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Abstract

We discuss new approach to mathematical foundations of quantum theory, which
is completely independent of Hilbert spaces and measure spaces. New kinematics is
defined by non-linear geometry of spaces of integrals on abstract non-commutative
algebras. New dynamics is defined by constrained maximisation of quantum relative
entropy. We recover Hilbert space based approach (including unitary evolution
and the von Neumann–Lüders rule) and measure theoretic approach to probability
theory (including Bayes’ rule) as special cases of our approach.

1 Introduction

Foundations of quantum theory consist of mathematical formalism, its conceptualisa-
tion, and particular methods of experimentation. The Hilbert space based mathematical
formalism of quantum mechanics, proposed by Hilbert and developed by von Neumann
[9, 21], has a status of orthodoxy. However, it became also a subject of many critical
assessments, including critique by von Neumann himself. As a result, several different
alternative mathematical frameworks were developed, such as quantum logic approaches,
algebraic approaches, convex set approaches, path integral approaches, Gel’fand triplet
approaches, and semi-spectral approaches (to name only few). Yet, none of these frame-
works was able to completely replace the orthodox setting. In our opinion, the Hilbert
space based framework is relevant only for quantum mechanics, which covers just a cer-
tain particular class of quantum theoretic models, corresponding to a certain restricted
class of experimental situations. There seems to be many experimental situations such
that the corresponding quantum theoretic models do not fit into the orthodox framework
without severe deformations. An important example is provided by quantum field the-
ory, which fits into Hilbert space based frames only in perturbative sense, using many
ad hoc assumptions, and even some ill-founded techniques. This means that the math-
ematical formalism for quantum theory in its full generality still waits to be developed.
Such theory should include non-perturbative generic formulation of quantum field theory.
The Hilbert space based framework for quantum mechanics plays for us a role similar
to special relativity: it asks for a general theory with additional non-trivial geometric
structures that would encode the ‘interaction’. In what follows we discuss the elements
of a new approach to construction of such theory. For a full account of it, including its
conceptualisation, see the forthcoming series of papers [16].
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2 New foundations

Given abstract non-commutative W ∗-algebra N , we define the quantum information
model M(N ) as a subset of the space N+

∗ of normal positive finite linear C-valued
functions on N . A predual N∗ is defined as such Banach space that N is its Banach
dual: (N∗)B ∼= N . The spaces M(N ) can be equipped with several different geometric
structures, including the structures of differential and convex geometry. Any particular
collection of geometric structures on M(N ) will be called its quantum information ge-
ometry. We propose to consider the spaceM(N ) together with its (non-linear) quantum
information geometry as a replacement for linear Hilbert space H (and linear operators
over it) in the role of kinematic setting of a quantum theory.

This proposition is motivated by reconsideration of quantum theory as a replacement
of probability theory (and not of classical mechanics). The spaces M(N ) are just non-
normalised non-commutative analogues of probabilistic models

M(X ,f(X ), µ) ⊆ L1(X ,f(X ), µ)+,

where X is a sample space, f(X ) is a boolean algebra of some countably additive sub-
sets of X , and µ is a probability measure on f(X ). This analogy can be made precise
by means of the Falcone–Takesaki non-commutative integration theory [4] and abstract
theory of integration over boolean algebras [5], which allow to separate the essential el-
ements of mathematical formalism of probability theory and quantum theory from the
representation-dependent elements.

In particular, there are many different measure spaces (X ,f(X ), µ) which might not
be related by any transformation or isomorphism, but lead anyway to isometrically iso-
morphic commutative L1 spaces L1(X ,f(X ), µ). This can be made precise in the fol-
lowing way. Define camDcb-algebra as a countably additive, Dedekind complete, boolean
algebra allowing a semi-finite strictly positive measure. Every localisable measure space
(X ,f(X ), µ) allows to construct a corresponding camDcb-algebra f by

f := f(X )/{x ∈ f(X ) | µ(x) = 0}.

(Localisability is equivalent with validity of the Steinhaus–Nikodým duality

L1(X ,f(X ), µ)B ∼= L∞(X ,f(X ), µ),

which is necessary to consider elements of probabilistic model as functions given by the
Radon–Nikodým derivatives.) Moreover, to each camDcb-algebra f there can be asso-
ciated a range of commutative Lp spaces Lp(f), p ∈ [1,∞], which are independent of
the choice of measure on f. (They are defined by an abstract integration theory on a
Riesz lattice A(f) of characteristic functions on the Stone spectrum of f.) The asso-
ciation of Lp(f) is functorial over a category of camDcb-algebras with isomorphisms as
arrows. Thus, all isometrically isomorphic L1(X ,f(X ), µ) spaces are just representations
of a single L1(f) space, associated with a particular camDcb-algebra f. For any given
camDcb-algebra f and some integral ω on A(f), the Loomis–Sikorski theorem provides
a representation of f in terms (X ,f(X ), µ). Thus, probabilistic models can be defined
independently of the representation in terms of measure spaces, as subsets of normalised
part of L1(f)+ for a given commutative camDcb-algebra f.

The Falcone–Takesaki theory provides a generalisation of the representation-independent
construction of the spaces of integrals to the case when underlying integrable algebra is
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non-commutative (i.e., it is a W ∗-algebra). It includes even the functorial association of
a range of non-commutative Lp spaces Lp(N ), p ∈ [1,∞], which are independent of the
choice of weight on N . The isometric isomorphisms

(N∗)B ∼= L1(N )B ∼= L∞(N ) ∼= N

correspond to
L1(f)B ∼= L∞(f).

Moreover, for any pair of a W ∗-algebraN and an integral ω ∈ N+
∗ the Gel’fand–Năımark–

Segal (GNS) theorem associates a unique Hilbert space Hω and a unique (up to unitary
isomorphism) representation πω : N → B(Hω) such that there exists Ωω ∈ Hω that is
cyclic for πω(N ), and

ω(x) = 〈Ωω, πω(x)Ωω〉ω ∀x ∈ N .

(If N contains no type III factor and if N+
∗ contains at least one faithful element ω, then

M(N ) can be represented as a space M(Hω) of non-normalised density operators over
Hω. However, type III factors arise naturally in quantum field theory, so this representa-
tion has a restricted validity.) Finally, for every commutative W ∗-algebra N there exists
such camDcb-algebra f that N ∼= L∞(f). This turnsM(N ) ⊆ N+

∗ toM(f) ⊆ L1(f)+.
In face of such deep structural relationships between commutative and non-commutative
integration theory it is quite hard to find convincing arguments in favour of consideration
of probability theory and quantum theory as two separate theories. This way probability
theory becomes precisely a special (commutative and normalised) case of quantum the-
ory, at least at the level of kinematics of both theories. We do not require normalisation
of M(f) or M(N ), because it is required only by the relative frequency interpreta-
tion, which: (1) has failed to provide sound conceptual and mathematical foundations of
probability theory; (2) is impossible in quantum case, because integrals on W ∗-algebras
(beyond type II1 factors) do not allow representation in form of relative frequency [22, 19].

It follows that von Neumann’s spectral representation theorem, which represents
Hilbert space based quantum theoretic model in terms of measure space based proba-
bilistic model (expressed in terms of commutative L2(X ,f(X ), µ) space) is just a trans-
lation from some very particular representation of quantum model M(N ) to some very
particular representation of probabilistic model M(f). Thus, neither this theorem nor
the eigenvalues of elements of some particular Hilbert space representation of N would
play foundational role in our approach to quantum theory. (On the other hand, the non-
normalised expectation values play the role of parameters on M(N ).) More generally,
we do not see any convincing arguments requiring to analyse general models M(N ) in
terms of some special modelsM(f): quantum theoretic models should be quantitatively
constructed and analysed on their own right, without passing to commutative normalised
sector (probability theory). To achieve this goal, we consider quantum kinematics as
given by models M(N ) together with the quantum information geometric structures on
M(N ), and require that the latter should be directly related with (operational) exper-
imental descriptions, without invoking probability theory. In this sense, we postulate
that the usual approach to prediction of experimental behaviour based on “quantum me-
chanics + methods of quantum model construction + probability theory + methods of
statistical inference” should be replaced by “quantum theory + methods of construction
of kinematics and dynamics of quantum models”.
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3 Quantum geometry

Among different geometric structures on M(N ), a particularly important role is played
by the non-symmetric distance function,

M(N )×M(N ) 3 (φ, ω) 7→ D(φ, ω) ∈ [0,+∞]

such that D(φ, ω) = 0 ⇐⇒ φ = ω, called quantum information deviation or negative
quantum relative entropy. It allows to determine several other geometric objects on
M(N ), see e.g. [8, 17, 10]. In particular, if

M(N ) ⊆ N+
∗01 := {ω ∈ N+

∗ | ω(I) = 1, ω(x∗x) = 0⇒ x = 0},
thenM(N ) can be equipped with the structure of differential manifold defined in terms
of quantum relative entropic perturbations [11]. In such case, if dimM(N ) < ∞ and
D has a non-negative hessian, then the riemannian metric g and a pair (∇,∇?) of affine
connections on M(N ) can be defined by

gφ(u, v) := (∂u)φ(∂v)ωD(φ, ω)|ω=φ,

gφ((∇u)φv, w) := −(∂u)φ(∂v)φ(∂w)ωD(φ, ω)|ω=φ,

gφ(v, (∇?
u)φw) := −(∂u)ω(∂w)ω(∂v)φD(φ, ω)|ω=φ,

where (∂u)φ is a directional derivative at φ ∈M(N ) in the direction u ∈ TφM(N ). Here
TφM(N ) can be identified with any of the sets

{xϕγ ∈ L1/γ(N ) | reφ([Dφ : Dϕ]iγ(x)) = 0},
for γ ∈ ]0, 1], where [Dφ : Dϕ]z is Connes’ derivative (the non-commutative Radon–
Nikodým derivative). Every such triple (g,∇,∇?) forms a Norden–Sen geometry on
M(N ), characterised by the equation

g(∇uv, w) + g(v,∇?
uw) = u(g(v, w)) ∀u, v ∈ TM(N ).

It naturally determines an associated riemannian geometry (M(N ),g), with the Levi–
Civita connection ∇̄ of g satisfying

∇̄ =
1

2
(∇+∇?).

If DΨ is a quantum Bregman deviation [18, 14], defined using the embedding `Ψ :
M(N )→ L into a complex linear space L and a convex function Ψ : L→]−∞,+∞], and
if, given Q ⊆ M(N ), `Ψ(Q) ⊆ L is non-empty, closed and convex, then the non-linear
Bregman projection

PΨ
Q :M(N )→ Q

is defined by the condition

∀ω ∈M(N ) ∃!PΨ
Q(ω) = arg inf

φ∈Q
{DΨ(φ, ω)}.

It satisfies the generalised pythagorean equation:

DΨ(ϕ,PΨ
Q(φ)) +DΨ(PΨ

Q(φ), ω) = DΨ(ϕ, ω) ∀ϕ ∈ Q ∀ω ∈M(N ).

The Hilbert space norm distance, ||ξ1 − ξ2||2H is (up to a factor of 1
2
) a special case of

Bregman deviation DΨ(φ1, φ2) for linear space L given by L2(N ) ∼= H, Ψ(·) = ||·||2,
and ξ(φ) := `Ψ(φ) = 2φ1/2. In such case PΨ

Q are norm-orthogonal projections. Hence,
quantum information geometry ofM(N ) reduces in special cases to riemannian geometry
and to the complex Hilbert space geometry.
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4 Quantum dynamics

Under our particular concern is a family of quantum relative entropies that belong to
the class of Bregman deviations and are non-increasing under the completely positive
trace-preserving maps T c,

D(ω, φ) ≥ D(T c(ω), T c(φ)).

In [14] we defined the family of quantum deviations

Dγ(ω, φ) :=

∫
(ω/(1− γ) + φ/γ − re (ωγφ1−γ)/(γ(1− γ)))

for γ ∈]0, 1[ (and by its limits under integral for γ ∈ {0, 1}) and showed that it satisfies
both above conditions. We have conjectured that it is characterised by these conditions.
This provides a strong restriction on the representations of models M(N ) in terms of
linear spaces L. The Bregman deviations Dγ(ω, φ) are based on the embeddings

`γ :M(N ) 3 φ 7→ 1

γ
φγ ∈ L1/γ(N ),

restricting L to one of L1/γ(N ) spaces. The differentiation of Dγ generates the Wigner–
Yanase–Dyson metrics for γ ∈]0, 1[ and the Bogolyubov–Kubo–Mori metrics for γ ∈
{0, 1}.

We define the quantum information dynamics as a mapping provided by the varia-
tional principle of constrained maximisation of quantum relative entropy

M(N ) 3 ω 7→ Pγ
Q(ω) := arg inf

φ∈M(N )
{Dγ(ω, φ) + F (φ)} ⊂ M(N ),

where F : Q →] − ∞,∞] represents the constraints [13]. (More generally, one might
replace Dγ(ω, φ) by ∫

ϕ∈M(N )

E(ϕ, ω)Dγ(ϕ, φ),

where E(·, ω) is a positive measure on M(N ) and define the constraints in terms of F
and E.) The solution to this dynamics exists and is unique if F is weakly lower semi-
continuous, convex, F 6≡ +∞, and if `1−γ(Q) is non-empty, weakly closed and convex
subset of L1/(1−γ)(N ) space. We refer to this mapping as ‘information dynamics’, because
it quantifies the changes of knowledge, which are imposed by the constraints (evidence)
F . The constraints F depend not only on φ, but also on some function f(o1, . . . , on) of
operational ‘experimental evidence’ (o1, . . . , on). A simple example is

F (φ, o1, . . . , on) = λ1(φ(I)− 1) + λ2(φ(x)− f(o1, . . . , on)), (4.1)

where x ∈ N is some abstract quality (e.g. ‘energy’), while λ1 and λ2 are Lagrange mul-
tipliers. The constraint (4.1) defines the knowledge about the particular quantification
of the abstract quality x (here given by an expectation φ(x)) that is considered to cor-
respond to the given function f of given ‘experimental evidence’ (o1, . . . , on). Note that
this allows for consideration of f(o1, . . . , on) = 1

n

∑n
i=1 oi, with oi defined as a particular

value attained at the registration scale of some ‘energy-measuring device’, as well as of
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f(o1, . . . , on) = o1, with o1 defined as an arithmetic average of these values. The choice
among various possibilities of such kind determines the particular operational meaning
of the results of of quantum information dynamics. (In general, we consider references to
classical mechanics or probability theory as irrelevant to mathematical foundations and
experimental verification of quantum theory. The experimental verification of quantum
theoretic models requires only some language for operational description of experimental
situations and some rules relating operational descriptions of particular experiments with
corresponding quantum theoretical models. For more discussion of interpretation of our
mathematical framework, see [13, 15, 16].)

If the constraints F are parametrised by some t interpreted as ‘time’, F (φ) = F (φ, t)
with F (φ, t = t0) = 0, then the trajectory

t 7→ ω(t) := Pγ
F (t)(ω(t = t0))

can be understood as a non-linear quantum temporal evolution onM(N ) (the domain of
t might be continuous or discrete).

5 Recovery of orthodox formalisms

The measure space based framework for probability theory is recovered by passing to
camDcb-algebra f via L∞(f) ∼= N for commutative N , and by the Loomis–Sikorski
measure space representation of f. The models M(N ) turn then into M(X ,f(X ), µ),
while their quantum information geometry and quantum information dynamics turn
to their commutative counterparts on M(X ,f(X ), µ). The normalisation condition
imposes the projection of geometry on unit sphere in L1(f) and the additional con-
straint on information dynamics. Finally, for γ = 0, dimM(X ,f(X ), dx) < ∞ with
θ :M(X ,f(X ), dx)→ Θ ⊆ Rn, and F represented as

F (q) = λ1(

∫
X

dx

∫
Θ

dθq(x|θ)− 1) + λ2(

∫
Θ

dθq(x|θ)− δ(x− b))

the information dynamics ω 7→ Pγ
Q(ω) reduces to Bayes’ rule

p(x|θ) 7→ p(x|θ)p(b|x ∧ θ)/p(b|θ),

see [2]. This way probability theory is a special case of quantum theory also on the level
of dynamics of both theories.

The Hilbert space based kinematic framework for quantum theory can be recon-
structed as a particular case of quantum geometric approach. The L2(N ) space can
be naturally equipped with the scalar product defined by

〈x, y〉 :=

∫
y∗x,

and it is complete in the norm topology generated by this product. As a Hilbert space,
L2(N ) is unitary isomorphic to the Hilbert space HH of Haagerup’s standard represen-
tation πH : N → B(HH). In consequence, M(N ) can be represented using

`1/2 :M(N ) 3 φ 7→ `1/2(φ) = 2φ1/2 ∈ L2(N ) ∼= HH .
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Moreover, for any faithful ω ∈ N+
∗ , the Haagerup representation is unitary equivalent

with the GNS representation πω : N → B(Hω). As explained in Section 3, the Bregman
projections of D1/2 onM(N ) (naturally associated with `1/2) turn into norm-orthogonal
projections on HH . This allows to consider orthodox quantum theoretic kinematics as a
linear representation of a special case of quantum information geometric kinematics.

In the Hilbert space based framework there are two different notions of temporal
evolution: the unitary evolution and the non-unitary evolution. The latter changes the
probabilistic predictions (inferences) drawn from the formalism, while the former does
not change them. Hence, we consider the unitary evolution as a part of information
kinematics, as opposed to non-unitary evolution which belongs to information dynamics.
The von Neumann–Lüders rule

M(H) 3 ρ 7→
∑
i

PiρPi ∈M(H),

with {Pi} given by the projection operators arising from orthogonal decomposition of unit
I ∈ B(H) and such that [Pi, ρ] = 0, is often considered as a non-commutative analogue
of Bayes’ rule (see e.g. [1, 20, 6]). In [12] we have conjectured that this analogy can
be made strict in the following sense: the von Neumann–Lüders rule is a special case of
constrained quantum relative entropy maximisation. This conjecture is proved in [7] for
dimM(N ) <∞ and γ = 1, which corresponds to the Umegaki deviation

D1(φ, ω) = tr(ρφ(log ρφ − log ρω)),

and for Q = {
∑

i PiρiPi, ρi ≥ 0}, which is convex and closed in terms of the coordinate
embedding

`0 :M(N ) 3 ρ 7→ log ρ ∈ L∞(N ) ∼= N .

This result allows to replace ad hoc von Neumann–Lüders updating of quantum state of
knowledge (which restricts the allowed ‘experimental evidence’ to projections in commuta-
tive L2 space) by the general principle of quantum information dynamics with constraints
defined by convex closed subsets of non-commutative Lp(N ) spaces. As a result, our ap-
proach allows for more flexible operational specification of the ‘experimental evidence’,
and for deriving various ‘quantum measurement’ rule from a single underlying principle.

The models M(N ) allow different temporal trajectories generated by the entropic
dynamics, so their points correspond in general to quantum information states in various
instances of time t. Because orthodox approach defines quantum models in a single instant
of time t, M(N ) should allow for a global foliation by hypersurfaces of codimension
1. These hypersurfaces will be indexed by s ∈ R. The parametrisation s is a priori
independent of time t, except of the condition that t has to be equipped with a partial
order relation, and there must be given an order isomorphism between the partial order
relations of t and s. For each leaf Ms(N ) there should exist an associated faithful
reference state φ(s) ∈ N+

∗ , allowing to consider

`1/2 :Ms(N )→ Hφ(s).

In particular, the family φ(s) can be given by a continuous trajectory φ(s) ∈M(N ) such
that φ(s) ∈Ms(N ).

If some Hφ(s), say Hφ(0), is fixed as the orthodox Hilbert space H, then the unitary
equivalence with other Hφ(s) becomes represented in terms of a family U(s) of unitary
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operators on H. If U(s) is a group, then it becomes identified with the orthodox unitary
evolution. Thus, the construction of unitary evolution has information kinematic char-
acter and amounts to a choice of a global foliation of M(N ) and a choice of a family
φ(s) of reference states associated to it. The hamiltonians constructed in this way are of
purely epistemic character.

According to the Tomita–Takesaki theorem, each faithful element ω of N+
∗ determines

a unique unitary automorphism R 3 r 7→ σωr ∈ Aut(πω(N )) on Hω such that ω ◦ σω = ω.
This leads to as whether U(s) could be related with σωr , at least in a special case them

φ(s) = φ(0) ∀s ∈ R. The automorphism σ
φ(0)
r has a virtue of being canonically associated

to each faithful φ(0), but has also a drawback of excluding various quantum hamiltonians

that do not agree with the properties of the hamiltonian σ
φ(0)
r . We will discuss this

problem elsewhere.
The two temporal evolutions of Hilbert space based setting are dependent on two

different time parameters, respectively: ‘external time’ t of the constraints F (φ, t) and
the ‘internal time’ s ∈ R of the global foliation of M(N ). This is not in conflict with
the orthodox approach, because the latter simply avoids answering the question about
temporal relationship of ‘time of measurement’ and ‘time of unitary evolution’. The
relation between s and t will be discussed in more details in [16] and is directly related
with reconsideration of models M(N ) as quantum space-times [3].
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