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Basic distinction

deductive inference:
I e.g. first order logic
I premises: formulas that are truth valued (certain)
I inference: turns certain premises to certain conclusions

inductive inference:
I e.g. probability theory + Bayes–Laplace rule
I premises: formulas that are probability valued (plausible)
I inference: turns plausible premises into most plausible conclusions
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Adjointness in (deductive) foundations

Lawvere’63,’69:
I C: a category of deductive systems:
I objects: formulas,
I arrows: proofs/deductions.
I D: a category of geometric structures
I

D

syntax
(formalisation)

��

a

C

semantics
(interpretation/model)

JJ

examples:
I C := typed λ-calculi with surjective pairing, D := category of cartesian closed

categories; C ∼= D (Lambek’68,...)
I C := extensional Martin-Löf theories, D := category of locally cartesian closed

categories; C ∼= D (Seely’84,...)
I C := intuitionistic higher order type theories, D := category of toposes with canonical

subobjects and strict logical morphisms preserving canonical subobjects; adjointness
(Lambek’74, Volger’75, Fourman’77,...)
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Early categorical settings for inductive inference

Lawvere’62 [unpublished], Chencov’65, Morse–Sacksteder’66:
I objects: spaces of probability densities (subsets of L1 spaces)
I morphisms: Markov (i.e. linear, positive, and normalisation preserving) maps

quantum generalisation (implicit: many authors in late 60s/early 70s):
I objects: spaces of density matrices/normal states on W∗-algebras

(subsets of noncommutative L1 spaces)
I morphisms: completely positive trace preserving linear maps

in both probabilistic and quantum case this setting was used by
Chencov and others to characterise such classes of geometric structures
(riemannian metrics, affine connections) on objects of these categories
that are monotonically decreasing under morphisms
important observations:

1 inductive inference categories are inherently geometric, with geometric
properties encoding specific prescription of ‘optimal’ methods of model
construction and inductive inference (“Jaynes–Chencov principle”)

2 for each specific method/category of inductive inference, there are
different optimal experimental designs that can be analysed with it (e.g.
χ2 test makes no sense for a small sample size, the Bayes–Laplace rule is
inapplicable to data given by average values, etc...)
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Epistemic adjointness

Postulate, ver.1: given the category IndInf of inductive inferences,
the optimal category ExpDes of experimental designs corresponding to
IndInf should be such that there exist two adjoint functors:

IndInf

syntax
(predictive verification)

��

a

ExpDes

semantics
(model construction)

KK

i.e., the method of model construction should be the most effective
solution of the problem provided by the given predictive verification.
Postulate, ver.2: Given the category IndInf, the admissible family of
possible experimental design categories and the corresponding adjoint
functors should be given by specifying a comonad on IndInf.
Dually, given ExpDes, a monad on it describes a range of admissible
inductive inference settings applicable optimally to it.
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Resource theoretic perspective
Embedding:= a full and faithful functor F : C → D.

I it is extensive iff F (C) is a subcategory of D
I it is intensive iff ∃!G such that F a G and the unit of adjunction is a natural

isomorphism.
I an intensive embedding can be seen as a translation from more

coarse-grained/concrete to more refined/abstract description
I it gives rise to a comonad E on D

Let us also introduce a monad T on D, representing the allowed (free)
operations on D.
Assuming that D is equipped with a terminal object 1, an object x in D will
be called a free resource iff ∃ an element f of T such that f : 1→ x .
Taking D to be given by an inductive inference category IndInf, we define a
categorical resource theory as a triple (IndInf,E ,T ), where:

I epistemic comonad E on IndInf provides specification of compatible experimental
designs, via the corresponding syntax/semantics adjointness (the choice between
Eilenberg–Moore and Kleisli constructions in this case depends on whether one wants
to be maximally restrictive or maximally inclusive w.r.t. the range of admitted ExpDes)

I action monad T on IndInf provides specification of free operations and free resources

one can consider a lax morphism of free operations monad T from inductive
inference category D to experimental design category C along the (nonunique)
right adjoint functor representing the experimental design comonad E
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Entropic projections as generalised state updating rules
Gibbs’1902, Elsasser’37, Jaynes’57, Ingarden–Urbanik’62,...: maximisation of
absolute entropy as a method of model construction: selecting a family of
(probabilistic, quantum,...) modelsM that represent the imposed constraints
Kullback’59, Good’63, Hobson’69,...: constrained maximisation of relative
entropy −D(ρ, ψ) (the entropic projection) as a method of state
transformation (estimation, learning, updating,...) from ψ onto a set that
satisfies given constraints.
Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule

p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
is a special case of entropic projection

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ≡ PD1
Q (p),

where D1(q, p) :=
∫
X µ(x )q(x ) log

(
q(x )
p(x )

)
.

Hellmann–Kamiński–RPK’16: Lüders’ rule ρ 7→ ρnew :=
∑

i PiρPi is also a
special case of entropic projection. Munk–Nielsen’15: partial trace too.
So, entropic projections can be seen as a nonlinear setting for inductive
inference, alternative to linear markovian (positive/completely positive).
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Entropic projections for Brègman divergences

Brègman’67: Let f : Rn → ]−∞,+∞] be convex and proper
(efd(f ) := {x ∈ Rn | f (x) 6=∞} 6= ∅). Then:

Df (y , x) := f (y)− f (x)−
n∑

i=1

(y − x)i [(gradf )(x)]i (1)

If Q ⊂ Rn is convex and closed then ∃!PDf
Q (y) ∀y ∈ Rn.

If Q ⊂ Rn is affine and closed then a generalised pythagorean theorem
holds (!):

Df (x ,P
Df
Q (y)) + Df (P

Df
Q (y), z) = D(x , y) ∀(x , z) ∈ Q × Rn (2)

Jones–Byrne’90: (2) characterises (1).
Bauschke–Borwein–Combettes’01: generalisation of Df from Rn to arbitrary
reflexive Banach space X under some additional conditions on f
RPK’17: generalisation to D̃f defined over classical, quantum, and other more
general state spaces M via D̃f := Df (`(·), `(·)), where ` : M → X is generally
a nonlinear map.
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Nonlinear IndInf example: cats of brègmannian entropic projections
Cvx(`, f ):

I objects: `-closed `-convex subsets of M, including empty set
I morphisms: P

D̃f
Q , including empty arrows

I composition: P
D̃f
Q2
◦PD̃f

Q1
= P

D̃f
Q1∩Q2

Aff(`, f ): as above, but Q restricted to `-affine `-closed sets: the
category of generalised pythagorean theorem
Cvx⊆(`, f ), Aff⊆(`, f ): as two above, respectively, but with
composition rule restricted to Q2 ⊆ Q1

RPK’17: specific examples of above categories (in particular: a class of

categories associated naturally with noncommutative Orlicz spaces over semi-finite

W∗-algebras and nonassociative Lp spaces over semi-finite JBW-algebras)

The above categories provide the elementary setting for the
nonmarkovian version of categorical geometrostatistics.
Full setting: the same objects, but morphisms given by the Brègman
nonexpansive maps
Two natural directions to follow:
1) semantics via adjunctions and monads/comonads
2) localisation via toposes
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Entropic model construction as a functor [RPK’16,’17,’19]

Cvx(`, f ) as a model of IndInf
ExpDes: a category with data sets of configuration parameters as
objects, with arrows given by data sets describing registration
parameters of experimental operations, and composition representing
allowed compositions of experimental operations.
F :ExpDes→IndInf assignment of data to maps: mapping sets in
Ob(ExpDes) into the `-closures of their `-convex envelopes, and
mapping sets in Arr(ExpDes) into entropic projections onto `-closures
of the `-convex envelopes of these sets.
The adjoint functor: given by forgetting everything except the convex
sets used as constraints.
Taken together, they determine and epistemic comonad E on Cvx(`, f ).
The action monad on Cvx(`, f ) is specified differently, using so-called
Brègman monotone operations, which provide an implementation of
Mielnik’s [’69,’73] idea of nonlinear transmitters [details: RPK’17]
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Brègman relative entropy as a functor (I)

Motivation: Baez–Fritz’14: characterisation of D1 relative entropy as a
functor from a suitable category into [0,∞].
The class of Brègman relative entropies Df leads naturally to another
functorial structure, arising from the generalised pythagorean theorem.
[0,∞] := a category consisting of one object •, with morphisms given
by the elements of the set R+ ∪ {∞}, and their composition defined by
addition (Lawvere’73).
2 := category consisting of two objects, one arrow between them, and
the identity arrows on each of the objects.
[0,∞]2 has objects given by morphisms of [0,∞], morphisms given by
the commutative squares in [0,∞], and compositions given by
commutative compositions of these squares.
Let Aff⊆Q(`, f ) denote a full subcategory of Aff⊆(`, f ), determined by
the choice of its terminal object to be given by Q ∈ Ob(Aff⊆(`, f )).
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Brègman relative entropy as a functor (II)
Let K1,K2,K3,K , L ∈ Ob(Aff⊆Q(`, f )), K ⊆ K2 and L ⊆ K3.
For each φ ∈ Q, the generalised pythagorean theorem implies the commutativity of
the diagram

•
D̃f (φ,x) // •

•

0

OO

D̃f (φ,P
D̃f
K (x))

// •

D̃f (P
D̃f
K (x),x)

OO

•

0

OO

D̃f (φ,P
D̃f
L ◦P

D̃f
K (x))

// •

D̃f (P
D̃f
L ◦P

D̃f
K (x),P

D̃f
K (x))

OO

(3)

which implies the commutativity of

x � //
_

P
D̃f
K ��

( •
D̃f (φ,x)

// • )

P
D̃f
K (x) � //

_

P
D̃f
L ��

( •

0

OO

D̃f (φ,P
D̃f
K (x))

// • )

D̃f (P
D̃f
K (x),x)

OO

P
D̃f
L ◦P

D̃f
K (x) � // ( •

0

OO

D̃f (φ,P
D̃f
L ◦P

D̃f
K (x))

// • ) .

D̃f (P
D̃f
L ◦P

D̃f
K (x),P

D̃f
K (x))

OO

(4)Ryszard P. Kostecki (P̂I ⊗ 〈KC | K〉) Epistemic comonads, entropic projections, and resource theories 13 / 15



Brègman relative entropy as a functor (III)

This defines a contravariant functor D̃f (φ, ·) : Aff⊆Q(`, f )→ [0,∞]2.

It naturally extends to the functor D̃f (φ, ·) : Aff⊆(`, f ) ↓ Q → [0,∞]2,
where Aff⊆(`, f ) ↓ Q denotes a slice category of Aff⊆(`, f ) over Q.
For any two categories C and D, the cartesian closedness of the category
Cat of all small categories (with natural transformations as morphisms)
implies that any functor C→ D2 corresponds to a natural transformation
in the functor category DC.
Hence, Q parametrises the family of natural transformations D̃f (φ, ·) in
the category of functors Aff⊆(`, f ) ↓ Q → [0,∞].
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Resource theoretic view

Given any object Q in Cvx(`, f ), the set homCvx(`,f )( · ,Q) can be
equipped with the structure of commutative ordered monoid via:

I P
D̃f
Q1
∧P

D̃f
Q2

:= P
D̃f
Q1∩Q2

,

I P
D̃f
Q1
≤ P

D̃f
Q2

:= Q1 ⊆ Q2,

I distinguished zero object given by P
D̃f
Q .

Hence, each homCvx(`,f )( · ,Q) forms a resource theory in the sense of
Fritz’17.
Example: For D̃1/2 defined by X = Hilbert space H, `(ρ) = ρ1/2,
f = 1

2 ||·||
2
H and under restriction to such Q that correspond to closed

linear subspaces of H, the projections PD̃f
Q are given by the Hilbert

space projection operators, while the operator implementing the finite
join operation PD̃f

Q1
∧ . . . ∧PD̃f

Qn
is given by the

von Neumann’49–Kakutani’40–Halperin’62 theorem:

lim
k→∞

∣∣∣∣∣∣((PQn · · ·PQ1)
k − PQ1∩...∩Qn)ξ

∣∣∣∣∣∣
H
= 0 ∀ξ ∈ H.
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