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Abstract
We show that the vonNeumann–Lüders collapse rules in quantummechanics always select the
unique state thatmaximises the quantum relative entropywith respect to the premeasurement state,
subject to the constraint that the postmeasurement state has to be compatible with the knowledge
gained in themeasurement. This waywe provide an information theoretic characterisation of
quantumcollapse rules bymeans of themaximum relative entropy principle.

1. Introduction

The dynamics of quantum states in the orthodox (vonNeumann’s) foundations of quantummechanics consist
of two different prescriptions: the unitary evolution and the so-called ‘collapse’ of a quantum state to a subspace
encoding the knowledge gained in the outcome of ameasurement. Themappings (rules)describing this collapse
were originally formulated by vonNeumann [1] and later improved by Lüders [2]. There are two different forms
of collapse.When one knows only that ameasurement corresponding to an observable (a self-adjoint operator
with a discrete spectrum) O has taken place, the ‘weak’ rule applies. It is defined as P P

i I i iår rÎ , where ρ is

the original quantum state (in general, a density operator), while O P
i I i iå l= Î

is a spectral decomposition

with some countable index set I (hence, P
i I i å =Î

, P P Pi j i ijd= , and i l Î i j I," Î ). If ameasurement
corresponding to O has resulted in a specific value i Ik i{ ∣ }l lÎ Î associated to a projector P P i Ik i{ ∣ }Î Î ,
then the ‘strong’ rule, P P Ptrk k k( )r r r , is applied.

The negative ofUmegaki’s quantum relative entropy [3, 4], D S, , tr ln ln( ) ( ) ≔ ( )r s r s r r r s= - - Î
0,[ ]¥ , can be used as ameasure of distinguishability, or relative information content, of the quantum stateσ
from the state ρ. The use of D instead of S followsWiener’s idea that the ‘amount of information is the negative
of the quantity defined as entropy’ [5]. Note that we call S D= - the relative entropy, following the convention
of [6] thatmakes theGibbs–Shannon and vonNeumann entropies the special cases of S, after adding a
constant: S S n n, logvN ( ) ( ) ( )r r= + .

The function D can be considered as a nonsymmetric distance: in general, D D, ,( ) ( )r s s r¹ . If a given
state isσ andwe believe it to be ρ, it can be easier or harder tofind our error than if their roles were reversed. Say,

Ps = with P some projector and nr = . If wemeasure the property corresponding to −P, a single
measurement can tell us that the state is notσ, whereas no singlemeasurement could reveal the same of ρ. See
e.g. [7, 8] for an overview of reasons for using D ,( )r s as ameasure of distinguishability and relative
information content.

A key information theoretic property of the strong collapse rule is that the probability ofmeasuring the value

kl again, after havingmeasured it once, is 1, which follows from Ptr 1k
P P

Ptr
k k

k( )( )
=r

r
. Repeatedmeasurements add

no new information. Clearly, the state P P Ptrk k k( )r r is not the only state that has this property (note thatPk is
not necessary a rank 1 projector).Whatwe demonstrate in this letter is that, among all states that have this
property, the strong collapse rule selects the state that is least distinguishable from the initial state ρ, that is, it has
theminimum relative information D ,( · )r , in a suitably regularised sense. This allows for an information
theoretic characterisation of the strong collapse rule: the state aftermeasurement is the state that is least
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distinguishable from the previous state, while being compatible with the new information gained by the
measurement.

In order to derive the strong collapse rule, wewill need two intermediate results. First wewill show that the
weak collapse rule produces the least distinguishable state among the block diagonal states.We then show that a
weighted version of the strong collapse rule, p P P Ptr

i i i i i( )år r r , is the least distinguishable amongst the
states with blocks offixed trace. This rule can be interpreted as corresponding to ameasurement wherewe
believe that the resultPi occurredwith probability pi. This intermediate step regularises the problemof a strong
collapse, which is then obtained as a limiting case, by taking pi ikd with k= 1.

Our derivation of the collapse rules from the constrainedmaximisation ofUmegaki’s quantum relative
entropy is of special importance in the context of epistemic and information theoretic approaches to the
foundations of quantum theory. In this context, collapse rules have been considered as analogues of the Bayes–
Laplace rule [9–12]. This analogy rested onmathematical and conceptual similarity, butwas not derived from
any single unifying principle. In themeantime, the Bayes–Laplace rule has been shown to be a special case of the
constrainedmaximisation of theKullback–Leibler relative entropy [13–16]. Our result provides themissing
piece of the puzzle. Both the Bayes–Laplace and vonNeumann–Lüders rules are special cases of a single
epistemic principle of inductive inference (or, in other words, information theoretic state updating). This issue
will be discussed inmore detail in section 5.

After finishing this paper, wewere informed about reference [17], where it is shown that a state
P P

i i i iås r= , where Pi are rank 1 projectors,minimises the functional D ,( )r s . This is a special case of our
result for theweak collapse rule. The generalisation to arbitrary projectors is suggested in [18], but without a
proof or an indication of amethod of proving this statement. The technique used by us to prove a general
theorem is essentially different fromone applied in [17] (and it shows that this result for the rank 1> case ismore
substantial and nontrivial than for the rank1 case).

A closely related paper [26] deals with the same type of problem as addressed here, but using a different
mathematical approach, allowing for treatment of the infinite dimensional case. Further conceptual and
mathematical discussion associatedwith the results of both papers is carried out there and in [28]. A recent work
[19] proves that a partial trace is also a constrainedmaximiser of quantum relative entropy.

2. The setup

Wewill consider thefinite dimensional case. Hence, quantum states will be identifiedwith non-negative
matrices of trace 1, which form the convex set  in the space of all hermitian n×n complexmatrices.

The function D ,( · · ) is jointly convex in both arguments [20], which implies that D ,( · )r is convex on 
for all r Î . Due to thefinite dimensionality of the problem,we can use the first order condition for the
existence of aminimumof a convex function (see e.g. [21], Theorems 1.2.7 and 2.2.1): if  is a convex subset of a
finite dimensional topological vector space, and f :   is convex then x is a globalminimumof f on  if and
only if all directional derivatives of f at x are non-negative.

For a function differentiable at x this condition states that if x is in the interior of  then the derivatives of f
need to vanish. If x belongs to some strata of the boundary of  then all tangential derivatives need to vanish
whereas derivatives in inward transversal direction need to be non-negative.

In ourminimisation problemwehave a subspace  Ì of densitymatrices that is defined by a linear
equation and thus is a subsimplex. The function D ,( · )r restricts to a convex and differentiable function on 
andwewant tofind itsminimum. Thuswe simply differentiate in the directions preserving  and set the
derivatives to be positive.Wewill denote this condition by

C D , tr ln 0. 1( · ) ≔ ( · ) ( ( · )) ( )   r r¶ = ¶r

The next two sections will be concernedwith evaluating this set of equations.

3.Weak collapse

In the case of aweak collapse due to themeasurement of O P
i i iå l= , the constraint set is given by the block

diagonal densitymatrices

P P, 0 . 2w i i{ }≔ ∣ ( ) s sÎ = "⎡⎣ ⎤⎦

The condition (2) is equivalent with ws Î iff P P
i i iås s= , as well as with ws Î iff O, 0[ ]s = (see [22] for

a discussion).
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Wecan parametrise w in terms of the singular value decomposition ofσ. Every element of w is of the form

U U , 3( )*s = L

with L a trace 1 diagonalmatrix with positive entries,U a unitary that is a productU U
i i= , whereUi is an

identity on the range of Pi - .We have that U P, 0i[ ] = , P, 0i[ ]L = , and thus, writing i Pran i
∣ ( )s s= wehave

f f f ;i i i i( ) ( ) ( )s s s= Å = Å that is, functions (in the sense of the functional calculus) act blockwise on the
space w .

Let us consider first the variation tr ln 0
w

( ( · )) r¶ = in the direction parametrised by theUi. Given a
function on a Lie group f(U)we can take the directional derivative by looking at the parameter derivative of a one
parameter group of diffeomorphisms onU. Asmultiplication in a Lie group is differentiable we can pick the one
parameter group of diffeomorphisms generated by leftmultiplicationwith the one-dimensional subgroup

tLexp( ),

U tL Uexp . 4t ( ) ( )( ) ( )f =

We then define the directional derivative in direction L as the derivative of the pushforward of f along tf ,

f
t

f
d

d
L t t 0( · ) ( · )∣f¶ = = . For a function that is the trace ofU in a particular representation this can be easily

evaluated:

t
AU

t
A U

A
t

U A LU ALU

d

d
tr

d

d
tr e

d

d
e tr . 5

t t
tL

t

i j
ij

tL
ji

t
i j

ij ji

0 0

,
0

,

( )
( )

( )∣ ∣

( ) ∣ ( ) ( ) ( ) ( )



å å

f = =

= =

= =

=

A straightforward calculation shows thatwe further have
t

AUBU
d

d
trt t 0( )∣*f == ALUBU AUBU Ltr tr( ) ( )* *- .

Note that L P, 0i j[ ] = , and in particular L P Li j ij id= . The derivative then takes the form

P P U U L Ltr ln tr ln tr ln 0,L
j

j j j j j i i i i i ii ( ) ( ) ( )( )*å r r s r s¶ L = - =

Ltr ln , 0. 6i i i( ) ( )s r =⎡⎣ ⎤⎦
We thus see that ifσ and P P

i i iå r are concurrently diagonalisable, the above equation vanishes. In fact,
since ln ,i i[ ]s r is traceless and L L, ii i{ } spans the space of all tracelessmatrices in the i-thmatrix block, this is
also a necessary condition.

Let us next consider the variation in the direction of the spectrum, that is the direction of L.We are
interested in the case whereσ and P P

i i iå r are concurrently diagonalisable. Let kk
s and kk

r be the eigenvalues of

σ and P P
i i iå r respectively. If 0ik =r and 0ik =s then D ,( )r s = ¥, so this can not be theminimum if a

state withfinite relative entropy exists, andwe can disregard this case here.
Let usfirst consider the case that all 0ik =r .We have the condition

D , tr ln ln 0. 7
k

k k( )( )( ) ( )år s k k¶ = ¶ - L L = ¶ - =r s
r s

L L Ls s s

The derivatives ¶Ls have to preserve the trace. An overcomplete basis of such derivatives is given by
k l

¶ - ¶k ks s.
Thus, for all k l m, ,

ln 0,
m

m mk l( )å k k¶ - ¶ - =k k
r ss s

0. 8l

l

k

k

( )
k
k

k
k

- =
r

s

r

s

So, the ratios of the eigenvalues of P P
i i iå r andσ arefixed. As they both are trace 1, this implies they are

the same.
Let assume now that I is the index set of all i such that 0ik =r . If this set is nonempty then the above

conditions cannot be satisfied.However, there is still a possibility that theminimum is on the boundary. The
condition for theminimumon the boundary is weaker than the above.Namely, all derivatives in directions
pointing in toward the set need to be positive. Such directions can bewritten as a linear combination

9
i I j I

ij
i j I

ij
, ,

i l i l( ) ( ) ( )å åa a¶ - ¶ + ¶ - ¶k k k k
Î Ï Ï

s s s s

with 0ij a for i IÎ , j IÏ and otherwise ija arbitrary, since the derivatives with negative coefficients at
i

¶ks

would otherwise point outside the set. For that it is enough to check basis derivatives
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ln 0 0, 10i I j I
m

m m l I
l

l
, i j( ) ( ) å k k

k
k

" ¶ - ¶ -  "k k
r s

r

sÎ Ï Ïs s

ln 0 0, 11i j I
m

m m k l I
l

l

k

k
, ,i j( ) ( )å k k

k
k

k
k

" ¶ - ¶ - =  " - =k k
r s

r

s

r

sÏ Ïs s

andwe see this is a globalminimum.
Recall that if 0ik ¹r when 0ik =s then D ,( )r s = ¥.We now also need to consider the case that 0ik =r

when 0ik =s . In that case wewould get the full derivatives in the i direction, thus the equations (11) apply,
which can not be satisfied unless all 0jk =s , which can not occur in .

Combining this with the abovewe have that

C P P D P P, 0. 12
i

i i
i

i iw w ( )  å år r r= ¶r
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The state P P
i i iås r= is the only stateσ satisfying C 0

w
( ) sr . The set w is convex, so from (12) and

convexity of D ,( · )r , this is the unique globalminimum.

4. Strong collapse

The conditions defining ‘strong’ collapse that were specified in Introduction lead us to a troubling situation,
because for such states (containing zero eigenvalues) the relative entropy is almost always infinite.Wewill
overcome the problemby deriving a generalised version of the strong collapse rule that is a quantum counterpart
of Jeffrey’s rule. The ordinary strong collapse rule will be then obtained by a limiting procedure.

Consider a constraint set given in terms of pi Î such that p 1
i iå = by

P P p P, 0, tr , 13s i i i i{ }( )≔ ∣ ( ) s s sÎ = = "⎡⎣ ⎤⎦
where P i Ii{ ∣ }Î is again determined by the spectral decomposition of an observable O P

i I i iå l= Î
. The set

(13) can be interpreted as encoding the knowledge that themeasurement outcome il corresponding to a
projectionPi occurs with a probability pi.

Here we encounter a problem. If we have a pi nonzero but Ptr 0i( )r = , then every state in s will have
relative entropy-¥ to ρ.Moreover, even if we subtract the infinite constant, wefind that the regularised
distance does not depend on the state in the blockPi and there is no uniqueminimum.We thuswill always
assume that Ptr 0i( )r ¹ for p 0i ¹ .

The variation in theUi direction goes through as before.However the variation in the direction of the
spectrum changes in that a basis is now given in terms of

k
i

l
i¶ - ¶k ks s , with k

iks and l
iks belonging to the same block

Pi and thus being eigenvalues of is . Thus only the fractions of eigenvalues within each block are fixed. This
implies that the eigenvalues of is are uniformly scaled relative to the eigenvalues of ir . The condition

p
k k i

iå k =s
fixes is to be p tri i i( )r r .

This shows that

C p
P P

P Ptr
0. 14

i
i

i i

i i
s ( ) ( ) å r

r
r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The state p
i i

P P

P Ptr
i i

i i( )ås = r
r

is the only stateσ satisfying D , 0
s

( ) r s¶ .

The strong collapse is a limiting case of the above projection, with all pi going to zero except of one, p1,
corresponding to a projection P1 that, in turn, corresponds to ameasurement result given by an eigenvalue 1l .
We obtain this by taking theweak continuous limit

D p
P P

P P

P P

P P

lim arginf , lim
tr

tr
. 15

p p p p i
i

i i

i i
, , 0 , , 0

1 1

1 1

s
2 3 2 3 ( )

( )

{ ( )}

( )

 år s
r

r

r

r

=

=

s
¼

Î
¼

Note that in thefinite dimensional case that we consider here theweak topology andnorm topology coincide.

5. The foundational view

In the orthodox formulation of quantummechanics the ‘collapse rules’ are postulated. Thus, they are not
deduced from any othermore fundamental principle. They can be derived from several different conditions, see
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[23, 24] for a review, but none of these conditions possesses the status of a fundamental principle of quantum
theory. Theweak collapse rule can be derived by taking the tensor product with an auxilliary state, followed by
unitary evolution and a partial trace. Thismay serve as a derivation independent of interpretational issues (when
this procedure is interpreted as an interactionwith some ontic environment, it is usually considered as an
instance of decoherence). However, no such construction exists for the strong rule. This fact, as well as the
unclear relationship between the strong collapse rule and unitary evolution, renders the orthodoxmathematical
foundations conceptually insufficient, asking for further insights.

In general, an ontic interpretation of the quantum state leads to considering quantum collapse as a change of
the ‘state of being’ of some ‘material object/thing’. On the other hand an epistemic interpretation leads to
considering quantum collapse as a change of the ‘state of information’ of some ‘experiencing user/agent’. (There
also is a corresponding difference in themeaning of the term ‘measurement’.) In particular, the dynamical
reduction approach of [25], belongs to the former class, providing an ontic explanation bymeans of a general
dynamical principle fromwhich the quantum collapse rule is derived. On the other hand, an epistemic
interpretation of collapse rules as quantummechanical analogues of the Bayes–Laplace rule
p x p x p b x p b( ) ( ) ( ∣ ) ( ) was proposed in [9–12]. However, no epistemic explanation, understood as a
derivation from some fundamental principle of information theory (or statistical inference theory) has been
offered.Our paper (aswell as the closely related paper [26])provides such a derivation.

Following the postulates of [27, 28] (which aim at reapproaching the foundations of quantum theory in the
spirit of [29–32]), we demonstrated that themapping to the unique solution of constrainedminimisation of the
relative information D,

Darginf , , 16{ ( )} ( )r r ssÎ

can serve as the general principle of quantum state change due to the acquisition of new information
(represented by the constraints). This amounts to selecting the quantum state that is the least distinguishable
from the original state among all states that are in a strict agreementwith the new knowledge (represented by the
constraints).

In order to derive the quantum collapse rules from the principle (16), we needed to identify the information
theoretic constraints that define the situations of weak and strong collapse. The ‘weak’ collapse amounts to
encoding the information that a specific observable O has been subjected tomeasurement. A quantum stateσ
that carries such information has to be compatible with the possibility ofmeasuring all eigenvalues of O
precisely. Such a situation can be characterised by the condition O, 0[ ]s = (or, equivalently, P , 0i[ ]s = Pi" ).
The ‘strong’ collapse should additionally result in a state thatwould reproduce the result ofmeasurement of a
particular eigenvaluewith certainty (that is, with probability equal 1). That is, given a projector P encoding the
outcomeλ of themeasurement, the post-collapse density operatorσ should satisfy the condition of a ‘weak’
collapse, as well as Ptr 1( )s = . This provides an interesting general insight into a structure of quantum theory:
why it is possible to use (16) in order to derive various quantum state change rules without assuming the
probabilistic interpretation carried under the label of the ‘Born rule’, the latter seems to be required for
justification of the choice of constraints leading to a specific class of rules, including ‘strong’ collapse.

Our results can be considered as a quantum counterpart of derivations [13–16] of the Bayes–Laplace rule
from the constrainedmaximisation of theKullback–Leibler relative entropy [33], S p q,( ) ≔

x p x p x q xlog( ) ( ) ( ( ) ( ))
ò m- , where x Î , while p and q are densities of probabilitymeasures with respect

to ameasureμ on . The functional S p q,( ) is a special case ofUmegaki’s quantum relative entropy S ,( )s r for
discrete and , 0[ ]s r = . This strengthens the analogy between the Bayes–Laplace and the vonNeumann–
Lüders rules: they are just two special cases of a single general principle of inductive inference, given by (16).
From the Bayesian perspective, the state ρ is a prior, whileσ, satisfying the constraints andmaximising S ,( )r s ,
is a posterior.

6. Remarks

It has been known for quite a long time (see e.g. [34]) that a ‘weak’ collapse leads to an increase of the absolute
entropy tr log( )r r- . Our result uncovers an unexpectedly strong inverse of this fact: a ‘weak’ collapse is a result
ofmaximisation of the relative entropy tr log log( )r r r s- - under specific constraints.

All earlier results on derivation of weak and strong collapse rules fromminimisation of two point functionals
on the space of quantum states [22, 35–42]were obtained for (various) symmetric quantum information
distances. The importance of our result stems from the importance of (the negative of)Umegaki’s relative
entropy in quantum information theory as opposed to symmetric quantum information distances, which do not
carry a similar semantic significance. This statement can be approached either axiomatically or pragmatically.
On the axiomatic side, D ,( )r s is characterised [43] by the direct sumproperty, invariance under
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automorphisms (so, in particular, unitaries), additive decomposition under conditional expectations (onto
subalgebra), andmeasurability over the state space. These properties eliminate all above symmetric information
distances. An extensive discussion of the reasons for (and, in particular, applications of) these properties can be
found in [48]. Furthermore, D ,( )r s is a direct quantumgeneralisation of S p q,( )- , which can be also
characterised ‘dynamically’ as a unique functional p q,( )F such that themapping q p qarginf ,p C{ ( )}FÎ
satisfies a few very reasonable desiderata for information processing [15, 32, 44]. On the pragmatic side, D ,( )r s
is widely used in quantum information theory as themost fundamentalmeasure of distinguishability of
quantum states (see e.g. [7, 8, 45–47]). Hence, from the perspective of quantum information theoretic
approaches to foundations of quantum theory, our results provide an essential, newperspective on the
mathematical formof collapse rules due to quantummeasurement.

As noted by one of the referees, this leads to a questionwhether the results of this paper can be reproduced
(or extended) in the setting of generalised probabilistic theories [49, 50]. This setting lacks a general analogue of
the collapse rules, but it allows us to introduce awell defined notion of information distance [51, 52] (which
reduces to theUmegaki andKullback–Leibler distances in quantummechanical and probabilistic case,
respectively)5. Hence, the possible extension of our result to generalised probabilistic theories can bring in new
foundational insights (in particular—as suggested by a referee—one can askwhether defining a post-
measurement state as aminimiser of a specific information distance given some type of constraints preselects
some type of theories). Themain open technical problem is how to replace the use of block diagonal
decomposition and variational analysis of the spectrumof operators by some othermethod. Itmay be possible
that a restriction to a subclass of theories satisfying some sort of spectral condition (see e.g. [56, 57])will be
necessary for this.We hope to return to this problem in another paper.
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