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Abstract

In this essay I examine the potential of deriving quantum mechanical state update rules

using the principle of constrained maximisation of quantum relative entropy. Two types of

state update are surveyed: Lüders’ rule, corresponding to a projective measurement, and

partial trace, corresponding to restriction of a bipartite state to a state on one tensor factor.

The original result contained in this work is a proof that partial trace between invertible

matrices is a special case of constrained relative entropy maximisation.

The work on projective measurements builds upon existing work and I demonstrate that

the conventional state update maximises relative entropy but I do not establish uniqueness.

Finally a strategy for a proof that would hold in infinite dimensional quantum mechanics

is discussed.
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1 Introduction

Since the early days of quantum mechanics physicists have disagreed about the philosophical

implications of the theory. At the essence of the theory are abstract mathematical objects.

Some have argued that these abstract mathematical objects represent facts about the state of

nature. Others have argued that they merely represent the available knowledge about outcomes

of measurements. Since the two worldviews do not offer different predictions one might argue

that the discussion itself is without consequence. However they may still provide an insight into

how quantum theory could be founded mathematically.

Let us consider the latter view. Whatever information an experimenter has about a physical

system is then supposed to be contained in a “state”, and quantum theory is understood as

a framework that provides a set of rules for how to update this state when manipulating the

system in various ways. The updated state is then supposed to represent the new information

available to the experimenter after performing the manipulations. But the only new information

available to the experimenter is that he has performed the manipulation. Which mechanism

is then specifically resonsible for incorporating this information into the new state? It may be

possible to formulate quantum theory in such a way that the state update explicitly deals with

the change of information. In this way a minimal amount of ontological baggage would reside

in the theory itself since that theory wouldn’t refer to external entities but only to knowledge

about them. Information is however in general a vague concept that requires som specific for-

malisation before it can be incorporated into a theory. The concept of “relative entropy” is

widely considered as providing a useful measure of difference in information between two states

of knowledge.

Given two classical probability distributions p(x) and q(x) an often used relative entropy func-

tion is S(p, q) = −
∫
dxp(x) log p(x)

q(x) [21]. This is a stricty negatively valued function. Let M
denote a space of probability distributions, let p ∈ M be given and let Q ⊆ M be a convex

subset. A constrained maximisation of S(p, q) for p ∈ Q means picking the q ∈ Q such that

S(p, q) takes its biggest possible value. Bayes’ rule is often taken as a primitive concept in

classical probability theory for how one should infer from a probability distribution to a new

one given some information. Caticha and Giffin [14] showed that the principle of constrained

maximisation of relative entropy reproduces Bayes’ rule in a special case. This means that one

may take the principle of constrained maximisation of relative entropy as a fundamental general

prescription for state update in classical probability theory. That something as fundamental in

classical probability theory as Bayes’ rule can be derived in this way leads to the question: is

it possible to obtain an analogue of this result in quantum mechanics? It is the purpose of this

essay to convince the reader of an answer in the positive.

First let us reacquaint ourselves with state update in conventional quantum mechanics. Suppose

a projective measurement is being performed on a state described by a density matrix ρ on a

Hilbert space H. The measurement corresponds to a hermitian operator O =
∑

i∈I λiPi, where

I is a countable index set, {Pi}i∈I are projectors on H and {λi}i∈I ⊂ R. The new state is given

by Lüders’ rules. In the case where the outcome is known and corresponds to the projector
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Pj , then the new state is ρnew =
PjρPj

tr[ρPj ]
. We will call this case strong collapse. When the

outcome is not known the new state is given by ρnew =
∑

i∈I PiρPi. This case will be called

weak collapse.

When considering a state described by a density matrix ρ on a bipartite Hilbert space

H = HA ⊗HB the conventional way to restrict to a state on HA is by means of partial trace

ρ 7→ trBρ. The state on the joint system H then is trBρ⊗ 1B.

In Section 2 the main work of this essay is done. It is shown here that in finite dimen-

sional Hilbert spaces the above rules for state update are obtained as unique maximisers

of relative entropy under right assumptions. For weak collapse choose the constraint set

{ω ∈ D | [ω, Pi] = 0 ∀i ∈ I}. For a discussion on why the constraint set takes the form it

does see Herbut [16]. The strong collapse is obtained as a limit of the quantum Jeffreys rule

ρ 7→ ρnew =
∑

i∈I pi
PiρPi

tr[ρPi]
(that applies when the outcome related to Pi is known with a

certain probability pi for each outcome i ∈ I). For quantum Jeffreys the constraint set is

{ω ∈ D | [ω, Pi] = 0, tr[ωPi] = pi∀i ∈ I}. Strong collapse is then achieved from quantum

Jeffreys in the limit pi → 0 ∀i 6= j and pj → 1. The derivations of the collapse rules follow

Kostecki [10]. The work on partial trace is entirely original and here the constraint set is

{ω ∈ D |ω = αωA⊗ 1B, ωA is a density matrix on HA, α ∈ C}, representing states of maximal

uncertainty on system HB.

Section 3 discusses a strategy for proving the above results for infinite dimensional systems.

The mathematical framework for which this strategy is intended is that of W ∗-algebras. This

Section contains a review of their structure and the formula for relative entropy between states

on a W ∗-algebra proposed by Araki [7][6]. It ends by discussing the concept of conditional

expectations and states a result that provides the first step of the proof.

2 Finite dimensions

In this section I will derive weak and strong collapse as well as partial trace from minimising

entropic distance under appropriate constraint sets for finite dimensional Hilbert spaces.

The strategy of the two proofs are the same and before going at the individual proofs I will

give the general results that will be employed. In short we will see that if any distance satisfies

a property called triangle equality for an arbitrary point and a point in some subset then the

distance between those two points is the minimal distance from the arbitrary point and any

point in the subset. The strategy in the proofs therefore is to establish this triangle equality for

the collapse rules and partial trace.

2.1 The general proof strategy of this essay

Let D : M ×M → [0,∞] be a distance on a set M, meaning that D(φ, ψ) ≥ 0∀φ, ψ ∈ M
and D(φ, ψ) = 0⇔ φ = ψ. Notice that a distance is more general than a metric since it is not

required that it satisfies triangle inequality and it is not required to be symmetric.

Definition 2.1. Let M be an arbitrary set with Q ⊆M and ψ ∈M. If there exists a ρ ∈ Q
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such that ∀φ ∈ Q : D(φ, ψ) = D(φ, ρ) + D(ρ, ψ) then Q is said to satisfy the triangle equality

for ψ at ρ with respect to D.

As a matter of notation I will write arginf
x∈domf

{f(x)} to mean the argument for which the

function f : dom(f) → R takes its minimal value. To be more precise arginf
x∈dom(f)

{f(x)} ∈

Powerset(dom(f)). With the notation ρ = arginf
x∈dom(f)

{f(x)} is meant the singleton {ρ} =

arginf
x∈dom(f)

{f(x)}. Note that it is possible to have the case arginf
x∈dom(f)

{f(x)} = ∅.

When I use the word relative entropy I mean a function S : M ×M → [−∞, 0] such that

−S := D is a distance on M.

The following Lemma provides the main insight behinds the proofs:

Lemma 2.2. If Q ⊆ M satifies triangle equality for ψ at ρ ∈ Q with respect to D and

D(ρ, ψ) <∞, then

ρ = arginf
φ∈Q

{D(φ, ψ)}

Proof. Since the distance D is non-negative and D{φ, ρ} = 0 only at φ = ρ we have that

ρ = arginf
φ∈Q

{D(φ, ρ)}. We can rewrite arginf
φ∈Q

{D(φ, ρ)} as arginf
φ∈Q

{D(φ, ρ)+D(ρ, ψ)} since D(ρ, ψ)

is a fixed positive and finite number for all φ ∈ Q by assumption. Hence, using the triangle

equality,

ρ = arginf
φ∈Q

{D(φ, ρ)} = arginf
φ∈Q

{D(φ, ρ) +D(ρ, ψ)} = arginf
φ∈Q

{D(ρ, ψ)}

Remark 2.3. Finiteness of D(ρ, ψ) is used explicitly in order to achieve the Lemma. If

D(ρ, ψ) = ∞ then the expression arginf
φ∈Q

{D(φ, ρ) + D(ρ, ψ)} certainly is not the same as

arginf
φ∈Q

{D(φ, ρ)} since the latter is a singleton and the former is equal to Q. Showing the

finiteness of D(ρ, ψ) is therefore crucial if we want to obtain a minimiser of distance.

Corollary 2.4. Assume that Q ⊆ M satisfies triangle equality for ψ ∈ M at ρ ∈ Q with

respect to D and D(ρ, ψ) <∞. Then D(φ, ψ) for φ ∈ Q is uniquely minimised at ρ.

Proof. It is immediate from Lemma 2.2. To be more specific assume that triangle equality for

Q is also satisfied at σ ∈ Q with respect to D and that D(σ, ψ) <∞. Making again use of the

fact that D is a distance, we have

ρ = arginf
φ∈Q

{D(φ, ρ)} = arginf
φ∈Q

{D(φ, ρ) +D(ρ, ψ)} = arginf
φ∈Q

{D(φ, ψ)}

= arginf
φ∈Q

{D(φ, σ) +D(σ, ψ)} = arginf
φ∈Q

{D(φ, σ)} = σ.
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Lemma 2.5. Let D be the space of density matrices of a fixed finite dimension. Then

D(ρ, ψ) := tr[ψ(logψ − log ρ)]

is a distance on D.

Proof. This was shown in more generality by Umegaki [5].

In the following two sections where we will show that collapse rules and partial trace min-

imise entropic distance we will work with D and the distance D(ρ, ψ) := tr[ψ(logψ − log ρ)].

The proofs for the collapse rules follow Kostecki [10] and the proof of partial trace is original

work for this essay.

2.2 Derivation of collapse rules

We will start by deriving weak collapse. Let D denote the space of density matricies on a Hilbert

space H of a fixed finite dimension and consider the set of projectors {Pi}i∈I where PiPj =

δij ∀i, j ∈ I and I is a finite index set. We would then like to show that arginf
φ∈QW

{D(φ, ψ)} =∑
i∈I PiψPi where the constraint set QW = {ω ∈ D | [Pi, ω] = 0∀i ∈ I}.

Let us approach this problem by first considering case where there is only the projectors P and

1 − P and the constraint set therefore is Q = {ω ∈ D|[ω, P ] = 0}. Let us first address the

finiteness of the alleged minimiser ρ = PψP + (1−P )ψ(1−P ). The proof of this is incomplete

but I will provide a sketch for how I think one should be able to show this.

Conjecture 2.6. If ψ ∈ D is arbitrary and ρ = PψP + (1− P )ψ(1− P ) then D(ρ, ψ) <∞.

Sketch of the proof: Recall that given a Hilbert space H the Hilbert-Schmidt space can be

formed by the square root of density operators on H. In the following the subscript HS denotes

that the object in question is on a Hilbert-Schmidt space, so for A2, B2 density matrices on H
satisfying tr[A∗A] <∞ and tr[B∗B] <∞, then by definition A,B ∈ HHS and the inner product

is denoted by 〈A,B〉HS := tr[A∗B] and the norm is ||A||2
HS

= 〈A,A〉HS . The Hilbert-Schmidt

inner product satisfies Cauchy-Schwarz inequality, that is 〈A,B〉HS ≤ ||A||HS ||B||HS , and the

norm satisfies triangle inequality ||A+B||HS ≤ ||A||HS + ||B||HS . Therefore we have, since ψ is

hermitian and therefore ψ1/2 is hermitian and since 1 = tr[ψ] = ||ψ1/2||, that

D(ρ, ψ) = tr[ψ(logψ − log ρ)] = tr[ψ1/2(logψ − log ρ)ψ1/2] = 〈ψ1/2, (logψ − log ρ)ψ1/2〉HS

≤ ||ψ1/2||2
HS
||(logψ − log ρ)ψ1/2||2

HS
= ||(logψ − log ρ)ψ1/2||2

HS

≤
(
||logψ · ψ1/2||HS + ||log ρ · ψ1/2||HS

)2
(1)

When the matrices are not invertible the matrix logarithms are potentially badly behaved

because limx→0+ log(x) → −∞. Let us diagonalise ψ and ρ individually and and denote their
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eigenvalues by {κψi } and {κρi } respectively. By replacing all the zero eigenvalues with ε, where

0 < ε < min{1,min{κψi |κ
ψ
i = 0},min{κρi |κ

ρ
i = 0}},

and dividing the resulting matrices with 1 + dim(ker(ψ)) · ε and 1 + dim(ker(ρ)) · ε respectively

(that is dividing with 1+ ε times the number of eigenvalues that are zero so that the resulting

matrices still have trace 1) we obtain invertible matrices ψε and ρε satisfying limε→0+ ψε = ψ

and limε→0+ ρε = ρ. To be more explicit, let the the dimension of the Hilbert space ψ and ρ

act on be equal to N ∈ N, let Uψ and Uρ be the matrices to change to diagonal basis so

ψ = Uψ


κψ1 0 · · · 0

0 κψ2 . . . 0
...

...
. . .

...

0 0 · · · κψN

U−1ψ

→ ψε =
1

1 + dim(ker(ψ))ε
Uψ


max(κψ1 , ε) 0 · · · 0

0 max(κψ2 , ε) . . . 0
...

...
. . .

...

0 0 · · · max(κψN , ε)

U−1ψ ,

and similarly for ρε. Note that the basis change matrices are not changed. Now ψε and ρε

are invertible by construction, so the logarithms are non-singular. If we can establish that

limε→0+ D(ρε, ψε) < ∞ then we would get that D(ρ, ψ) is finite (the distance function D is

continuous, being a continuous function of continuous functions).

Equation (1) takes the form

D(ρ, ψ) = lim
ε→0+

D(ρε, ψε) ≤ lim
ε→0+

(
tr[(logψε)

2ψε] + tr[(log ρε)
2ψε]

)2
(2)

The first term on the right hand side of equation (2) is finite in the limit since

limε→0+ ε(log ε)2 = 0. For the second term we will use the following property that holds for any

0 < λ < 1:

log λ = lim
t→0+

t−1(λt − 1). (3)

By going to a basis for a given ε where log ρε is diagonal we thus see we can write

log ρε = lim
t→0+

t−1
(
ρtε − 1

)
. (4)

In this basis, and hence in any basis (since trace is basis independent), the second term on

the right hand side of equation (2) can be rewritten using (3) as

tr
[
ψε
(

lim
t→0+

t−1(ρtε − 1)
)2]

= lim
t→0+

t−2tr
[
ψε
(
ρtε − 1

)2]
= lim

t→0+
t−2tr

[
ψε
(
ρ2tε − 2ρtε + 1

)]
(5)
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It is fine to take out the limit since we are dealing with a continuous function of t. Now

let us write ψε =

(
ψε,11 ψε,12

ψε,21 ψε,22

)
so that ρε =

(
ρε,11 0

0 ρε,22

)
. The matrix ρε is block diagonal

since

ρ =

(
ρ 0

0 ρ

)
=

(
U11 0

0 U22

)
diag{κρi }

(
U−111 0

0 U−122

)

→

(
U11 0

0 U22

)
diag{max{ε, κρi }}

(
U−111 0

0 U−122

)
Equation (5) then reads

tr[(log ρε)
2ψε] = lim

t→0+
t−2tr

[(
ψε,11 ψε,12

ψε,21 ψε,22

)((
ρ2tε,11 0

0 ρ2tε,22

)
−

(
2ρtε,11 0

0 2ρtε,22

)
+ 1

)]

= lim
t→0+

t−2tr

[(
ψε,11 ψε,12

ψε,21 ψε,22

)(
ρ−1ε,11 0

0 ρ−1ε,22

)(
ρε,11(ρ

2t
ε,11 − 2ρtε,11 + 1) 0

0 ρε,22(ρ
2t
ε,22 − 2ρtε,22 + 1

)]

≤ lim
t→0+

t−2

(
tr

[(
ψε,11ρ

−1
ε,11 ψε,12ρ

−1
ε,22

ψε,21ρ
−1
ε,11 ψε,22ρ

−1
ε,22

)∗(
ψε,11ρ

−1
ε,11 ψε,12ρ

−1
ε,22

ψε,21ρ
−1
ε,11 ψε,22ρ

−1
ε,22

)]
×

× tr

[(
ρ2t+1
ε,11 − 2ρt+1

ε,11 + ρε,11 0

0 ρ2t+1
ε,22 − 2ρt+1

ε,22 + ρε,22

)∗(
ρ2t+1
ε,11 − 2ρt+1

ε,11 + ρε,11 0

0 ρ2t+1
ε,22 − 2ρt+1

ε,22 + ρε,22

)])1/2

.

Finiteness follows if it can be shown that limit ε → 0+ and t → 0+ may be interchanged

and that the subsequent limits are all finite. This may not be the case but I am not working

with the optimal bound and so if this specific bound should turn out not to be finite it would

not be problematic. In fact a finite bound must exist because a different proof of the min-

imisasation in finite dimensions has been done by Hellmann et al [12]. Furthermore Kostecki

[10] has proved the result in higher generality using a method very akin to what I am using here.

Now let us establish the triangle equality in the case of a single projector.

Theorem 2.7. Let Q = {ω ∈ D|[P, ω] = 0} and let ρ = PψP + (1− P )ψ(1− P ), where P is

a projector on D. Then Q satisfies triangle equality for ψ ∈ D at ρ, that is

∀φ ∈ Q : D(φ, ψ) = D(φ, ρ) +D(ρ, ψ).

Proof. Since ρ and φ are block-diagonal so is the matrix formed by taking the log of them .

Hence they commute with P and 1− P . Therefore

log ρ− log φ = (log ρ− log φ)(P + (1− P )) = (log ρ− log φ)(P 2 + (1− P )2)

= (P + (1− P ))(log ρ− log φ)(P + (1− P ))

Since P = P (PψP + (1− P )ψ(1− P ))P = PψP + 0, we see by the cyclicity of the trace that
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tr(ψP (log ρ− log φ)P ) = tr(ρP (log ρ− log φ)P ) and by the same arguments

tr(ψ(1− P )(log ρ− log φ)(1− P )) = tr(ρ(1− P )(log ρ− log φ)(1− P )). Thereby we obtain

tr(ψ(log ρ− log φ)) = tr(ρ(log ρ− log φ)). (6)

But this is equivalent with

tr(ψ(logψ − log φ)) = tr(ρ(log ρ− log φ)) + tr(ψ(logψ − log ρ)).

Written in terms of D, this is

D(φ, ψ) = D(φ, ρ) +D(ρ, ψ),

which is the triangle equality.

With the above results we will now attempt to tackle the situation of multiple projectors

all commuting with one another.

Lemma 2.8. Let {Pi}i∈I be a set of projectors on D for some finite index set I satisfying

[Pi, Pj ] = 0 ∀i, j ∈ I and define for each k ∈ I a set Qk := {ω ∈ D|[Pk, ω] = 0}. If ψ ∈ Qj then

arginf
φ∈Qi

{D(φ, ψ)} ∈ Qj.

Proof. From Theorem 2.7 and Lemma 2.8 we have

arginf
φ∈Qi

{D(φ, ψ)} = PiψPi + (1− Pi)ψ(1− Pi).

Since ψ ∈ Qj we have [ψ, Pj ] = 0. This means, since [Pi, Pj ] = 0, that

[PiψPi + (1− Pi)ψ(1− Pi), Pj ] = Pi[ψ, Pj ]Pi + (1− Pi)[ψ, Pj ](1− Pj) = 0.

Hence by definition of Qj , arginf
φ∈Qi

{D(φ, ψ)} ∈ Qj .

With the next Lemma we will find an expression for the minimiser of D(φ, ψ) for φ com-

muting with Pi for all i. Once this is established we are ready to prove that this minimiser is

given by weak collapse rule.

Lemma 2.9. Let {Pi}i∈{1,...,n} be projectors satisfying [Pi, Pj ] = 0 ∀i, j ∈ {1, . . . , n}, define for

each i ∈ [1, . . . , n] sets Qi = {ω ∈ D | [Pi, ω] = 0} and define the set

Q = {ω ∈ D|[Pi, ω] = 0∀i ∈ {1, . . . , n}}. Then we have

arginf
φ∈Q

{D(φ, ψ)} = ρn,

where ρk = arginf
φ∈Qk

{D(φ, ρk−1)}, ρ0 = ψ, Q = ∩ni=1Qi satisfies triangle equality at ρn, and

D(ρn, ψ) <∞.
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Proof. This will be proved by induction. Assume ρk = arginf
φ∈Q1∩...∩Qk

{D(φ, ψ)} and that ∩ki=1Qi

satisfies triangle equality at ρk and D(φ, ρk) <∞. Then we want to show that

ρk+1 = arginf
φ∈Q1∩...∩Qk+1

{D(φ, ψ)}, that ∩k+1
i=1Qi satisfies triangle equality at ρk+1, and thatD(φ, ρk+1) <

∞.

Note that for any σ ∈ ∩ki=1Qi we have arginf
φ∈Q1∩...∩Qk+1

{D(φ, σ)} ∈ ∩ki=1Qi by lemma 2.8. There-

fore, by definition,

ρk+1 = arginf
φ∈Qk+1

{D(φ, ρk)} = arginf
φ∈Qk+1

{
D
(
φ, arginf

φ′∈Q1∩...∩Qk

{D(φ′, ψ)}
)}

= arginf
φ∈Q1∩...∩Qk+1

{D(φ, ψ)}.

Then, by Theorem 2.7, we have that Qk+1 satisfies triangle equality for ρk at ρk+1. Now choose

a φ ∈ ∩k+1
i=1Qi. Then the assumed triangle equality for Qk for ψ at ρk gives

D(φ, ψ) = D(φ, ρk) +D(ρk, ψ),

D(φ, ρk) = D(φ, ρk+1) +D(ρk+1, ρk).

Adding these two gives

D(φ, ψ) +D(φ, ρk) = D(φ, ρk) +D(ρk, ψ) +D(φ, ρk+1) +D(ρk+1, ρk)

⇔ D(φ, ψ) = D(φ, ρk+1) +D(ρk, ψ) +D(ρk+1, ρk)

⇔ D(φ, ψ) = D(φ, ρk+1) +D(ρk+1, ψ).

The last line follows from the triangle equality of ∩ki=1Qi for ψ at ρk, and since

ρk+1 ∈ ∩k+1
i=1Qi, so in particular is in ∩ki=1Qi. This is what we wanted, and Theorem 2.7 ensures

that Q1 satisfies triangle equality for ψ at ρk. If Conjecture 2.6 holds then we have finiteness

since D(ρk+1, ψ) = D(ρk+1, ρk) + D(ρk, ψ). The second term is finite by assumption and the

first is finite by Conjecture 2.6 since

ρk+1 = arginf
φ∈Qk+1

{D(φ, ρk)} = Pk+1ρkPk+1 + (1− Pk+1)ρk(1− Pk+1).

We are now ready to achieve the weak collapse rule. We further assume that PiPj = δij for

all i, j ∈ {1, . . . , n}.

Theorem 2.10. Weak collapse rule: Let {Pi}i∈{1,...,n} be projectors on D and let PiPj =

δij∀i, j and let
∑n

i=1 Pi = 1 and QW = {ω ∈ D|[Pi, ω] = 0∀i}. Then arginf
φ∈Q

{D(φ, ψ)} =∑n
i=1 PiψPi.

Proof. We are going to apply Lemma 2.9. Take ρ0 = ψ and ρ1 = arginf
φ∈Q1

{D(φ, ψ)}. From

Theorem 2.7 we know that ρ1 = P1ψP1 − (1− P1)ψ(1− P1). We are now going to continue by

using Lemma 2.9, Theorem 2.7 and induction. So assume that

ρk =
∑k

i=1 PiψPi + (1−
∑k

i=1 Pi)ψ(1−
∑k

i=1 Pi). Because of the condition PiPj = δij we have
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that (1−
∑k

i=1 Pi) is a projector, so we can use Theorem 2.7 to achieve that

ρk+1 = Pk+1ρkPk+1 + (1− Pk+1)ρk(1− Pk+1)

=
(
Pk+1 + (1− Pk+1)

)( k∑
i=1

PiψPi + (1−
k∑
i=1

Pi)ψ(1−
k∑
i=1

Pi)

)(
Pk+1 + (1− Pk+1)

)
=

k+1∑
i=1

Piψ
k+1∑
i=1

Pi + (1−
k+1∑
i=1

Pi)ψ(1−
k+1∑
i=1

Pi)

For this n’th term, since
∑n

i=1 Pi = 1, we have ρn =
∑n

i=1 PiψPi. By Lemma 2.9

ρn = arginf
φ∈QW

{D(φ, ψ)}

We now continue to strong collapse. The strategy will be first to prove the so-called quantum

Jeffrey’s rule, the following theorem. Strong collapse then follows in a limit. The following proofs

follow closely that of Kostecki [10].

Theorem 2.11. Quantum Jeffrey’s rule: Let {Pi}ni=1 be projectors on D and let

PiPj = δij∀i, j and let
∑n

i=1 Pi = 1 and also assume that tr(ψPi) 6= 0∀i and let

QQJ = {ω ∈ D|[ω, Pi] = 0, tr(ωPi) = λi ∀i}, where λi > 0∀i and
∑

i λi = 1. Then

arginf
φ∈QQJ

{D(φ, ψ)} =
n∑
i=1

λi
PiψPi

tr(ψPi)
.

Proof. Let ρ, φ ∈ QQJ and let ρi = λi
PiψPi

tr(PiψPi)
∀i and ρ :=

⊕
i ρi (that is a block diagonal matrix

with ρi in the i-th block and zero elsewhere) and let φ :=
⊕

i φi with tr(φi) = λi. We will show

that ρ uniquely minimises D with respect to any φ of the above sort.

We have that

log ρ− log φ =
n⊕
i=1

(log ρi − log φi).

This means that

tr(ψ(log ρ−log φ)) =

n∑
i=1

tr(PiψPi(log ρi−log φi)) =

n∑
i=1

tr

(
λi
λi

tr(PiψPi)

tr(PiψPi)
PiψPi(log ρi−log φi)

)
.

Write log ρi = log λi
ρi
λi

= log λi1
ρi
λi

. Now since ρi is positive and [1, ρi] = 0, we have

λi1
ρi
λi

= exp(log(λi1) + log(ρiλi)). Similarly with log φi, so

log ρi − log φi = log
ρi
λi
− log

φi
λi

With this and with ρ̃i := ρi
λi

and φ̃i := φi
λi

, we have
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tr(ψ(log ρ− log φ)) =
n∑
i=1

λitr(PiψPi)tr(ρ̃i(log ρ̃i − log φ̃i)) =
n∑
i=1

λitr(PiψPi)D(φ̃i, ρ̃i) ≥ 0

⇔ tr(ψ(logψ − log ρ)) ≤ tr(ψ(logψ − log φ)

or

D(ρ, ψ) ≤ D(φ, ψ)

Equality only holds for ρ = φ. This means that ρ uniquely minimises D.

Remark 2.12. Strong collapse: Strong collapse follows from quantum Jeffreys in the limit

λi → 0 for all i 6= k and λk → 1 .

2.3 Partial trace from entropic projection

Now we turn to the original contributions of this essay. In this Section we will examine whether

partial trace is also a special case of minimisation of distance. The proof is complete in the case

of invertible matrices. However in the case of general matrices there is still work left in figuring

out if the distance D(ρ, ψ) is always finite.

We are interested in maps DHA⊗HB
→ DHA⊗HB

which erase information about Hilbert space

HB, so the constraint set we choose is Q = {ω ∈ DHA⊗HB
|ω = ωA ⊗ 1B, ωA ∈ DHA

} where

1B is the identity on HB.

Let us begin by looking at the issue of finite distance between an arbitrary state and the

proposed minimiser ρ = trBψ ⊗ 1B.

Conjecture 2.13. Let D = DHA⊗HB
be the set of density matrices for the bipartite system

given by the finite dimentional Hilbert spaces HA ⊗HB and let ψ ∈ DHA⊗HB
be arbitrary and

ρ = trBψ ⊗ 1B. Then D(ρ, ψ) <∞.

Sketch of the proof: Let us use the same estimates as in the sketch of the proof of Conjecture

2.6 and the same trick of taking ψ, ρ → ψε, ρε with 0 < ε < min{1,min{κψi },min{κρi }}, where

{κψi } are the eigenvales of ψ and {κρi } are the eigenvalues of ρ. Let us replace eigenvalues that

are equal to 0 with ε such that ψε and ρε are invertible, and limε→0+ ψε = ψ and limε→0+ ρε = ρ.

In such case we have

D(ρ, ψ) ≤ lim
ε→0+

(
tr[(logψε)

2ψε] + tr[(log ρε)
2ψε]

)2
(7)

Again the first term is finite in the limit, and using the same logarithm identity as before we

need to check that limε→0+ limt→0+ t
−2tr

[
ψε
(
ρtε − 1

)2]
is finite. Note that the function under

the limit operation is a continuous function for all t, ε > 0.

11



The sufficient assumption that will give us what we want, is that we may interchange the limits

ε→ 0+ and t→ 0+.

One way this could be made true is to prove that the convergence in the limit t→ 0+ is uniform.

Using this assumption the second term in equation (7) reads

lim
t→0+

lim
ε→0+

t−2tr
[
ψε
(
ρtε − 1

)2]
= lim

t→0+
t−2tr

[
ψ
(
ρt − 1

)2]
= lim

t→0+
t−2tr

[
ψ
(
ρ2t − 2ρt + 1

)]
= lim

t→0+
t−2tr

[
ψ
((

(trBψ)2t−2(trBψ)t+1A
)
⊗1B

)]
= lim

t→0+
t−2trA

[
trBψ

(
(trBψ)2t−2(trBψ)t+1A

)]
= lim

t→0+
t−2trA

[
(trBψ)2t+1 − 2(trBψ)t+1 + trBψ

]
.

Here we used the fact from Remark 2.15 to take the trace over system A only. Let us now

denote the index set of non-zero eigenvalues of trBψ by I and denote the non-zero eigenvalues

{λi}i∈I . We can then calculate the limit above explicitly by using L’Hôpital’s rule twice:

lim
t→0+

∑
i∈I

(
λ2t+1
i − 2λt+1

i + λi

)
t2

= lim
t→0+

∑
i∈I

(
2λ2t+1

i − 2λt+1
i

)
log λi

2t

= lim
t→0+

∑
i∈I

(
4λ2t+1

i − 2λt+1
i

)
(log λi)

2

2
=
∑
i∈I

λi(log λi)
2 <∞.

Note that in the case that both ψ and ρ are non-singular we have ρε = ρ and ψε = ψ so the

limit exchange is trivially true. Thus the finiteness is proven to hold in this case. It is left for

future work to figure out if limε→0+(ρε, ψε) <∞ in the general case.

In order to show that the proposed minimiser satisifies triangle equality we will utilize a

decomposition into tensor factors of matrices with trace 1 as explained in the following Lemma.

I will take Lin(HA,HB) to denote the space of linear maps from the Hilbert space HA to the

Hilbert space HB.

Lemma 2.14. Let ψ ∈ D = DHA⊗HB
. Then there exist a countable index set IAB and sets

{TAi }i∈IAB
with TAi ∈ Lin(HA,HA) and tr[TAi ] = 1 ∀i and {TBi }i∈IAB

with TBi ∈ Lin(HB,HB)

and tr[ψBi ] = 1 ∀i and a set {αi}i∈IAB
with αi ∈ C ∀i such that

ψ =

n∑
i=1

αiT
A
i ⊗ TBi

Proof. We have ψ ∈ Lin(HA ⊗ HB,HA ⊗ HB). For a vector space V let V ? denote the dual

space of V . With this,

Lin(HA ⊗HB,HA ⊗HB) = H?
A ⊗H?

B ⊗HA ⊗HB = Lin(HA,HA)⊗ Lin(HB,HB)

However we can find an index set IA and IB and matrices {TAi }i∈IA and {TBj }j∈IB with unit

trace such that {TAi }i∈IA spans Lin(HA,HA) and {TBj }j∈IB spans Lin(HB,HB).

12



To be more concrete, if dim(HA) = n and dim(HB) = m choose IA = {1, . . . , n2} and IB =

{1, . . . ,m2} and pick the matrices

{TAi }i∈IA =

{
1 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

 ,


1 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .

 ,


1 0 1 · · ·
0 0 0 · · ·
...

...
...

. . .

 , . . . ,
1

2


1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .

 , . . .

}

These are matrices that have either a 1 in the (1, 1)-entry or a 1 in the (1, 1)-entry as well as a

1 in one different entry while retaining a unit trace. Pick similar matrices for {TBi }i∈IB . Now

a basis for D is simply all tensor products of TAi and TBj , so that there exists a m × n-matrix

α with complex entries such that

ψ =
∑

i∈IA,j∈IB

αi,jT
A
i ⊗ TBj

Now simply define a new index set IAB that is isomorphic to IA × IB and we have the desired

ψ =
∑
i∈IAB

αiT
A
i ⊗ TBi

Remark 2.15. If ψ is an arbitrary density matrix then trBψ ≥ 0. This follows from the

fact that for any hermitian matrix M ∈ Lin(HA,HA) on subsystem A then tr[(M ⊗ 1B)ψ] =

trA[MtrBψ], see for instance Nielsen and Chuang [1]

This same fact, along with linearity of partial trace, also ensures that in the decomposition of

Lemma 2.14 we have

0 ≤ trBψ = trB

[ ∑
i∈IAB

αiT
A
i ⊗ TBi

]
=
∑
i∈IAB

αiT
A
i · trB[TBi ] =

∑
i∈IAB

αiT
A
i

Proposition 2.16. Let D = DHA⊗HB
be as in Lemma 2.13, ψ ∈ D be arbitrary and let

Q = {ω ∈ D | ω = ωA ⊗ 1B, ωA ∈ DHA
} where 1B is the identity on HB. Then Q satisfies

triangle equality for ψ ∈ DA⊗B at ρ := 1
dimB trBψ ⊗ 1B ∈ Q for D.

Proof. Notice first that ρ ∈ Q since tr[ρ] = tr[ 1
dimB trB[ψ] ⊗ 1B] = 1

dimB trA[trBψ]trB[1B] =

tr[ψ]dimB
dimB = 1 and since trBψ ≥ 0 as explaned in Remark 2.15.

We use Lemma 2.14 to write ψ =
∑

i∈AB
αiT

A
i ⊗TBi . Observe that by definition of partial trace

(for cleanliness I drop the specification that i ∈ IAB in the sums),

trB[ψ] = trB

[∑
i

αiT
A
i ⊗ TBi

]
=
∑
i

αiT
A
i · trB[TBi ] =

∑
i

αiT
A
i

Using that log(A⊗ 1) = log(A)⊗ 1 for any Hermitian matrix A, and the fact that

tr[M ] = trA[trB[M ]] for any matrix

M ∈ Lin(HA ⊗HB,HA ⊗HB), we can write
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D(ρ, ψ) = tr[ψ logψ]− tr[ψ log ρ] = tr[ψ logψ]− tr[ψ(log
( 1

dimB
trB[ψ]

)
⊗ 1B)]

= tr[ψ logψ]− tr

[∑
i

αiT
A
i ⊗ TBi (log

( 1

dimB
trB[ψ]

)
⊗ 1B)

]
= tr[ψ logψ]−

∑
i

trA

[
αiT

A
i log

( 1

dimB
trB[ψ]

)]
· trB[TBi ]

= tr[ψ logψ]− trA

[∑
i

αiT
A
i log

( 1

dimB
trB[ψ]

)]
· trB[TBi ]

= tr[ψ logψ]− trA

[
trB[ψ] log

( 1

dimB
trB[ψ]

)]
.

Let φ = φA ⊗ 1B ∈ Q be arbitrary. Then

D(φ, ρ) = tr[ρ log ρ]− tr[ρ log φ]

= trA

[ 1

dimB
trB[ψ] log

( 1

dimB
trB[ψ]

)]
trB[1B]− trA

[ 1

dimB
trB[ψ] log(φA)

]
trB[1B]

= trA[trB[ψ] log
( 1

dimB
trB[ψ]

)
]− trA[trB[ψ] log(φA)].

We also have

D(φ, ψ) = tr[ψ logψ]− tr[ψ log φ] = tr[ψ logψ]− tr

[∑
i

αiT
A
i ⊗ TBi log(φA)⊗ 1B

]
= tr[ψ logψ]− trA[trB[ψ] log(φA)].

With this we have

D(ρ, ψ) +D(φ, ρ) = tr[ψ logψ]− trA

[
trB[ψ] log

( 1

dimB
trB[ψ]

)]
+ trA[trB[ψ] log

( 1

dimB
trB[ψ]

)
]− trA[trB[ψ] log(φA)]

= tr[ψ logψ]− trA[trB[ψ] log(φA)]

= D(φ, ψ). (8)

Remark 2.17. I have used explicitly the fact that we are considering finite dimensional Hilbert

spaces. For instance the difinition of ρ in Proposition 2.16 is ill defined in infinite dimesions.

Theorem 2.18. Let DHA⊗HB
denote the set of density matrices on a joint Hilbert space

HA ⊗HB and take ψ ∈ DHA⊗HB
. Then D(ρ, ψ) = tr[ψ logψ − ψ log ρ] for ρ ∈ Q is minimised

uniquely by ρ = trB[ψ]⊗ 1B.
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Proof. Follows immediately from Lemma 2.2 and Proposition 2.16.

3 The strategy for a potential proof in infinite dimensions

Now we turn our attention to a much more complicated problem: Proving the same as above for

infinite dimensional systems. A general proof in case of the collapse rules have been provided

by Kostecki [10]. This section will discuss a different strategy that should work both for the

collapse rules and for partial trace. This strategy combines a proposal by Carlos Guedos [22]

with the use of the formula 3.1 (proposed by an anonymous referee of [10]). The actual proofs

are not finished however and remain as future work. The strategy is quite general and the result

would fit well into a generalisation of quantum mechanics without Hilbert spaces.

The strategy relies on the mathematical concept of W ∗-algebra1 which generalises the notion

of algebras of bounded operators on a Hilbert space. In this section I will begin with a review

of what W ∗-algebras are, what some of their properties are and some relevant constructions

needed to employ them. This will include a brief introduction to relative modular operators

which will be used in a generalised definition of a distance that reduces to the one used in the

previous section in the case of finite dimensional systems.

My aim is to give a general understanding of what the constructions are and what some of their

key properties are. Much of the material can be found in any introductory text on C∗-algebra,

such as in Davidson [3].

3.1 Review of W ∗-algebra, representations and relative modular theory

3.1.1 C∗-algebras, states and W ∗-algebras

I’ll begin by reminding that a vector space A over a field K which is equipped with a distributive

binary operation A × A → A is called an algebra. The binary operation has to satisfy that

(ax) · (by) = ab(x · y) for a, b ∈ K and x, y ∈ A. A Banach algebra A is an algebra over R or

C that is also a Banach space whose norm satisfies ||x · y|| ≤ ||x|| · ||y||. If a Banach algebra A

is an algebra over C and is also equipped with a mapping ∗ : A → A satisfying the following

properties

(x+ y)∗ = x∗ + y∗

(λx)∗ = λ̄x∗

x∗∗ = x

xy = y∗x∗,

||x∗x|| = ||x||2,

1The word von Neumann algebra may be more familiar; a von Neumann algebra is a specific representation
of a W ∗ algebra which every W ∗-algebra admits.
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where x, y ∈ A and λ ∈ C, with λ̄ denoting complex conjugate of λ and dropping · in products

of algebra elements when there is no risk of confusion, then A is called a C∗-algebra. I will take

A to always refer to a C∗-algebra in this section.

The textbook example of a C∗ algebra is bounded operators B(H) on a complex Hilbert space

H.

We will restrict our attention to unital C∗ algebras, that is C∗ algebras with a unit element

1 satisfying for any x ∈ A that 1x = x1 = x.

With the spectrum σ(x) of an element x ∈ A is meant2

σ(x) := {λ ∈ C|x− λ1 is not invertible}

An element x ∈ A is called self-adjoint if x = x∗. The self-adjoint elements of the C∗-algebra

will play the roles of observables for our quantum theory. An element x ∈ A is called positive if

it is self-adjoint and σ(x) ⊂ [0,∞), and the set of positive elements of A is denoted A+. Positive

elements satisfy a few nice properties the first on being that every x ∈ A+ has a unique positive

square root x1/2 ∈ A+. Furthermore it is always possible to find a y ∈ A for any positive x ∈ A+

so that x = y∗y.

One of the suprising and really neat fact is that for any C∗ algebra A the norm on A is given

entirely from the algebraic properties, namely

∀x ∈ A : ||x|| =
√

sup{|λ|
∣∣∣ λ ∈ σ(x)} (9)

Given two different C∗-algebras a question one might have is whether they have the same

algebraic structure. They do in the case that there exists a so-called ∗-isomorphism between

them. A ∗-isomorphism between two C∗-algebras A1 and A2 is a mapping f : A1 → A2 such

that for λ1, λ2 ∈ C and x1, x2 ∈ A1

f(λ1x1 + λ2x2) = λ1f(x1) + λ2f(x2)

f(x1x2) = f(x1)f(x2)

f(x∗1) = f(x1)
∗

In light of (9) it is clear that ∗-isomorphisms preserve norm-topological properties since the

norm is given just by the algebraic sgtructure.

We now have algebraic objects that will play the role of bounded operators on Hilbert spaces.

We would like to also have something analogous to a state that can provide us with expectation

values of these objects. They can be thought of as dual to the algebra elements.

The Banach dual A? of A is defined as the set of all C-linear functionals A → C that are

continuous in the norm topology of A. An element ω ∈ A? said to be positive iff x ∈ A+

implies ω(x) ≥ 0; tracial iff ω(xy) = ω(yx); self-adjoint iff ω∗(x) := (ω(x∗))∗ = ω(x); faithful

iff ω(x) = 0 ⇒ x = 0 for any x ≥ 0 and normalized iff ω(1) = 1. The set of positive,

2The definition works for any unital Banach algebra of K with λ ∈ K instead.
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linear, continuous functionals on A is denoted A?+ and the set of positive, normalized, linear,

continuous functionals on A is denoted A?+1 .

Suppose for a Banach algebra B that there exists a Banach space B? such that (B?)? = B. In

that case B? is called a predual of B. A remarkable fact is that fora C∗-algebra A the predual A?

is unique. The elements of A+
? := A?+ ∩A? are called states and elements of A+

? 1 := A?+1 ∩A?
are called normalized states. A C∗-algebra A for which a predual A? exists is called a W ∗

alegbra. In this text the symbol N will be used to describe W ∗ algebras.

For a W ∗-algebra N , set of projectors on N is denoted Proj(N ) = {x ∈ N |x2 = x}. From the

definition of positivity we obtain a partial order on N defined such that x ≤ y implies y−x ≥ 0.

Using these definitions we can define the support-projection of a normalized state ω ∈ N?+1 as

supp(ω) = 1− sup{P ∈ Proj(N ) |ω(P ) = 0},

where the supremum is taken with respect to the partial order.

The definition extents to all semi-finite, normal weights on W ∗-algebras. A weight is func-

tional ω : N+ → [0,∞] such that ω(0) = 0, ω(x+y) = ω(x)+ω(y), and λ ≥ 0⇒ ω(λx) = λω(x).

A weight ω is furthermore defined to be normal if it satisfies that ω(sup{xi}) = sup{ω(xi)} for

any increasing net {xi} ⊆ A+ and a semi-finite if it satisfies ∀x ∈ A+∃y ∈ A+ : ω(x) = ∞ ⇒
(x ≥ y and 0 < ω(y) <∞).

3.1.2 The GNS construction, relative modular operators and quantum relative

entropy

It would be nice to see that all these abstract objects allow to reconstruct familiar quantum

mechanical structure. This can be done through the GNS construction.

A general representation π of a C∗-algebra A on a Hilbert spaceH is defined as a ∗-homomorphism

of A onto B(H). A vector ξ ∈ H is said to be cyclic for a π(A) iff π(A)ξ := ∪x∈π(A){xξ} is norm

dense in B(H). Given a C∗-algebra A and ω ∈ A?+ the GNS construction is a representation

πω for a state ω onto a Hilbert space Hω along with a cyclic vector Ωω such that ||Ωω||H = ||ω||
such that for ∀x, y ∈ A

ω(x) = 〈Ωω, πω(x)Ωω〉

ω(y∗x) = 〈πω(y)Ωω, πω(x)Ωω〉

A triplet (Hω, πω,Ωω) is called a GNS representation for A. If ω is faithful, then Ωω is

also seperating for Hω, meaning that ∀x ∈ Aπω(x)Ωω = 0 ⇒ x = 0. Given a weight φ on a

W ∗-algebra N we can define a left ideal Iφ called the Gelfand ideal as

Iφ = {x ∈ N |φ(x∗x) = 0}

From this ideal we can define equivalence classes of elements of N by mapping them to the
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quotient space N /Iφ as

N 3 x 7→ {x+ n |n ∈ Iφ} := [x]φ ∈ N /Iφ

Consider the scalar form 〈·, ·〉ω given by 〈x, y〉ω = ωx∗y∀x, y ∈ A. The Hilbert space Hω is then

constructed as the completion of A/Iω in the topology generated by 〈·, ·〉ω equipped with the

inner product 〈·, ·〉ω. The representation πω is defined so πω(x) : [y]ω 7→ [xy]ω and the cyclic

vector Ωω is defined as Ωω := [1]ω.

Now I will introduce the topic of relative modular operators. They are used for achieving Arakis

definition of quantum relative entropy that handles arbitrary W ∗-algebras and reduces to the

Umegaki entropic distance we have used in the previous sections when considering bounded

operators on finite dimensional Hilbert spaces. The topic is quite involved and I will not go into

full details.

The relative modular operators arise as polar decompositions of operators that relate abstract

algebra elements x to their starred elements x∗. That they are polar decompositions ensures

their non-negativity.

A polar decomposition is intuitively like rewriting a complex number z = reiθ with θ ∈ R and

r ∈ [0,∞). It works for any densely defined, closed, linear operator, that is for operators whose

domain is a dense subset of H and for which the graph ∪ξ∈dom(x)(ξ, xξ) ⊆ H⊕H is closed. An

operator x for which the closure of said graph is a closed subset of H⊕H is called closable and

the operator defined by the closure is called closed and is denoted x. The polar decomposition of

a densely defined closed operator x is x = u|x| where u is a partial isometry on B(H), meaning

that u∗u is a projection (if x is invertible then u is unitary).

Suppose we have two faithful states ρ and ψ. We can then define the following mapping

Rρ,ψ : N /Iψ 7→ N /Iρ by

Rρ,ψ : Hψ 3 πψ(x)Ωψ 7→ πρ(x
∗)Ωρ ∈ Hφ,

where (Hψ, πψ,Ωψ) and (Hρ, πρ,Ωρ) are GNS constructions of ψ and ρ respectively. Since Ωψ

is cyclic Rρ,ψ is densely defined and it can be shown to be closable so we can take the unique

polar decomposition

Rρ,ψ = Jρ,ψ∆
1/2
ρ,ψ

The operator ∆ρ,ψ = R∗ρ,ψRρ,ψ is called the relative modular operator and the operator Jρ,ψ

is called the relative modular conjugation and can be shown to be a conjugation. This means

that Jρ,ψ is antilinear (Jρ,ψ(ax+ by) = a∗Jρ,ψ(x) + b∗Jρ,ψ(y) for x, y ∈ dom(Jρ,ψ) and a, b ∈ C),

isometric (J∗J = 1) and involutive (J2 = 1). The operator ∆ρ,ψ is going to be used for our

generalised definition of quantum relative entropy

One thing that would be really nice is if we could have just a single Hilbert space that all the

states can be embedded in. This problem is solved by the so-called standard representation of

the W ∗-algebra in question [17]. Such a representation is given by a quadruple (H, π, J,H\),

where H is a Hilbert space, π : N → B(H) is s ∗-homomorphism, J is a conjugation on H, and
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H\ is a self-polar cone of H (meaning that ∀ξ ∈ H\∀λ ≥ 0λξ ∈ H\ and H\ = {ζ ∈ H | 〈ζ, ξ〉H ≥
0∀ξ ∈ H\}), such that

1. Jπ(N )J = π(N )• := {x ∈ π(N ) |xy = yx ∀y ∈ π(N )}

2. ξ ∈ H\ ⇒ Jξ = ξ

3. π(x)Jπ(x)JH\ ⊆ H

4. π(x) ∈ π(N ) ∩ π(N )• ⇒ Jπ(x)J = π(x)∗

A standard representation, if it exists, satisfies a few very nice properties [17]:

1. ∀φ ∈ N+
? ∃!ζπ(φ) ∈ H\ : ∀x ∈ Nφ(x) = 〈ζπ(φ), π(x)ζπ(φ)〉H

2. H\ is closed and convex and ξ ∈ H\ ⇒ Jξ ∈ H\.

3. If φ ∈ N+
? is a faithful state then ζπ(φ) is cyclic and seperating for π(N ).

4. For any W ∗-algebra a standard representation unique up to unitary equivalence

So, given a standard representation, all states on the W ∗-algebra can be mapped to the el-

ements of the cone of a single Hilbert space. Notice that all the previous constructions in

principle are completely independent of Hilbert space strucure. To see how they relate to con-

ventional quantum mechanical structures of finite dimensional systems let N = B(K) for som

Hilbert space K. A standard representation of N can then be constructed [11] by looking at

the Hilbert-Schmidt space HHS as discussed in section 2 where ζπ(ρ) = ρ1/2 and equipping the

space with the conjugation operation J given by Jξ = ξ∗ for ξ ∈ HHS , the left multiplication

mapping π(x) = L (x) : HHS 3 ξ 7→ xξ ∈ HHS and taking the cone as all the positive elements

H\ = H+
HS . From this it is clear if ∀ξ ∈ H\ then Jξ = ξ.

Consider the mapping Rρ,ψ for faithful states ρ, ψ defined by Rρ,ψ[x]ψ = [x∗]ρ in this represen-

tation. This can be shown to be closable and its closure admits a polar decomposition into a

relative modular conjugation operator Jρ,ψ and a relative modular operator ∆ρ,ψ in the way

described above since it is densely defined. It can be shown that one can have Jρ,ψ = J as

defined above for alle faithful states ρ, ψ, and ∆ρ,ψ = L (ζπ(ρ)) ◦R(ζπ(ψ−1)) where R is right

multiplication.

Now we can define the quantum relative entropy on normalized states of a W ∗-algebra in a

standard representation (H, π, J,H\) as [6][7]

D(ρ, ψ) =

−〈ζπ(ψ), log(∆ρ,ψ)ζπ(ψ)〉H supp(ρ) ≤ supp(ψ)

+∞ otherwise
. (10)

This distance satisfies that D(ρ, ψ) ≥ 0∀ρ, ψ ∈ N+
? and D(ρ, ψ) = 0⇔ ρ = ψ.

When N = B(H) with the standard representation as explained above with functionals ω =

tr(ζπ(ω)·) one can show that supp(ρ) ≤ supp(ψ) is equivalent to ran(ζπ(ρ)) ⊆ ran(ζπ(π)). Note
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that for the constructions above we needed the states to be faithful. From the definition of D

we only need ψ to be faithful since we are restricting to using the constructions on domains.

A standard way of handling the definition of D(ρ, ψ) when ψ is not faithful is to restrict to a

subalgebra where ψ is faithful.

In the case of finite dimensional Hilbert spaces it can be shown that (10) reduces to[18]

D(ρ, ψ) = tr[ψ(logψ − log ρ)]

3.1.3 Conditional expectations

Let N be a W ∗-algebra and let N0 ⊆ N be a subalgebra. A conditional expectation is defined

as a map E : N → N0 such that

1. E(λ1x1 + λ2x2) = λ1E(x1) + λ2E(x2) ∀x1, x2 ∈ N ∀λ1, λ2 ∈ C

2. E(x) = x ∀x ∈ N0

3. x ≥ 0⇒ E(x) ≥ 0

If furthermore E satisfies

4. For any normalized and positive x ∈ N E(x) = 0⇒ x = 0

5. supi{xi} = x⇒ supi{E(xi)} = E(x) for every bounded increasing net {xi} ⊆ N+
1 .

E is said to be faithful and normal, respectively.

Umegaki and Nakamura showed [19] that weak Lüders’ rule is a conditional expectation and

Carlen [20] showed recently that partial trace in finite dimensions is a conditional expectation.

3.2 Triangle equality derived from conditional expectations

The following theorem by Ohya and Petz [2] supplies the relevance that conditional expectations

have for our goal.

Theorem 3.1. Let N be a W ∗-algebra of bounded operators B(H) on a Hilbert space H. Let

N0 ⊆ N and let E : N → N0 be a conditional expectation. Then it holds ∀ψ, φ ∈M(N ) that

D(φ ◦ E,ψ) = D(φ|N0
, ψ|N0

) +D(ψ ◦ E,ψ)

where D(·, ·) is defined in (10).

Before the formula can be applied the following conjecture would need to be true.

Conjecture 3.2. With the conditions as in Theorem 3.1

D(φ|N0
, ψ|N0

) = D(φ ◦ E,ψ ◦ E)
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Notice first that for any functional f on N it holds that f |N0
= (f ◦ E)|N0

since E(x) =

x ∀x ∈ N0 and furthermore note that f |N0
and f ◦ E have the same range. If the conjecture is

proven we would immediately have triangle equality:

Theorem 3.3. Let N be as above, let E : N → N0 be a conditional expectation, let

Q = {ω ∈ N+
? | ω ◦E = ω} and let ψ ∈ N+

? be arbitrary. Then there is a ρ ∈ Q so Q satisfies

triangle equality for ψ at ρ. That is

∀ψ ∈ N+
? ∃ρ ∈ Q : ∀ψ ∈ Q D(φ, ψ) = D(φ, ρ) +D(ρ, ψ)

Proof. Let ψ ∈ N+
? be arbitrary. Since E is a conditional expectation by definition E(x) =

x∀x ∈ N0. Therefore for any x ∈ N we have E ◦ E(x) = E(x). This means that ψ ◦ E ∈ Q.

Let ρ = ψ ◦ E. Theorem 3.1 holds for any φ ∈ N+
? . In particular then

∀φ ∈ Q : D(φ, ψ) = D(φ, ρ) +D(ρ, ψ)

Here is the proposed strategy for a proof that partial trace maximises relative entropy

also in infinite dimensions. First it would have to be established that partial trace E in this

generality is also a conditional expectation. Secondly it would have to be demonstrated that

D(ψ ◦ E,ψ) <∞. If this could be done the result would follow from Theorem 3.3.

4 Discussion

In the last two sections we have seen how quantum mechanical state update might be achieved

through constrained maximisation of quantum relative entropy. In the first of these we examined

finite dimensional Hilbert spaces in order to show that the familiar Lüders’ collapse rules and

partial trace emerge uniquely by maximisation of relative entropy. The proofs are not completed,

as it still needs to be demonstrated that the distances between inital states and updated ones

are finite. For the collapse rules it is known that such a finite bound must exist since Kostecki

[10] and Hellmann et al [12] have demonstrated that the collapsed states minimise the entropic

distance. For partial trace it is still unknown whether it is bounded in general but it was shown

explicitly to be the case when the initial and updated state are both non-singular. Thus what

is left to check is a measure 0 subset.

In the last Section we saw how one might approach a general proof that holds in any dimension.

This relies on W ∗-algebra and builds upon a result by Ohya and Petz. What is to be proven

is firstly that the state updates are conditional expectations and secondly showing that the

entropic distances between the original states and the updated ones are finite. Since the strategy

is defined in terms of W ∗-algebras, of which regular quantum mechanical structure is a special

case, the success of this proof may provide a new possible framework for measurements in

algebraic generalisations of quantum mechanics based on constrained maximisation of relative

entropy.
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Another potential use of the positive outcome of the project is the formulation of completely

positive trace preserving maps (the current paradigm for the most general quantum channels)

purely in terms of entropy. If unitary evolution is postulated then the projective measurements

along with partial trace provide the necessary tools for expressing any completely positive trace

preserving map in terms of constrained maximisation of relative entropy.

Lastly the result is of potential interest for quantum bayesianism. The framework that quantum

bayesianism is attempting to construct is supposed to be devoid of objects with ontic properties.

Therefore if quantum measurements may be expressed without reference to external objects then

that is a step on the way towards realising this framework.
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5 Conclusion

The main original result of this essay is a proof that the partial trace operation is a special case

of the procedure of constrained maximisation of quantum relative entropy. The proof holds for

invertible states and for finite dimensional quantum mechanics only. A method was proposed

to check if it also holds in the case of non-invertible states.

Besides this the quantum mechanical collapse rules were showed to maximise quantum relative

entropy. Uniqueness wasn’t shown here but it has been shown for instance in full generality by

Kostecki [10].

Finally we discussed a method that might be useful for proving the same results in the formu-

lation of W ∗-algebras, the success of which would give that the collapse rules and partial trace

uniquely maximise the relative entropy in infinite dimensional quantum mechanics theory.
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