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Abstract

We show that the von Neumann-Liiders collapse rules in quantum mechanics always select the
unique state that maximises the quantum relative entropy with respect to the premeasurement state,
subject to the constraint that the postmeasurement state has to be compatible with the knowledge
gained in the measurement. This way we provide an information theoretic characterisation of
quantum collapse rules by means of the maximum relative entropy principle.

1. Introduction

The dynamics of quantum states in the orthodox (von Neumann’s) foundations of quantum mechanics consist
of two different prescriptions: the unitary evolution and the so-called ‘collapse’ of a quantum state to a subspace
encoding the knowledge gained in the outcome of a measurement. The mappings (rules) describing this collapse
were originally formulated by von Neumann [1] and later improved by Liiders [2]. There are two different forms
of collapse. When one knows only that a measurement corresponding to an observable (a self-adjoint operator
with a discrete spectrum) O has taken place, the ‘weak’ rule applies. Itis defined as p — Zie ; PpP; where pis
the original quantum state (in general, a density operator), while O = Zie ; AiP; is aspectral decomposition
with some countable index set I (hence, Zie b= I, PP = Béj,and \; € R Vi, j € I).Ifameasurement
corresponding to O has resulted in a specific value A\, € {\;|i € I} associated to a projector P, € {P|i € I},
then the ‘strong’ rule, p — Py pPy/tr(pPy), is applied.

The negative of Umegaki’s quantum relative entropy [3,4], D(p, 0) = —S(p, 0) :==tr(plnp — plno) €
[0, o], can be used as a measure of distinguishability, or relative information content, of the quantum state o
from the state p. The use of D instead of S follows Wiener’s idea that the ‘amount of information is the negative
of the quantity defined as entropy’ [5]. Note that we call S = — D the relative entropy, following the convention
of [6] that makes the Gibbs—Shannon and von Neumann entropies the special cases of S, after addinga
constant: Syn (p) = S(p, I/n) + log(n).

The function D can be considered as a nonsymmetric distance: in general, D (p, o) = D (o, p).Ifagiven
state is 0 and we believe it to be p, it can be easier or harder to find our error than if their roles were reversed. Say,
o = P with Psome projector and p = I/n.If we measure the property correspondingto I — P, asingle
measurement can tell us that the state is not o, whereas no single measurement could reveal the same of p. See
e.g.[7, 8] for an overview of reasons for using D (p, o) as a measure of distinguishability and relative
information content.

A key information theoretic property of the strong collapse rule is that the probability of measuring the value

A again, after having measured it once, is 1, which follows from tr (Pk %) = 1. Repeated measurements add
k

no new information. Clearly, the state Py pPy/tr(pPy) is not the only state that has this property (note that Py is
not necessary a rank 1 projector). What we demonstrate in this letter is that, among all states that have this
property, the strong collapse rule selects the state that is least distinguishable from the initial state p, that s, it has
the minimum relative information D (p, - ), in a suitably regularised sense. This allows for an information
theoretic characterisation of the strong collapse rule: the state after measurement is the state that is least
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distinguishable from the previous state, while being compatible with the new information gained by the
measurement.

In order to derive the strong collapse rule, we will need two intermediate results. First we will show that the
weak collapse rule produces the least distinguishable state among the block diagonal states. We then show thata
weighted version of the strong collapse rule, p — Ei p.BipP; / tr(pP,), is the least distinguishable amongst the
states with blocks of fixed trace. This rule can be interpreted as corresponding to a measurement where we
believe that the result P; occurred with probability p;. This intermediate step regularises the problem of a strong
collapse, which is then obtained as a limiting case, by taking p, — 0z withk = 1.

Our derivation of the collapse rules from the constrained maximisation of Umegaki’s quantum relative
entropy is of special importance in the context of epistemic and information theoretic approaches to the
foundations of quantum theory. In this context, collapse rules have been considered as analogues of the Bayes—
Laplace rule [9-12]. This analogy rested on mathematical and conceptual similarity, but was not derived from
any single unifying principle. In the meantime, the Bayes—Laplace rule has been shown to be a special case of the
constrained maximisation of the Kullback—Leibler relative entropy [13—16]. Our result provides the missing
piece of the puzzle. Both the Bayes—Laplace and von Neumann-Liiders rules are special cases of a single
epistemic principle of inductive inference (or, in other words, information theoretic state updating). This issue
will be discussed in more detail in section 5.

After finishing this paper, we were informed about reference [17], where it is shown that a state
o= Zi P, p;P,, where P;are rank 1 projectors, minimises the functional D (p, o). This is a special case of our
result for the weak collapse rule. The generalisation to arbitrary projectors is suggested in [ 18], but without a
proof or an indication of a method of proving this statement. The technique used by us to prove a general
theorem is essentially different from one applied in [17] (and it shows that this result for the rank > 1 case is more
substantial and nontrivial than for the rank 1 case).

A closely related paper [26] deals with the same type of problem as addressed here, but using a different
mathematical approach, allowing for treatment of the infinite dimensional case. Further conceptual and
mathematical discussion associated with the results of both papers is carried out there and in [28]. A recent work
[19] proves that a partial trace is also a constrained maximiser of quantum relative entropy.

2. The setup

We will consider the finite dimensional case. Hence, quantum states will be identified with non-negative
matrices of trace 1, which form the convex set D in the space of all hermitian n X n complex matrices.

The function D (-, -)isjointly convex in both arguments [20], which implies that D (p, - ) is convex on D
forall p € D.Due to the finite dimensionality of the problem, we can use the first order condition for the
existence of a minimum of a convex function (see e.g. [21], Theorems 1.2.7 and 2.2.1): if V is a convex subset of a
finite dimensional topological vector space, and f: ¥V — Ris convex then xis a global minimum of fon V ifand
onlyifall directional derivatives of fat x are non-negative.

For a function differentiable at x this condition states that if x is in the interior of V then the derivatives of f
need to vanish. If x belongs to some strata of the boundary of V then all tangential derivatives need to vanish
whereas derivatives in inward transversal direction need to be non-negative.

In our minimisation problem we have a subspace VV C D of density matrices that is defined by a linear
equation and thus is a subsimplex. The function D (p, - ) restricts to a convex and differentiable function on }
and we want to find its minimum. Thus we simply differentiate in the directions preserving } and set the
derivatives to be positive. We will denote this condition by

C{H(+) = 0vD(p, -) = Oy tr(p In(-)) > 0. (1)

The next two sections will be concerned with evaluating this set of equations.

3. Weak collapse

In the case of a weak collapse due to the measurement of O = Ei A; P, the constraint set is given by the block
diagonal density matrices

Vw:z{aeDl[Pi,a]zo vpi}. ©)

The condition (2) is equivalent with o € V), iff o = Zi P.oP,aswellaswith o € V), iff[O, o] = 0 (see [22] for
adiscussion).
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We can parametrise V), in terms of the singular value decomposition of o. Every element of V), is of the form
o= UAU%, 3

with A atrace 1 diagonal matrix with positive entries, Ua unitary thatisa product U = Hl, U;, where U;isan
identity on the range of I — P,. We havethat[U, P;] = 0,[A, P;] = 0, and thus, writing 0; = 0 |ran (p,y we have
f(o) =&; f(g) = ®; f(0;);thatis, functions (in the sense of the functional calculus) act blockwise on the
space V,.

Let us consider first the variation 0y, tr(p In(-)) = 0 in the direction parametrised by the U;. Given a
function on a Lie group f{U) we can take the directional derivative by looking at the parameter derivative of a one
parameter group of diffeomorphisms on U. As multiplication in a Lie group is differentiable we can pick the one
parameter group of diffeomorphisms generated by left multiplication with the one-dimensional subgroup
exp(tL),

¢, (U) = exp(tL) (V). (4)
We then define the directional derivative in direction L as the derivative of the pushforward of falong ¢,,
of () = iqﬁf f ()] = o- Forafunction thatis the trace of Uin a particular representation this can be easily

evaluated:

d d
SO AV oy = (AU ) g =

d
Sy (€M) limo = (A5 ALU); = (ALU). )
i,j irj
A straightforward calculation shows that we further have %(bg tr(AUBU*)|,—¢ = tr(ALUBU*) — tr(AUBU*L).
Note that [L;, Pj] = 0,and in particular L; P; = 6;;L;. The derivative then takes the form

aL,.Z tr(PijjU]- In AjU;k) = tr(pl-Li In Ui) — tr(pl- ln(m)Li) =0,
j

tr(Li[ln o, pi]> =0. (6)

We thus see thatif o and Zi P, pP; are concurrently diagonalisable, the above equation vanishes. In fact,
since [In ¢, p;]istracelessand {L;, iL; } spans the space of all traceless matrices in the i-th matrix block, this is
also a necessary condition.

Let us next consider the variation in the direction of the spectrum, that is the direction of A. We are
interested in the case where o and Zi P, pP, are concurrently diagonalisable. Let x{ and «{ be the eigenvalues of
oand Zi P, pP, respectively. If K = 0and x{ = 0then D (p, o) = 00, so this can not be the minimum ifa
state with finite relative entropy exists, and we can disregard this case here.

Let us first consider the case thatall k¥ 5= 0. We have the condition

90,0 (p, @) = 0, (—tr(AyIn A;)) = 0,3 — wf In s = 0. @
k

The derivatives J  have to preserve the trace. An overcomplete basis of such derivatives is given by 0,.; — 0,..
Thus, forall k, I, m

(0s7 = 04) 3 = In k7, = 0,

m
P P
K K
1 k
—~ =0 ®)
K Kk

So, the ratios of the eigenvalues of Zi P.pP, and o are fixed. As they both are trace 1, this implies they are
the same.

Letassume now that I'is the index set of all i such that x = 0. If this set is nonempty then the above
conditions cannot be satisfied. However, there is still a possibility that the minimum is on the boundary. The
condition for the minimum on the boundary is weaker than the above. Namely, all derivatives in directions
pointing in toward the set need to be positive. Such directions can be written as a linear combination

> (0 = Our) + Yo ai(9u — ) ©
iel,jgl ijgl
with ay; > 0fori € I, j ¢ I and otherwise o arbitrary, since the derivatives with negative coefficients at 0.7
would otherwise point outside the set. For that it is enough to check basis derivatives

3
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K}p
Viewjer (947 = 05) X = wpIn k), > 0 = Vg —2 >0, (10)
m 1
kY Ky
V,‘)jg[ (8,‘”7 — a,.u‘j’) Z - Iﬁ% In HZ =0= vk,lgl — = F =0, (11)
m 1 k

and we see this is a global minimum.

Recall thatif kK = 0 when x{ = 0 then D (p, 0) = co. We now also need to consider the case that x” = 0
when k{ > 0.Inthat case we would get the full derivatives in the i direction, thus the equations (11) apply,
which can not be satisfied unless all /{}’ = 0, which can not occurin D.

Combining this with the above we have that

C{;)W[Z PiPPi) = 8VWD[P, Zpippi] = 0. (12)

Thestate o = Zi P pP; is the only state o satisfying CY; () > 0. The set ), is convex, so from (12) and
convexity of D (p, -), thisis the unique global minimum.

4. Strong collapse

The conditions defining ‘strong’ collapse that were specified in Introduction lead us to a troubling situation,
because for such states (containing zero eigenvalues) the relative entropy is almost always infinite. We will
overcome the problem by deriving a generalised version of the strong collapse rule that is a quantum counterpart
of Jeffrey’s rule. The ordinary strong collapse rule will be then obtained by a limiting procedure.

Consider a constraint set given in terms of p, € R such that Zi p. = lby

V, = {0‘ € Dl[P,', 0’] =0, tr(O’P,‘) =p; V P; }, (13)

where {P;|i € I}isagain determined by the spectral decomposition of an observable O = Zie ; AiP;. The set
(13) can be interpreted as encoding the knowledge that the measurement outcome A, corresponding to a
projection P; occurs with a probability p;.

Here we encounter a problem. If we have a p; nonzero but tr(pP;) = 0, then every state in ), will have
relative entropy — 00 to p. Moreover, even if we subtract the infinite constant, we find that the regularised
distance does not depend on the state in the block P; and there is no unique minimum. We thus will always
assume that tr(pF;) = 0 for p, = 0.

The variation in the U; direction goes through as before. However the variation in the direction of the
spectrum changes in that a basis is now given in terms of 0,77 — 0,7, with £}’ and ;" belonging to the same block
P;and thus being eigenvalues of ¢;. Thus only the fractions of eigenvalues within each block are fixed. This
implies that the eigenvalues of ¢; are uniformly scaled relative to the eigenvalues of p;. The condition

> ki = pfixes g;tobe p,p,/tr(p,).

This shows that
(ol Zpiﬂ > 0. (14)
; tr(Pi PPi)
Thestate o = Zi p; trf;p;’)‘) is the only state o satisfying 0y,D (p, o) > 0.

The strong collapse is a limiting case of the above projection, with all p; going to zero except of one, p;,
corresponding to a projection P; that, in turn, corresponds to a measurement result given by an eigenvalue ;.
We obtain this by taking the weak continuous limit

lim arginf ., {D(p, o)} = lim Zpiﬂ
Pppy-—0 : by =0 tr(PipPi)
Plppl (15)
tI'(Plppl)

Note that in the finite dimensional case that we consider here the weak topology and norm topology coincide.

5. The foundational view

In the orthodox formulation of quantum mechanics the ‘collapse rules’ are postulated. Thus, they are not
deduced from any other more fundamental principle. They can be derived from several different conditions, see

4
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[23, 24] for a review, but none of these conditions possesses the status of a fundamental principle of quantum
theory. The weak collapse rule can be derived by taking the tensor product with an auxilliary state, followed by
unitary evolution and a partial trace. This may serve as a derivation independent of interpretational issues (when
this procedure is interpreted as an interaction with some ontic environment, it is usually considered as an
instance of decoherence). However, no such construction exists for the strong rule. This fact, as well as the
unclear relationship between the strong collapse rule and unitary evolution, renders the orthodox mathematical
foundations conceptually insufficient, asking for further insights.

In general, an ontic interpretation of the quantum state leads to considering quantum collapse as a change of
the ‘state of being’ of some ‘material object/thing’. On the other hand an epistemic interpretation leads to
considering quantum collapse as a change of the ‘state of information’ of some ‘experiencing user/agent’. (There
also is a corresponding difference in the meaning of the term ‘measurement’.) In particular, the dynamical
reduction approach of [25], belongs to the former class, providing an ontic explanation by means of a general
dynamical principle from which the quantum collapse rule is derived. On the other hand, an epistemic
interpretation of collapse rules as quantum mechanical analogues of the Bayes—Laplace rule
px) — p(x)p(blx)/p(b)was proposed in [9-12]. However, no epistemic explanation, understood as a
derivation from some fundamental principle of information theory (or statistical inference theory) has been
offered. Our paper (as well as the closely related paper [26]) provides such a derivation.

Following the postulates of [27, 28] (which aim at reapproaching the foundations of quantum theory in the
spirit of [29-32]), we demonstrated that the mapping to the unique solution of constrained minimisation of the
relative information D,

p — arginf__,{D(p, 0)}, (16)

can serve as the general principle of quantum state change due to the acquisition of new information
(represented by the constraints Q). This amounts to selecting the quantum state that is the least distinguishable
from the original state among all states that are in a strict agreement with the new knowledge (represented by the
constraints).

In order to derive the quantum collapse rules from the principle (16), we needed to identify the information
theoretic constraints that define the situations of weak and strong collapse. The ‘weak’ collapse amounts to
encoding the information that a specific observable O has been subjected to measurement. A quantum state o
that carries such information has to be compatible with the possibility of measuring all eigenvalues of O
precisely. Such a situation can be characterised by the condition [, O] = 0 (or, equivalently, [P, o] = 0 V P).
The ‘strong’ collapse should additionally result in a state that would reproduce the result of measurement of a
particular eigenvalue with certainty (that is, with probability equal 1). That is, given a projector P encoding the
outcome A of the measurement, the post-collapse density operator o should satisfy the condition of a ‘weak’
collapse, aswell as tr(Po) = 1. This provides an interesting general insight into a structure of quantum theory:
why it is possible to use (16) in order to derive various quantum state change rules without assuming the
probabilistic interpretation carried under the label of the ‘Born rule’, the latter seems to be required for
justification of the choice of constraints leading to a specific class of rules, including ‘strong’ collapse.

Our results can be considered as a quantum counterpart of derivations [13—16] of the Bayes—Laplace rule
from the constrained maximisation of the Kullback—Leibler relative entropy [33], S (p, q) =

— f 1) p (x)log(p (x)/q(x)), where x € X, while pand g are densities of probability measures with respect
X

toameasure pon &'. The functional S(p, q) is a special case of Umegaki’s quantum relative entropy S (o, p) for
discrete X' and [0, p] = 0. This strengthens the analogy between the Bayes—Laplace and the von Neumann—
Luders rules: they are just two special cases of a single general principle of inductive inference, given by (16).
From the Bayesian perspective, the state pis a prior, while o, satisfying the constraints and maximising S (p, o),
is a posterior.

6. Remarks

It has been known for quite along time (see e.g. [34]) that a ‘weak’ collapse leads to an increase of the absolute
entropy —tr(p log p). Our result uncovers an unexpectedly strong inverse of this fact: a ‘weak’ collapse is a result
of maximisation of the relative entropy —tr(p log p — p log o) under specific constraints.

All earlier results on derivation of weak and strong collapse rules from minimisation of two point functionals
on the space of quantum states [22, 35-42] were obtained for (various) symmetric quantum information
distances. The importance of our result stems from the importance of (the negative of) Umegaki’s relative
entropy in quantum information theory as opposed to symmetric quantum information distances, which do not
carry a similar semantic significance. This statement can be approached either axiomatically or pragmatically.
On the axiomatic side, D (p, ¢) is characterised [43] by the direct sum property, invariance under
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automorphisms (so, in particular, unitaries), additive decomposition under conditional expectations (onto
subalgebra), and measurability over the state space. These properties eliminate all above symmetric information
distances. An extensive discussion of the reasons for (and, in particular, applications of) these properties can be
found in [48]. Furthermore, D (p, o) is a direct quantum generalisation of —S (p, g), which can be also
characterised ‘dynamically’ as a unique functional ®(p, q) such that the mapping g — arginf, . {®(p, q)}
satisfies a few very reasonable desiderata for information processing [15, 32, 44]. On the pragmatic side, D (p, o)
is widely used in quantum information theory as the most fundamental measure of distinguishability of
quantum states (see e.g. [7, 8, 45—47]). Hence, from the perspective of quantum information theoretic
approaches to foundations of quantum theory, our results provide an essential, new perspective on the
mathematical form of collapse rules due to quantum measurement.

Asnoted by one of the referees, this leads to a question whether the results of this paper can be reproduced
(or extended) in the setting of generalised probabilistic theories [49, 50]. This setting lacks a general analogue of
the collapse rules, but it allows us to introduce a well defined notion of information distance [51, 52] (which
reduces to the Umegaki and Kullback—Leibler distances in quantum mechanical and probabilistic case,
respectively)’. Hence, the possible extension of our result to generalised probabilistic theories can bring in new
foundational insights (in particular—as suggested by a referee—one can ask whether defining a post-
measurement state as a minimiser of a specific information distance given some type of constraints preselects
some type of theories). The main open technical problem is how to replace the use of block diagonal
decomposition and variational analysis of the spectrum of operators by some other method. It may be possible
thata restriction to a subclass of theories satisfying some sort of spectral condition (see e.g. [56, 57]) will be
necessary for this. We hope to return to this problem in another paper.
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