for instance), and then the Poincaré-invariance of the Lagrangian will directly imply the

Poincaré-invariance of the correlation functions. Thus the experimental predictions of a theory defined by a

Poincaré-invariant Lagrangian are automatically invariant. Note that similarly, invariance of the Euclidean

action under Euclidean transformations on spacetime will directly imply the Poincaré-invariance of the

correlation functions.

2.6 Particles and the Fock space

The vacuum may also be understood by adopting a new basis for the configuration space of fields. We use

basis φ̃(k) ≡
∫
R3

1
(2π)3φ(x)e−ik·x d3x. This new basis for the configuration space also defines a new TPS for

H, here called the k-space TPS, different from the spatial TPS considered before. (By analogy, it may help

to consider how changing basis on R2 changes the TPS associated with L2(R2) = L2(R) ⊗ L2(R).) In the

new k-space TPS, there is a tensor factor associated with every point in k-space, with degree of freedom

φ̃(k). Because φ̃(k) is complex, there are actually two real degrees of freedom, Re(φ̃) and Im(φ̃), associated

with each point k. We could write

H ≈
⊗
k∈R3

Hk (43)

where Hk = C2. There are associated operators φ̃(k) ≡
∫
R3

1
(2π)3φ(x)e−ik·x d3x, where φ̃(k) are new

operators and φ(x) are the field operators already introduced. (This equation is different from the previous

only because φ now denotes operators; one might also use the hat notation.) These new operators are local

in the k-space TPS.
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In the new notation and associated TPS, the vacuum wavefunctional becomes

Ψ0[φ̃] ∝ exp

(
−1

2

∫
R3

1

(2π)3
ωk|φ̃(k)|2

)
d3k, (44)

as in [6]. This state is evidently unentangled with respect to the k-space TPS. In particular, it is the product

of Gaussian wavefunctions. To further simplify the Hamiltonian, we introduce ladder operators

ak ≈
∫
R3 e
−ik·x(ωkφ(x) + iπ(x)) d3x (45)

a+
k ≈

∫
R3 e
−ik·x(ωkφ(x)− iπ(x)) d3x (46)

[ak, a
+
k’] ≈ (2π)3δ3(k− k′).

We may then write the Hamiltonian as

H ≈ 1

2

∫
R3

ωka
+
k ak d3k. (47)

When formally calculating this expression, a term [a+
k , ak] ∝ δ3(0)→∞ arises, which we then ignore. This

constant is sometimes considered the infinite zero-point energy of the vacuum. The infinite constant also

disappears if one uses the ubiquitous normal ordering procedure, in which one moves operators a+
k to the left

of ak in all expressions while simultaneously ignoring the commutator term. The need for a normal ordering

prescription may be understood as a consequence of not using the smeared fields discussed in Section 3.3.

By considering the free Hamiltonian in the k-space TPS, we will transition to a particle or Fock space

picture of quantum field theory. First note the free Hamiltonian is ultralocal with respect to the k-space TPS,

and time-evolution of product states is therefore simple. Likewise, eigenstates written in this TPS are easy

to find. In general, when a Hamiltonian is written as a sum of local terms, one may find eigenstates simply

by diagonalizing each term individually. Here, the individual terms ωka
+
k ak are familiar as a description of a

harmonic oscillator. The free Hamiltonian therefore describes harmonic oscillators at each point in k-space,

and these oscillators are uncoupled, in contrast to the oscillators associated with the spatial TPS. One then

finds a basis of eigenstates of the form a+
k1
...a+

kn
|Ψ0〉, called Fock states, where |Ω〉 is the vacuum state |Ψ0〉.

The Fock states may also be written as a+
k1
...a+

kn
|Ω〉 = |k1...kn〉. Because a+

k and a+
k′ commute, the order

of the ki in the expression |k1...kn〉 does not matter: |k1k2〉 and |k2k1〉 denote the same state. So a Fock

state is fully characterized by the number of times nk that each value k ∈ R3 appears among the particular

ki listed. In other words, we may specify a Fock state by a list of occupancy numbers {nk,k ∈ R3} with

nk ∈ N.

Under the standard interpretation, a Fock state describes a situation with nk particles of three-momentum

k. For instance, a+
k |Ω〉 = |k〉 is a single-particle state describing a particle with momentum k, and a generic

Fock state is a multi-particle state with
∑

k∈R3 nk particles.

We might also write |k1...kn〉 as |k1〉⊗ ...⊗|kn〉, but this notation is slightly misleading because |k1k2〉 =

|k1〉 ⊗ |k2〉 and |k2k〉 = |k2〉 ⊗ |k〉 denote the same state. If we call H1 ≈ span({|k〉 ,k ∈ R3}) the space

of single-particle states, then the space H2 of two-particle states might be defined as Sym(H1 ⊗H1), where

Sym(·) indicates taking the quotient of the tensor product by the equivalence relation a ⊗ b ∼ b ⊗ a. More

generally, Hn ≡ Sym(⊗nj=1H1) = Sym(H⊗n1 ) is the space of n-particle states, where Sym(·) indicates the
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fully-symmetrized tensor product, i.e. a quotient by the appropriate equivalence relation.

With the above in mind, the Hilbert space for the theory may be written

H = FSym(H1) ≡ C⊕
⊕∞

n=1Hn (48)

Hn ≡ Sym
(⊗n

j=1H1

)
H1 ≈ span({|k〉 ,k ∈ R3}).

Again, the space H1 is called the single-particle Hilbert space, Hn is the space of n-particle states, and C is

H0, the vacuum eigenspace. The construction FSym(·) is called the Fock construction and H = FSym(H1)

is the Fock space.

The construction does not depend on the choice of basis for H1, but creation and annihilation operators

must be defined with respect to single-particle states. The operators a+
k produce single-particle states

in momentum state |k〉 ∈ H1, but more generically we could define a+
v to create a single-particle state

v ∈ H1 and thereby produce a set of ladder operators av, a
+
v . For a change of basis on H1 defined by

|vi〉 =
∑
jMij |wj〉, we have a+

v =
∑
jMija

+
w . Applying this formula to the position basis {|x〉 ,x ∈ R3} of

H1, we have

a+
x =

∫
R3

1
(2π)3 e

−ik·xa+
k d3k (49)

ax =
∫
R3

1
(2π)3 e

ik·xak d3k.

Note that these ladder are different from the ladder operators α+
x , αx defined in Equation (14).

2.7 Localized particles

The occupancy numbers suggest that the Fock space has an overall TPS. To be specific, given of a choice of

basis {|ai〉 , i ∈ S} of H1, the Fock space may be written with TPS

H ≈
⊗
i∈S

span({|0〉i , |1〉i , |2〉i ...}). (50)

Here, |n〉i represents the occupancy number of single-particle state |a〉. Evidently, this TPS depends on the

choice of basis for H1. The creation and annihilation operators with respect to this single-particle basis

will be local in the resulting TPS. If we choose the naive momentum basis {|k〉 ,k ∈ R3}, the resulting

TPS is precisely the k-space TPS already discussed. On the other hand, if we choose the position basis

{|x〉 ,x ∈ R3}, we do not obtain the spatial TPS of Equation (2). We will call this other TPS the Fock

position TPS. To see why the spatial TPS and Fock position TPS are inequivalent, recall φ(x) is local in

the spatial TPS. Using Equation (45) to solve for φ(x) and then using Equation (49), one finds that φ(x) is

of the form
∫
R3 f(x)a+

x + g(x)ax d3x for functions f, g with non-local support. But a+
x and ax are local to

x with respect to the Fock position TPS, so φ(x) cannot be, and the TPS must be different.

Which TPS should be considered significant for spatial locality? The spatial TPS was essentially postu-

lated to have physical significance, e.g. self-adjoint local operators Ox : Hx → Hx were assumed to be the

observables accessible to an observer located at position x ∈ R3. Still, we can explore the question further

by considering the states a+
x |Ω〉 and φ(x) |Ω〉, created by acting on the vacuum with an operator local to
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the Fock position TPS and spatial TPS, respectively. The state a+
x |Ω〉 is the one-particle state associated

with the state |x〉 ∈ H1, so one may be tempted to think it represents a single particle localized to x ∈ R3.

On the other hand, the state φ(x) |Ω〉 also suggests an interpretation as a localized one-particle state. But

φ(x) |Ω〉 6= a+
x |Ω〉, which is evident from the fact that the spatial TPS and Fock position TPS are different.

Which of these two states, if any, should represent a localized particle?

If we accept the spatial TPS, the proposal that φ(x) |Ω〉 represents a localized particle has the advantage

that this state is created by operating locally on the vacuum. Recalling the discussion of microcausality,

the state φ(x) |Ω〉 has other nice properties: it evolves in time like φ(x, t) |Ω〉, and φ(x, t) is an operator

whose support grows at the speed of light. Most importantly, measurements local to y ∈ R4 will not detect

the presence of a particle described by φ(x) |Ω〉 when (x − y) spacelike, i.e. measurements at y will not

distinguish between φ(x) |Ω〉 and the vacuum.

One may object that even though φ(x) |Ω〉 and φ(y) |Ω〉 are supposed to describe particles local to

different points, these states are not orthogonal; indeed, their inner product 〈Ω|φ(x)φ(y) |Ω〉 is related to

the Feynman propagator. The implication is that if we make a projective measurement on φ(y) |Ω〉 that

projects onto the ray φ(x) |Ω〉, then the state φ(y) |Ω〉 might “collapse” to φ(x) |Ω〉 for some x arbitrarily far

away. Alternatively, note that the φ(x) |Ω〉 states are not analogous to the position states |x〉 of quantum

mechanics: there is no analogous position observable X̂ on the QFT Hilbert space for which φ(x) |Ω〉 and

φ(y) |Ω〉 are orthogonal eigenstates.

On the other hand, the states a+
x |Ω〉 are orthogonal for different x ∈ R3, so they are good candi-

dates for “position eigenstates” of some QFT position observable. This way of thinking is related to the

Newton-Wigner localization scheme, in which one constructs such position observables. Using the position

states a+
x |Ω〉, any single-particle state may then be written as a superposition

∫
R3 f(x)a+

x |Ω〉 d3x for some

“wavefunction” f(x). However, if f(x) has compact support, then after any finite time, the support will

become infinite under time-evolution by the free Hamiltonian, just as in the case of a free particle wave-

function in non-relativistic quantum mechanics. In addition, under a Lorentz transformation, the support

of the “wavefunction” f(x) may transform from compact to infinite, so this sense of spatial localization is

not Lorentz-invariant. These results are troubling when thinking of a+
x |Ω〉 as a localized particle. Perhaps

more importantly, the notion of a global position observable may not even be desirable. As discussed in the

beginning of Section 2, global spatial wavefunctions that collapse to points upon global measurement are

antithetical to the general notion of spacetime locality. We expect that measurements performed in some

region of space will be ignorant of the “wavefunction” arbitrarily far away. Based on this discussion, one

might abandon the notion of particles as fundamental objects with position wavefunctions, instead imagining

a Hilbert space like that of Equation (2), whose states encode the outcomes of local measurements associated

with φ(x) and π(x). Particles are then a useful formalism for calculating dynamics, but they are not objects

whose positions are to be measured in the traditional quantum-mechanical sense.

For an independent discussion related to the one above, see [8, 9].

Experiments should serve as the guide for any interpretation we impose. Whether we interpret either

a+
x |Ω〉 or φ(x) |Ω〉 as spatially localized, we demand consistency with the predictions discussed in Section

2.4. Of course, scattering experiments are not about localized particles, so there is no explicit constraint

on our interpretation of locality due to experiment. But when translating correlation functions into scat-

tering predictions, the standard derivation (as in [3]) includes several interpretive elements, including the
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use of particle wavepackets distributed over space to represent incoming and outgoing particles. Are these

wavepackets spread out over space in the sense of a superposition of states a+
x |Ω〉, or are they a superpo-

sition of states φ(x) |Ω〉? (It seems that actually, for sufficiently spread out wavepackets, these choices are

equivalent. Similarly, the spatial TPS and Fock position TPS coincide in the formal non-relativistic limit

c→∞.)

We ignore this question of interpretation. For now, we seek to formalize the mathematical structure of

quantum field theory, bearing in mind that our formalization should ultimately produce correlation functions

or other outputs used to make predictions. The right mathematical structure for this task may even suggest

interpretations not considered before.

3 Seeking rigor

After sketching heuristic pictures of quantum field theory, we are ready to begin various attempts to formalize

the structure. In the following subsections, we explain some of the tools used in formalization. Most

mathematical definitions will be introduced, but not all exposition will be fully self-contained.

3.1 Hilbert spaces

To many physicists, the ostensible setting of quantum field theory is the Hilbert space. Yet we are rarely

working in a well-defined Hilbert space. In order to introduce the subtleties of working in infinite dimensions,

I will briefly review Hilbert spaces and related concepts.

The linear-algebraic structure of a vector space usually becomes inadequate when working in infinite

dimensions. In a vector space equipped only with its linear-algebraic structure, there is no natural notion

of adding infinitely many vectors. One therefore introduces topology in order to consider the convergence

properties of sequences. The basic structure is a topological vector space, i.e. a vector space with topology

such that addition and scaling are continuous. (The topological aspects of a topological vector space only

become interesting in infinite dimensions – the only Hausdorff topology on Rn or Cn is the standard one.)

A more rigid structure is the Banach space, a topological vector space in which the topology is induced by

a norm such that the space is Cauchy complete in the norm. An even more rigid structure is the Hilbert

space, a Banach space in which the norm is induced by a sesquilinear, conjugate-symmetric, positive-definite

inner product. Here, Banach spaces and Hilbert spaces will be taken over the field C.

The algebraic span of a set of vectors consists of all finite linear combinations, and likewise algebraic

linear independence involves only finite combinations. These notions are used to define the algebraic basis,

or Hamel basis. The cardinality of this basis is the algebraic dimension of the space. Meanwhile, in Hilbert

spaces, one may have a set of orthonormal vectors whose algebraic span is merely dense in the whole space.

This is the usual notion of an orthonormal basis in a Hilbert space, and the cardinality of the basis is the

Hilbert dimension. It turns out that any Hilbert space with infinite algebraic dimension will actually have

uncountable algebraic dimension. On the other hand, a Hilbert space may easily have countable Hilbert

dimension, and these spaces are called separable. One example of a separable Hilbert spaces is L2(R), the
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space of square-integrable functions R → C.3 More generally, for any set X with measure µ, the space

L2(X,µ) of functions square-integrable with respect to the measure µ is a Hilbert space. (See Section

3.5 as well.) Another example of a separable Hilbert space is `2, the space of square-summable sequences

{f : N → C}. In fact, all separable Hilbert spaces are isomorphic. Note finally that operators on Hilbert

spaces are often defined only on a dense subspace. For instance, the momentum operator on L2(R) is

only defined on differentiable functions, and the set of differentiable functions is only dense in L2(R). The

definition of a self-adjoint operator on H only requires that the operator be defined on a dense subspace.

Naive constructions of Hilbert spaces such as H ≈
⊗

x∈R3 L2(R) of Equation (2) do not correspond to

actual Hilbert spaces, at least not obviously. Still, spaces like this are often easy to define as mere vector

spaces, without the extra structure. Why do we need Hilbert spaces for quantum theory? Well-defined

inner products are necessary for the standard probabilistic interpretation of the theory. Defining an inner

product will often present us with the most difficulty when constructing a Hilbert space. On the other hand,

completeness is a less difficult requirement: any incomplete space may simply be completed. That is, given

an incomplete “pre-Hilbert space” with only an inner product, there exists a canonical embedding into a

Hilbert space (called the completion) such that the image of the pre-Hilbert space is dense. Finally, the

separability condition is not strictly necessary for quantum theory, but separable Hilbert spaces are often

sufficient and more mathematically tractable. The Wightman axioms for QFT will take a separable Hilbert

space as their starting point.

To see why Equation (2) does not obviously define a Hilbert space, first consider the tensor product of

just two separable Hilbert spaces HA ⊗ HB . As a vector space, the space is easy to define: for instance,

the algebraic basis is just given by the Cartesian product of the bases of the individual spaces. This space

becomes a pre-Hilbert space when equipped with an inner product 〈a⊗b, c⊗d〉 = 〈a, c〉〈b, d〉, and we take the

completion to form a Hilbert space. Now, consider the tensor product of countably-many separable Hilbert

spaces. For example, take the Hilbert space Hsc we might associate to an infinite spin chain,

Hsc =
⊗
i∈N

C2. (51)

If we only wanted to define Hsc as a vector space, we could use the algebraic tensor product, which may

be defined as the set of multilinear maps {f :
∏
i∈N C2 → C} from the infinite Cartesian product. This

vector space contains vectors of the sort (a1 ⊗ a2 ⊗ a3 ⊗ ...) for ai ∈ C2. However, now we have trouble

defining an inner product on the space. For instance, if we try to mimic our construction for finite tensor

products, then the ostensibly nonzero vector a⊗∞ ≡ a ⊗ a ⊗ ... has zero norm when |a| < 1, because

|a⊗∞|2 = 〈a⊗∞, a⊗∞〉 = 〈a, a〉∞ → 0. Therefore, to define an infinite tensor product, we first choose a

distinguished unit vector of each tensor factor. For instance, to define Hsc, for each tensor factor we will

choose the unit vector |0〉 ∈ C2. Then, to define the tensor product Hilbert space, we define a basis of simple

tensors (i.e. product states) where all but finitely many of the tensor factors are equal to the distinguished

unit vector. In particular, for Hsc we define the basis vectors (a1⊗a2⊗ ...) where ai ∈ C2 and ai = |0〉 for all

but finitely many i. An inner product on this space is now well-defined, and we take the completion to form

a true Hilbert space. Thus Hsc will contain vectors like (|0〉 |0〉 |0〉 ...), (|1〉 |0〉 |0〉 ...), and
⊗

i∈N(|0〉+ 1
n |1〉),

3When working with L2(R), it is important to realize that the so-called position basis kets |x〉 are not actual vectors of the
Hilbert space: the associated “δ-function” wavefunction is not a square-integrable function. To define an orthonormal basis for
L2(R) requires other functions.
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but not vectors like (|1〉 |1〉 |1〉 ...). In a sense, our Hilbert space is built around the “vacuum” state |0〉⊗∞.

Finally we return to our naive Hilbert space H ≈
⊗

x∈R3 Hx. What does this uncountably-indexed tensor

product mean? It may make sense as a vector space, but there is no obvious inner product. It turns out

that in this example, we are better off working with the formulation H ≈ L2(C(R3), µ) and searching for a

legitimate measure µ. This approach is discussed in Section 3.5.

3.2 Fock space

So far, none of our original expressions for a Hilbert space have found obvious definitions. The Fock space

of Equation (48) will be an exception. There, we had

H = C⊕
∞⊕
n=1

Sym

 n⊗
j=1

H1

 . (52)

The only part of the expression demanding further attention is the infinite direct sum. We may define a

countably-infinite direct sum of separable Hilbert spaces as the vector space formed by finite linear combina-

tions of vectors in each direct summand; we then define an inner product by considering vectors in different

summands to be orthonormal, and we take the completion. The resulting space is then countable: we have

a countable orthonormal basis formed from the countable union of the countable orthonormal bases for each

summand.

The Fock space defined this way will contain states like
∑
n∈N

1
na
⊗n for any a ∈ H1, which exhibit a

superposition of multi-particle states with arbitrarily high particle number. However, the Fock space will

contain no “infinite-particle state” (a⊗ a⊗ a...), nor even states like
∑
n∈N

1√
n
a⊗n. In this sense, the Fock

space is built around the zero-particle vacuum state.

The construction of Equation (50) also makes sense more rigorously. In that discussion, we considered the

Fock space as an overall tensor product, where the TPS corresponded to the occupancy number notation. For

each basis element |a〉 of the single-particle Hilbert space H1, there was a corresponding tensor factor with

basis {|0〉 , |1〉 , |2〉 , ...} encoding the occupancy number of that single-particle basis state |a〉. For separable

Hilbert space H1 with countable basis {|ai〉 , i ∈ N}, we may indeed define the countably-infinite tensor

product

H =
⊗
i∈N

span({|0〉i , |1〉i , |2〉i , ...}). (53)

As before, we must specify a distinguished unit vector in each tensor factor for this expression to be well-

defined. If we choose |0〉i as our distinguished vector, then we have again built our space around the

zero-particle vacuum state, and this construction will correspond to the Fock space construction.

For a more extensive discussion of the rigorous Fock space construction, including ladder operators and

occupancy number notation, see for instance [10].

3.3 Smeared fields

Though the Fock space has been made rigorous, we are still unequipped to formalize even the free theory

for a scalar field. The remaining task is to specify field operators φ(x), π(x) and Hamiltonian H along with

23



transformations under the Poincaré group G. Unfortunately, the operators φ(x) are problematic. One may

be suspicious of them first on physical grounds: are observables truly localizable to a single point x ∈ R3?

We might also be suspicious on mathematical grounds. The Fock space construction is rigorous, but the idea

of the exactly localized φ(x) operators traces to Equation (2), with its naive uncountably-indexed TPS. If we

use the Fock space and attempt to calculate 〈Ω|φ(x)φ(x) |Ω〉 = |φ(x) |Ω〉 |2 for the naively-defined operator

φ(x), we obtain |φ(x) |Ω〉 |2 ≈ ∞ as in [5], another indication that the φ(x) operators are problematic.

The exactly localized operator φ(x) is loosely analogous to the state |x〉 ∈ L2(R). This analogy will

suggest an avenue for formalization. While |x〉 does not represent a true element of L2(R), the function

f : R→ R ⊂ C does. We might write

|f〉 =

∫
R
f(x) |x〉 dx (54)

where the LHS is well-defined as an element f ∈ L2(R), while the RHS is just a formal expression. Likewise,

for functions f : R3 → R, we might write

φ(f) =

∫
R3

|x〉φ(x) d3x (55)

where the LHS is an operator for which we hope to provide a rigorous definition, while the RHS is a formal

expression indicating our intention.

Therefore, rather than define a set of operators {φ(x) : x ∈ R3}, we define the map φ : f 7→ φ(f), where

f is some well-behaved function f : R3 → R and φ(f) is a densely-defined operator on H. We also require

that the map φ is linear in f . Hence φ is called an operator-valued distribution. (Recall that a distribution

is usually understood to be a real- or complex-valued continuous linear functional acting on a function space.

An operator-valued distribution merely has different codomain.) The domain of φ is often restricted to be a

sufficiently well-behaved class of functions, such as the Schwartz space S (R3) ⊂ C(R3) of rapidly decaying

functions. The field operator φ(f) is sometimes called a smeared field, smeared by the function f . For a

function f with support localized in a small neighborhood of x, φ(f) approximates the original expression

φ(x). In general, φ(f) represents an observable local to the support of f .

One may define both φ and π as operator-valued distributions and request that they satisfy the CCR

given in Equation (13), adapted for smeared fields. One may arrive at the appropriate form of the smeared-

field CCR by formally manipulating the expressions of Equation (13). It is then possible to rigorously define

operator-valued distributions φ and π acting on the Fock space that satisfy the informal definition of scalar

quantum field theory given in Section 2.3, appropriately modified for smeared fields. The details of this

construction are clearly explained in [10].

Although a free field theory may be constructed with these spatially-smeared fields, in general interacting

theories it becomes necessary to consider fields smeared over spacetime. Much of the reasoning that motivates

spatial smearing similarly motivates temporal smearing. Thus we define φ as an operator-valued distribution

acting on the space S (R4) ⊂ C(R4).

Using spacetime-smeared fields allows one to shift attention from φ, π to consider only φ. In Section 2.3,

we discussed that φ(x) and π(x) should together generate the algebra of all observables local to x. Meanwhile,

at least naively, the algebras of operators on Hx should together generate the algebra of operators on H, so

the algebra on H is in turn generated by the fields π(x) and φ(x). Thus, naively, any operator may be written
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as an algebraic combination of field operators φ(x), π(x). We also have the relation ∂tφ(x) = ∂H
∂π(x) = π(x),

so we imagine any operator may be written in terms of operators φ(x) and ∂tφ(x, t)|t=0. Note that ∂tφ(x)

may be approximated by a spacetime-smeared field φ for an appropriate smearing function (i.e. a smearing

function that looks like δ′(t)). Then we conclude that the algebra of operators on H should be generated by

the spacetime-smeared fields φ. If this conclusion appears haphazard, it may be taken as definitional, as in

the axioms soon discussed. Either way, are fortunate to no longer have a need for the operator π(x) when

considering spacetime-smeared fields, because the CCR that define the relationship between π(x) and φ(x)

have no obvious spacetime-smeared counterpart.

With spacetime-smeared fields, the correlation functions of Equation (27) become distributional. That

is, we have a multilinear map

S (R4)× ...×S (R4)→ C (56)

(fn, ..., f1) 7→ 〈Ω| T (φ(fn)...φ(f1)) |Ω〉 .

Given certain continuity conditions, the multilinear n-point correlation function may be understood as as a

single distributionWn acting on S (R4n) ≈ S (R4)⊗ ...⊗S (R4). (To see why, recall the definition of tensor

products involving multilinear maps.) The distributions {W1,W2, ...} are called the Wightman distributions.

Though operator-valued distributions are more amenable to rigorous construction, they present a new

difficulty: how can we multiply them? In general, multiplication is not defined for distributions. For non-

smeared fields, we imagine simply using operator multiplication to define expressions like φ(x)4. But with

operator-valued distributions, we have no corresponding expression. (One might mistakenly imagine φ(f)4

is the right expression, but quickly examining Equation (55) shows this is not the case.) The inability to

multiply distributions is a serious obstacle to rigorously constructing interacting theories – if we knew how to

define φ(x)4, we might just take a rigorously-constructed free theory and define an interaction Hamiltonian

by adding this term.

It turns out that the above difficulty is closely related to the need for normal ordering in conventional

QFT calculations. In some cases, multiplying field operators may be defined by a formalization of the normal

ordering procedure [11].

3.4 From Hilbert space to algebra

We have seen that the Fock space is built around the vacuum of the free theory. We encounter difficulties

when we try to define interacting theories from within the Fock space. In a sense that will become clear, the

Fock space restricts us to perturbative or non-rigorous calculations.

Yet if we are looking for a separable Hilbert space, and all of these spaces are isomorphic, in which sense

can we distinguish the Fock space as a poor choice? The answer is that when we build an interacting theory

from the Fock space, we are not just working with the Fock space as an abstract Hilbert space. We actually

begin with the Fock space, the free field operators on the space, and the transformation properties of these

fields under the Lorentz group. That is, we use the kinematical setup of the Fock space in order to write

down the interacting theory.

To be more specific, consider the following ill-fated attempt to define an interacting theory. We begin with

the Fock space. In this setting, we may rigorously define the field operators as operator-valued distributions.
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We prescribe a representation of the Lorentz group such that these fields transform like φ(x) 7→ φ(Λx),

π(x) 7→ φ(Λx). We also define a free Hamiltonian operator and compatible Poincaré representation.

Now we attempt to write down the interacting theory. In the Schrödinger picture, there is no distinction

between an “interacting” field and a “free field” – this distinction is only relevant when considering time-

evolution in the Heisenberg picture. Thus we use the “free” field operators to write down our interaction

Hamiltonian in the Schro0̈dinger picture. In particular, we use an operator such as φ4, where φ denotes the

free field. Furthermore, we these Schrödinger-picture field operators should transform as U−1(a)φ(x)U(a) =

φ(x+ a) under spatial translations, for unitary representation U of the Poincaré group with translations a.

From this perspective, it seems the very notion of what we mean by an interacting φ4-theory relies on the

setup of free fields in the Fock space. Yet the Fock space is not the appropriate setting for the interacting

theory. Even if one could manage to write down an interacting Hamiltonian on the Fock space that resembled

the φ4 Hamiltonian, it appears unlikely that the ground state would exist in the Fock space. To see why,

note that the interaction Hamiltonian does not preserve any subspace with finite particle number. Hence

the vacuum will be a superposition of multi-particle states with arbitrarily large numbers of particles. As

discussed in Section 3.2, we cannot expect such “states” to be true states of the Fock space, although some

such states exist.

A variety of results under the name “Haag’s theorem” state that the Fock space in fact cannot contain

the interacting vacuum. Results of this sort may be formulated with varying levels of rigor, and they may be

phrased in the language of the Wightman or Haag-Kastler axioms [12]. Here, the result is presented loosely,

as partial motivation for the transition to a more algebraic framework. The formulation follows [13], where

it is stated additionally in the language of C∗-algebras.

At the heart of this variant of Haag’s theorem is the following fact. We already have a very rigid

structure when we posit the free particle Fock space with the associated field operators and representation of

the Poincaré group. We would like to introduce an interacting Hamiltonian along with a new representation

of the Poincaré group, whereby the interacting Hamiltonian is the generator of time-translation. However, we

want to introduce the interacting Hamiltonian on this same Fock space, and we would like the Hamiltonian

to “use the same fields,” which is to say that the new representation of the Poincaré group should translate

the fields in the same way. This turns out to be impossible.

Informal theorem (Haag’s theorem). Assume one is given the following:

1. Fock space H with canonical fields φ(x) and π(x),

2. Free Hamiltonian HF and interacting Hamiltonian H
(λ)
I parameterized by coupling strength λ, with

unique respective vacuum states |Ω〉0 and |Ω〉λ,

3. Unitary representations UF and U
(λ)
I of the Poincaré group, such that HF and HI are the respective

time-translation generators for each representation.

Assume also that for spatial translations a in the Poincaré group,

U(a)−1φ(t,x)U(a) = φ(t,x + a) (57)

U(a)−1π(t,x)U(a) = π(t,x + a)
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holds for both U = UF and U = U
(λ)
I . Then

|Ω〉0 = |Ω〉λ . (58)

The setup of the theorem directly formalizes the above discussion.

Briefly, the argument for Haag’s theorem proceeds as follows. Condition (57) for UF and U
(λ)
I implies

that UF = U
(λ)
I up to a phase – this fact is not shown, but see [13]. Thus let U ≡ UF = U

(λ)
I . Note that both

vacua are invariant under spatial translations U(a), for instance because spacetime translations commute in

the Poincaré group. However, in the free Fock space, there is only one vector (or ray, rather) invariant under

spatial translations. Equation (58) follows, and this conclusion contradicts our intention that HI represent

the interaction Hamiltonian. In particular, it is clear that an interaction term like φ4 will not have the free

vacuum as an eigenstate, and this holds for most desirable interaction terms.

To better understand the general phenomenon behind Haag’s theorem, let us consider a simpler system.

Recall the spin chain Hilbert space Hsc of Equation (51). Like the Fock space, this space was built around

a particular state |0〉⊗∞. Now consider the simple Hamiltonian

H =
∑
i∈N

σzi (59)

where σzi is the Pauli spin operator at site i. Let |0〉 be the eigenvector of σz with eigenvalue -1. The first

problem we encounter is that H is not well-defined: the eigenstate |0〉⊗∞ seems to have eigenvalue −∞, for

instance. We might resolve this by “adding an infinite constant.” More mundanely, we may simply redefine

σz to have eigenvalues 0 and 1. Then H will be a well-defined operator, and |0〉⊗∞ will indeed be the

groundstate. However, our formalism breaks when we consider a small perturbation

H =
∑
i∈N

σzi + λσxi . (60)

For nonzero λ, the lower eigenstate of (σz + λσx) is some vector |a〉 ∈ C2, and the new vacuum should

be |a〉⊗∞. However, this “state” is not a part of our Fock space, nor is the perturbed Hamiltonian even

well-defined on the space. What is going on here? Though we are forced to put “state” in quotation marks,

it seems obvious that the “state” |a〉⊗∞ is the correct vacuum. On one hand, we might just re-define the

Hilbert space Hsc, choosing |a〉 as our distinguished vector when we construct the infinite tensor product.

In that case, the perturbed Hamiltonian will be a legitimate operator and |a〉⊗∞ will be the legitimate

vacuum. Likewise, in the case of the Fock space for QFT, we could again choose to work in a new space

built around the “right” state. For instance, we could define a Hilbert space using the TPS of the Fock

space given in Equation (60), but choosing a new distinguished vector with which to construct the tensor

product. Of course, this would still be a difficult task: which vector would we choose? And in general, we

may want to work with states like |0〉⊗∞ and |1〉⊗∞ both at once. Consider an extreme example given by the

doubly-infinite spin chain with ferromagnetic Heisenberg XXY Hamiltonian. There we have a continuum

of vacua of the form |b〉⊗∞ for any |b〉 ∈ C2 with 〈b|b〉 = 1. We need some formalism to handle all of these

states at once, especially in order to discuss phenomena like phase transitions.

One solution to is to somehow add all of the separable Hilbert spaces built around each state of interest.
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For instance, considering the unperturbed and perturbed Hamiltonian of Equation (60), we may take the

direct sum of Hilbert spaces built around the |0〉⊗∞ and |a〉⊗∞ states. Then we could consider both vacua

as part of the same space. Even in the case of a continuum of vacua, we could formalize the notion of taking

the direct sum of all of these spaces, and we would obtain an inseparable Hilbert space.

But there is a better solution, from both a mathematical and physical perspective. As motivation, first

consider the case of the spin chain. One way to manage the various the various “states” is to instead consider

the objects σx,y,zi . Taking the operators as primary, the states become objects that assign operators to

expectation values. Indeed, the states |0〉⊗∞ and |1〉⊗∞ are both well-defined as maps from local observables

to expectation values. That is, for a state |ψ〉 we have |ψ〉 : σx,y,zi → R, σx,y,zi 7→ 〈ψ|σx,y,zi |ψ〉. The algebra

of operators may then be the scaffolding around which we build our states, without worrying about building

Hilbert spaces to house them. From the physical perspective, too, it makes sense to consider observables

as primary. Observables correspond to operations one may perform in the lab. The state then describes

a system (or, alternatively, one’s knowledge about a system) by assigning expectation values to various

observables. Whether or not these states live in the same Hilbert space is immaterial.

In our particular case of QFT and the free particle Fock space, there is further reason to consider the

algebra of observables as primary. (One often says “algebra of observables” when referring to the algebra

of operators, which are actually not all observable, i.e. self-adjoint.) When we attempt to write down an

interacting theory following the informal rules of Section 2.3, in a sense we do not care “which” Hilbert

space H we use so long as the conditions of the informal axioms hold. We may then ask, which Hilbert space

should we use? The following discussion will be somewhat informal precisely because we are developing

notions to motivate the algebraic formalism before using that formalism. The argument may be re-read in

a more rigorous light after discussing C∗-algebras and their representations.

Consider two isomorphic choices of Hilbert spaces H1 and H2 upon which the operators φ1(x), π1(x)

and φ2(x), π2(x) are defined, respectively. Informal reasoning led us to believe that the algebras A1 and A2

of operators on H1 and H2 are generated by the field operators φ1(x), π1(x) and φ2(x), π2(x). Meanwhile,

considered as abstract algebras, A1 and A2 are completely specified by the CCR. Hence the algebras are

isomorphic via an isomorphism F : A1 7→ A2, F (φ1) = φ2, F (π1) = π2. If there additionally exists a

unitary isomorphism U : H1 → H2 such that F (·) = U−1(·)U , then we will call U an equivalence of the

Hilbert spaces and associated operators, where the operators are understood to come with an identification

F between operators on H1 and H2. Otherwise, the Hilbert spaces and associated operators are called

inequivalent.

In the case of an equivalence, there is no meaningful difference between working with (H1, φ1(x), π1(x)) or

(H2, φ2(x), π2(x)). For instance, consider Hamiltonians H1 and H2 expressed in terms of the field operators

on H1 and H2, respectively. Assume also that these Hamiltonians are the “same,” in the sense that the

expression for H2 7→ H1 when we replace φ1, π1 7→ φ2, π2 in the expressions for the Hamiltonians. Then

a unitary equivalence implies H2 = UH1U
−1, which in turn means that properties of the Hamiltonian like

the spectrum or the existence of a vacuum state will be identical for H1 and H2. On the other hand, if

the choices (H1, φ1(x), π1(x)) or (H2, φ2(x), π2(x)) were inequivalent, we would not be able to make these

statements about H1 and H2, and we would generically be working with a different structure.

Is it possible to have such an inequivalence when the Hilbert spaces H1 and H2 are isomorphic? In finite

dimensions, the answer is no:
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Proposition. Consider two isomorphic finite-dimensional Hilbert spaces H1,H2. Let A1 = End(H1) and

A2 = End(H2) be the algebra of operators on H1 and H2, respectively. Assume A1 and A2 are isomorphic

as algebras via the isomorphism F : A1 → A2, i.e. F preserves multiplication, addition, scaling, and taking

adjoints. Then there exists a unitary isomorphism U : H1 → H2 such that the associated isomorphism

A1 → A2, A1 7→ U−1A1U is given by F .

If the above were true in infinite dimensions as well, it would tell us that for any choice of Hilbert

space and field operators that have the prescribed algebra, we would be working with isomorphic structures.

In particular, it would tell us that if we had a Hilbert space with the algebra of fields prescribed by the

CCR, then the questions like “Does the Hamiltonian with interaction term φ4 have a vacuum in the Hilbert

space?” would not depend on our choice of Hilbert space. This would be bad news in light of Haag’s theorem,

because then no choice of Hilbert space (and associated fields) would be different from the Fock space, which

is inadequate for interacting theories. Fortunately, the above proposition is false in infinite dimensions; the

existence of “inequivalent” choices saves us.

These arguments are sufficient motivation to formalize the idea of taking observables as primary. We

want a mathematical structure that abstractly captures the idea of an algebra of bounded operators without

making reference to Hilbert spaces. This is the theory of abstract operator algebras, and in particular

we consider C∗-algebras. This abstract algebra, in addition to having the usual addition, multiplication,

and scaling, should have an operation (·)∗ : A 7→ A∗ that abstracts the notion of adjoints. With such an

operation, one may distinguish between ordinary elements of the algebra and observables, i.e. the elements

that satisfy A = A∗, which we would call self-adjoint operators in the Hilbert space setting. Our new notion

of state is that of a complex-valued linear functional acting on the the algebra. These abstract states acting

on the algebra are analogous to (possibly mixed) states on a Hilbert space, where the state ρ on the Hilbert

space is considered as a map ρ : O 7→ Tr(ρO). The state should take values in R+ ⊂ C when it acts on

observables.

These notions are directly formalized in the C∗-algebraic structure. A C∗-algebra is a Banach algebra

with extra structure given by the (·)∗ operation. A Banach algebra A is a Banach space which is also an

algebra, obeying the additional condition that |xy| ≤ |x||y| ∀x, y ∈ A , which ensures that multiplication in

the algebra is continuous. (I will assume all algebras have unit.) A C∗-algebra is then defined as a Banach

algebra A with an operation ∗ : A 7→ A such that ∀x, y ∈ A and λ ∈ C, we have x∗∗ = x, (x+ y)∗ = x∗+ y∗,

(xy)∗ = y∗x∗, (λx)∗ = λ∗x, and |x∗x| = |x||x∗|
For a standard example of a C∗-algebra – in particular, the example which motivated our definition –

consider the algebra B(H) of bounded operators on a Hilbert space H. Here, bounded refers to boundedness

in the operator norm |O| ≡ supv∈Hs.t.|v|=1 |Ov| for operator O : H → H. Using this norm, B(H) is already

a Banach algebra. It may then be considered as a C∗-algebra when the action of the (·)∗ operator is defined

to coincide with taking the adjoint of the operator. More generally, any C∗-algebra is isomorphic to a

sub-algebra A ⊂ B(H), where the latter is again considered as a C∗-algebra with the operator norm.

Given a C∗-algebra A and Hilbert space H, a map π : A 7→ B(H) is called a C∗-algebra representation or

∗-representation (here, just “representation”) if it is additive, multiplicative, and preserves the unit and (·)∗

operation. Two representations π1 : A 7→ B(H2) and π2 : A 7→ B(H2) of the same algebra are called unitarily

equivalent if there exists a unitary isomorphism U : H1 7→ H2 such that π2(A) = Uπ1(A)U−1 ∀A ∈ A. A

representation π is called faithful if it is injective, and a faithful representation therefore defines a C∗-
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algebraic isomorphism onto its image. A representation is called irreducible if its image acts transitively on

the associated Hilbert space. For instance, the identity representation π : B(H)→ B(H) of the C∗-algebra

B(H) on H is both faithful and irreducible.

The proposition discussed earlier in the section then becomes

Proposition. All faithful, irreducible representations of a finite-dimensional C∗-algebra are unitarily equiv-

alent.

On the other hand, this proposition is false for arbitrary C∗-algebras. The discussion following Haag’s

theorem may also be reformulated in the language of inequivalent representations. If the field operators are

formalized as part of an abstract C∗-algebra (whose algebraic structure is determined by the CCR), it turns

out there will be inequivalent representations of the field operators as operators on a Hilbert space. The choice

of the Fock space and associated field operators is a specific choice among these inequivalent representations.

In our previous discussion, using “the same field operators” but on a ”different Hilbert space” then refers

to using an inequivalent representation of the algebra. Similarly, the different constructions of the Hilbert

space for the spin chain discussed earlier may be understood as inequivalent representations of the Pauli spin

algebra.

3.5 Euclidean path integral

We have motivated a change in focus from the Hilbert space to the algebra of observables, the route taken by

the AQFT program. We have both mathematical and physical motivations for such a transition. However,

to date, another approach has been more successful in producing models of simple interacting theories. This

is approach is inspired by the path integral, and it is usually referred to as constructive quantum field theory.

At first, we might attempt to formalize the Hilbert space of Equation (5),

H ≈ L2(C(R3), µ). (61)

To briefly review, recall that a measure is a map that assigns sizes to subsets of a space; generally, the

measure only assigns sizes to a certain collection of subsets called the measurable sets. For a set X, the

collection F ⊂ {U : U ⊂ X} of measurable subsets is called a σ-algebra. A σ-algebra must in particular

contain X ⊂ P (X) and be closed under countable unions, countable intersections, and complements. A

measure µ is then a map µ : F → R+ ∪ {∞} such that µ is additive on countable collections of disjoint

sets and µ(∅) = 0. Most importantly for our purposes, when a space X is equipped with a measure, there

is a general theory of integration that allows one to define integrals
∫
X
f(x) dµ for for suitable functions

f : X → R,C. With this definition of integration, L2(X,µ) becomes a Hilbert space with inner product

〈f, g〉 =
∫
x∈X f

∗(x)g(x) dµ.

We need a measure µ on the space C(R3) of field configurations in order to define integration on the

space and thus define the space of square-integrable functions. We would then have the Hilbert space H for

the wavefunctional with inner product

〈Ψ2,Ψ1〉 =

∫
φ∈C(R3)

Ψ1[φ]∗Ψ2[φ] dµ, (62)
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where the measure µ replaces our informal Dφ.

Because C(R3) is a vector space, our first instinct might be for µ to emulate the Lebesgue measure, a

canonical measure on Rn. The Lebesgue measure assigns the standard volume to boxes in Rn, and it further

satisfies several intuitive properties. These properties include: (1) every open set is measurable and (2) the

measure of a subset is invariant under translations Tx : y 7→ x + y. We would like these properties for µ.

To formulate (1) and (2) for a general space X with measure µ, X must have the notion of open sets and

translations, hence we need a topological vector space. If we restrict our attention to bounded functions,

the function space Cb(R3) may indeed be considered as a separable Banach space with appropriate norm.

We then ask, is there a measure µ on a separable Banach space that satisfies the same properties of the

Lebesgue measure?

Theorem (No infinite-dimensional “Lebesgue” measure). A separable Banach space with a nonzero measure

µ satisfying properties (1) and (2) must assign infinity to all open sets.

For a quick proof of this common statement, see [14]. The result means we cannot find a good for-

malization of the desired measure on field configurations to produce L2(C(R3). To solve the problem, we

shift focus to Equation (42). To define this integral, we would need a measure on C(R4), the space of

field configurations over spacetime. The integral would lend meaning to correlation functions. With this

data, we might be satisfied even without an explicit construction of a Hilbert space. Of course, we cannot

directly formalize the measure Dϕ in Equation (42) for the same reasons discussed. The solution is to not

formalize Dϕ as a measure but to instead formalize [eSEDϕ] of Equation (42). In other words, we want a

measure such that dµ ≈ [e−SE [ϕ]Dϕ]. The desired maneuver is similar in spirit to a change of variables in

ordinary calculus. We have also chosen to focus on the Euclidean formulation of the path integral for the

reasons already discussed: even after discretization, the Minkowski path integral expression is ill-defined,

whereas the Euclidean expression is not. The no-go theorem stated above will not apply to our hypothetical

measure dµ ≈ [e−SE [ϕ]Dϕ] because the measure we want is no longer translation-invariant (due to terms in

the Lagrangian that are nonlinear in φ).

With our desired measure µ, we could define vacuum expectation values by

〈Ω| T (φ(xn,−itn)...φ(x1,−it1)) |Ω〉 =

∫
ϕ∈C(R4)

ϕ(xn, tn)...ϕ(x1, t1)dµ (63)

The denominator of Equation (42), which provided normalization, has disappeared. The normalization is

unnecessary if we demand a probability measure, i.e. a measure that assigns measure 1 to the entire space.

To understand the integrand on the RHS as a function on the domain of integration, it may help to think

of ϕ(x) as a map Evx : C(R4) 7→ C, ϕ 7→ ϕ(x), where Ev indicates “evaluation at.”

This route to formalization is the focus of the Osterwalder-Schrader axioms described in Section 4.3.

4 Axioms for quantum field theory

We have finally developed the tools to motivation to state various systems of axioms for quantum field theory.
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4.1 Wightman axioms

The Wightman axioms focus on the Hilbert space, and they are similar to those discussed in section 2.3.

There are several variants of these axioms, which were originally posed by Wightman and G̊arding. The

relatively weak version of the axioms used here follows Glimm and Jafffe [15] because the authors have

proven several useful theorems with this version. By these axioms, a scalar quantum field theory is

Definition (Wightman axioms for real scalar quantum field theory). A quantum field theory is given by a

separable Hilbert space H, a unitary representation U : G 7→ B(H) of the Poincaré group G, and an operator-

valued distribution φ with domain S (R4) such that φ(f) is a self-adjoint operator on H, as described in

Section 3.3. The theory must additionally satisfy

1. (Positive energy) The generators {Pµ} on H of the Poincaré group representation have joint spectrum

S ⊂ R4 such that S lies in the forward lightcone: S ⊂ {pµ : (p0)2 −
∑
i(p

i)2 ≥ 0} ⊂ R4.

2. (Vacuum) There is a vector |Ω〉 ∈ H invariant under G. The vacuum |Ω〉 lies in the domain of any

polynomial of the field operators, and the subspace algebraically spanned by polynomial combinations

of field operators acting on |Ω〉 is dense in H. The vacuum is also the unique vector invariant under

time-translation, i.e. the unique eigenstate of the Hamiltonian.

3. (Microcausality) If f, g ∈ S (R4) such that their supports supp(f), supp(g) ⊂ R4 are spacelike separated,

then [φ(f), φ(g)] = 0. (Regions B1, B2 ⊂ R4 are called spacelike separated if (x1 − x2) spacelike for all

x1 ∈ B1, x2 ∈ B2.)

4. (Poincaré covariance) For f ∈ S (R4), U−1(g)φ(f)U(g) = φ(fg) ∀g ∈ G.

These axioms are essentially the informal axioms given in Section 2.3, modified as suggested by the

discussion of smeared fields in Section 3.3. Given a model of the axioms, one may define the Wightman

distributions of Equation (56).

4.2 Haag-Kastler axioms

The Haag-Kastler axioms focus on the algebra of observables, as motivated in Section 3.4. There are several

variants of the AQFT axioms originally posed by Haag and Kastler, but the weaker version used here again

follows Glimm and Jafffe [15]. Various strengthenings of the axioms are discussed in [13].

We begin by defining a net of observables. This structure consists of an abstract algebra of observables

along with a specification of which observables are local to which regions in spacetime. The notion of an

operator local to a region in spacetime is the same as that discussed in Section (2.3). Recall that in the

Wightman axioms, the algebra of observables local to a region B ⊂ R4 is generated by smeared field operators

φ(f) with supp(f) ⊂ B. In AQFT, there is no such operator-valued distribution or Hilbert space. Instead,

all observables belong to the net of observables, which has additional structure to encode the locality of

operators.

Definition (Net of observables). A net of observables is a C∗-algebra A along with a map denoted B 7→
A(B) ⊂ A for bounded open regions B ⊂ R4. The map must satisfy

1. A(B1) ⊂ A(B2) for all regions B1 ⊂ B2, and
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2. A = ∪BA(B) where the union is taken over all regions B ⊂ R4.

The abstract algebras A(B) are the algebras of observables local to B. (Again, the term “algebra of

observables” is used, but only the self-adjoint elements represent observables.) Under the interpretation

that the observables in A(B) are those accessible to an observer local to B, condition (1) demands that an

observer local to B1 is also local to B2 ⊃ B1. Condition (2) demands that the algebra of observables consists

entirely of observables local to some bounded region; that is, all observables are hypothetically accessible to

some local observer. Note that the net of observables assigns algebras A(B) only to open bounded regions

of spacetime. The structure thereby incorporates the discussion of smeared fields in Section 3.3; there are

no observables associated to single points in spacetime.

With this definition, we may state a weak version of the Haag-Kastler axioms:

Definition (Haag-Kastler axioms for real scalar quantum field theory). A quantum field theory is given by

a net of observables A and a representation α : G → Aut(A), g 7→ αg of the Poincaré group G. The net of

observables and Poincaré group representation must have the following properties:

1. (Primitivity) There exists a faithful, unitary representation of A. (Such an algebra is called primitive.)

2. (Microcausality) For regions B1 and B2 spacelike separated, the algebras A(B1) and A(B2) commute:

[A1, A2] = 0 for all A1 ∈ A(B1), A2 ∈ A(B2).

3. (Poincaré covariance) The representation of the Poincaré group satisfies αg(A(B)) = A(αg(B)) for all

g ∈ G.

One possible strengthening of these axioms is the following. Define the causal shadow S(B) of a region

B ⊂ R4 to be the set of points x ∈ R4 for which every timelike curve through x intersects B exactly once.

From a classical special-relativistic perspective, the causal shadow is precisely the set of events completely

determined by events in B. Meanwhile, the discussion of Heisenberg-picture operators and microcausality

in Section 2.3 indicates that we should have

A(S(B)) ⊂ A(B), (64)

in keeping with the special-relativistic notion. This statement may be promoted to an axiom and added to

the previous axioms. Related suggestions are discussed in [13].4

4.3 Osterwalder-Schrader axioms

The Osterwalder-Schrader axioms formalize the approach outlined in Section 3.5. We seek a probability

measure µ on the space of fields configurations over spacetime. However, because the fields themselves are

best considered as distributional, we will ask for a measure µ on the space D(R4). Here, D(R4) is the space

of distributions acting on C∞0 (R4), the space of compactly supported smooth functions. For a distribution

field φ ∈ D(R4) and smearing function f ∈ C∞0 (R4), there is a canonical pairing φ(f). This setup relates to

4Note that a net of observables may be reformulated as a precosheaf, i.e. as a functor from the category of regions in
spacetime (with morphisms given by inclusion) to the category of C∗-algebras. The causal shadow axiom then has a clean
categorical formulation as well, and this categorical thinking may yield structural insights about spacetime.
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the formal path integrals of Section 2.5 via the correspondence∫
ϕ∈D(R4)

ϕ(f1)...ϕ(fn) dµ ≈
∫
R4n

f(x1)...f(xn) 〈Ω| T (φ(x1,−it1)...φ(xn,−itn)) |Ω〉 d4x1...d
4xn (65)

≈

∫
ϕ∈C(R4)

e−SE [ϕ]
∫
R4n f(x1)...f(xn)ϕ(xn)...ϕ(x1) d4x1...d

4xnDϕ∫
ϕ∈C(R4)

e−SE [ϕ]Dϕ
.

Again, to understand the integrand on the LHS as a function of the domain of integration, it may help

to rewrite φ(fi) as fi(φ). Note that this Euclidean path integral is providing the analytic extension of the

Wightman distributions onto a complex domain, i.e. note the −it of the RHS.

Some of the conditions on µ will be more easily specified in terms of conditions on its generating functional

S[φ] obtained by inverse Fourier transform,

S[f ] =

∫
eiφ(f)dµ. (66)

The Osterwalder-Schrader axioms are not transcribed here in their entirety, but the remaining details

may be found in [15].

Definition (Osterwalder-Schrader axioms for a real scalar quantum field theory). A quantum field theory

is given by a probability measure µ on D(R4) such that the following hold:

1. (Analyticity) The generating functional S is entire analytic, in the sense specified by [15].

2. (Regularity) S is bounded, in the sense specified by [15].

3. (Euclidean invariance) S is invariant under Euclidean transformations E : R4 → R4, i.e. S[f ] =

S[fE]. Equivalently, µ is invariant under transformations induced by Euclidean transformations of the

underlying space R4.

4. (Reflection positivitiy) See note below.

5. (Ergodicity) The time-translation group acts ergodically on the measure space (D(R4), µ), in the sense

specified by [15].

The reflection positivity condition is not described in detail here. Briefly, this condition allows one to

rigorously construct a Hilbert space heuristically equivalent to L2(C(R3), ν), where we imagine obtaining a

measure ν on spatial field configurations from a measure µ on spacetime field configurations. The condition

may be shown to hold formally for the Euclidean path integral expressions discussed in Section 2.5, which

justifies its use. The uniqueness of the vacuum in the constructed Hilbert space is ensured by the ergodicity

condition. Meanwhile, Euclidean invariance ensures the Lorentz invariance of vacuum expectation values, as

motivated in Section 2.5. Finally, the analyticity condition validates the analytic continuation necessary for

obtaining the real-time vacuum expectation values from the Euclidean (imaginary time) values.

4.4 Consequences of the axioms

Glimm and Jaffe [15] prove that given a model of the Osterwalder-Schrader axioms, one may define a corre-

sponding model satisfying the Wightman axioms. The correspondence between the two models is essentially
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the first equality of Equation (63), where the RHS indicates the analytic extension of the Wightman distri-

butions given by the Wightman axioms. In turn, the Wightman axioms allow one to define a model of the

Haag-Kastler axioms, where the algebras A(B) (of the Haag-Kastler axioms) are generated by the smeared

fields operators (of the Wightman axioms) with support on B.

Given two different sets A and B of axioms (such as those of Wightman and Haag-Kastler), then if

one chooses a slightly weaker version of axioms B or a stronger version of axioms A, it becomes easier to

prove results such as: “For any model of axioms A, there exists a corresponding a model of axioms B.” Of

course, this “technique” of tweaking the axioms to be alternately stronger and weaker does not work when

we want to prove a two-way equivalence. In other words, it is much harder to prove the equivalence of the

Wightman and Haag-Kastler axioms than it is to find versions of these axioms such that one implies the

other. Nonetheless, one may find a discussion of different attempted formulations and equivalences in [13].

Several results about quantum field theory may be derived from an axiomatic setting. These include

desired results like the spin-statistics theorem and the CPT theorem. However, there are also interesting

or surprising results, such as the the Reeh-Schlieder theorem or the theorem on Borchers classes. (See the

discussions in [9] and [13], respectively.)

5 Outlook

Although interesting models of the axioms are scarce, new mathematical tools may prove fruitful in the

future. Success may also be found in other approaches not mentioned here, such as geometric quantization

or functorial axioms. Regardless, the search for rigorous formalism may help one grasp the structure of

quantum field theory.
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