
Quantum information geometry
Ryszard Paweł Kostecki

Perimeter Institute of Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada*

Institute of Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warszawa, Poland

ryszard.kostecki@fuw.edu.pl

December 26, 2014

Abstract

This text is a detailed overview of the quantum and classical information geometry, containing sev-
eral new concepts and some new results. The key role played by the relative entropy is exposed, and
the interconnections between various structures are analysed. We consider the convex/variational
nonsmooth part of the theory on the equal footing with the smooth/infinitesimal part, and we
also consider the duality principles (as embodied in the concepts of Brègman relative entropy and
dually flat smooth geometries) on the equal footing with monotonicity under quantum channels.
All results are spelled out with the maximal available generality, so the functional analytic setting
of 𝑊 *-algebras and Banach spaces is widely used.

***This text is a draft (0.89?) version under construction. Several
sections contain various mistakes, ommisions, and typos that will be
improved in the next version***
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1 Introduction

In this paper we will discuss information geometric structures on arbitrary dimensional spaces of
quantum states. It is, to a large extent, a systematic review of already known results, but several
new results are also proved, and some new concepts are introduced. Our treatment is unique in its
perspective, considering the subsets of preduals of 𝑊 *-algebras and nonsymmetric distance functions
on them as the foundational setting for quantum geometry. Due to out consideration of analytic
and geometric aspects of information geometry on the equal footing, this text can be considered as a
quantum followup to the works [152, 507].

*Current affiliation.
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Section 2 is devoted to information models and their categories. In Sections 2.1 and 2.2 we recall
main notions of integration theory and of its quantum generalisation, which allows to consider quan-
tum states as integrals over noncommutative 𝑊 *-algebras. These Sections are based on the material in
[404]. They contain two new results: a construction of a family of 𝐿𝑝(𝒜) spaces canonically associated
with any localisable boolean algebra (this is based on an application of Lewin–Lewin generalisation of
Segal’s generalisation of Radon–Nikodým theorem) and a proof of equivalence of categories of commu-
tative 𝑊 *-algebras and proper abstract 𝐿∞ spaces that does not use their topological representation.
First of these results sovels a problem posed by Zhu in [788] (see also [635]), while the second provides
an elegant justification of the reasoning carried in Section 2.3. In Section 2.3 we define quantum models
as arbitrary subsets ℳ(𝒩 ) ⊆ 𝒩+

⋆ of the positive cones 𝒩+
⋆ of Banach preduals 𝒩⋆ of arbitrary 𝑊 *-

algebras 𝒩 , and show that this definition provides a natural generalisation of the notion of a statistical
model. In Section 2.4 we discuss the categories of information models (quantum and statistical) that
are obtained by using Banach preduals of Markov morphisms (linear normal unital completely positive
maps) as arrows.

Section 3 is devoted to the analysis of the fundamental notion of classical and quantum information
geometry: the information distance. A quantum distance is defined as a function of pairs of elements
𝜑, 𝜓 ∈ ℳ(𝒩 ) taking the values in [0,∞], and equal to 0 iff 𝜑 = 𝜓. In Section 3.1 we discuss (as
a review) the information distances which are Markov monotone, which means that they are nonin-
creasing under Banach preduals of Markov morphisms. In commutative case these are given by the
Csiszár–Morimoto f-distances [176, 500], while in quantum case they are given by the Kosaki–Petz
f-distances [397, 565]. In Section 3.2 we discuss (as a review) the families of Brègman functionals
[118, 131, 61], whose characteristic feature is that they satisfy a generalisation of the pythagorean
theorem under ‘orthogonal’ but nonlinear projections onto subsets. In Section 3.3 we introduce the
notion of a dualistic Brègman distance, which allows to define the quantum Brègman distance, suitable
for the setting of nonlinear infinite dimensional quantum models, with ‘orthogonality’ implemented
by the Young–Fenchel duality associated with any dual pair of vector spaces. In order to obtain well
defined uniqueness and composability properties, we further specify this duality to Banach dual pair of
reflexive Banach spaces. In Section 3.4 we use the Falcone–Takesaki theory [247] of noncommutative
𝐿𝑝(𝒩 ) spaces over arbitrary 𝑊 *-algebras 𝒩 to define the canonical family of quantum 𝛾-distances,
which generalises the Jenčová–Ojima family [551, 360] of quantum 𝛾-distances and provides a non-
commutative counterpart of the Liese–Vajda family [453] of 𝛾-distances. We prove that this family
belongs to an intersection of the Kosaki–Petz f-distances with the generalised Brègman distances. This
is important in face of the result of Amari [19], who showed that in the finite dimensional commutative
case the Liese–Vajda family characterises an intersection of the Csiszár–Morimoto f-distances with the
Brègman distances. We conjecture that our family of 𝛾-distances shares the same uniqueness property
in the noncommutative case. We discuss also the conditions of existence, uniqueness, and stability of
the solutions to the corresponding constrained distance minimisation problems.

Section 4 contains a review of those parts of geometry of smooth manifolds that are relevant for
discussion of smooth information geometry. Apart from riemannian and affine geometries, we discuss
much lesser known Norden–Sen, hessian, Eguchi, and Lauritzen geometries. The elementary setting
of smooth manifolds modelled on Banach spaces is introduced.

Section 5 contains a review of smooth information geometry, in commutative and noncommutative
cases, both for finite and infinite dimension. This presentation fills the gap in the literature of the
subject, which lacks a fairly complete overview of its main results. In particular, we discuss Jenčová’s
construction [361, 362] of smooth Banach manifold structure on the space 𝒩+

⋆01 for an arbitrary 𝑊 *-
algebra 𝒩 (based on a specifically defined noncommutative Orlicz space overn 𝒩 ), and characterisation
[358, 359] of dually flat geometries on the spaces 𝒩+

⋆0 for type I𝑛 𝑊 *-algebras 𝒩 ∼= M𝑛(C). Our novel
contribution discussed in Section 5.1 is a construction of a general noncommutative Orlicz space
associated with a n arbitrary 𝑊 *-algebra, that is based on the Falcone–Takesaki theory. We also
propose an extension of Jenčová’s construction to unbounded extended valued operators, which is
intended to provide a quantum counterpart of the Pistone–Sempi manifold structure. Section 5.2
contains also a new result: an extension of the Nagaoka–Petz generalised pythagorean theorem [522,
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523, 573] for Umegaki distance on 𝒩+
⋆01 to quantum 𝛾-distances on 𝒩+

⋆0 with 𝛾 ∈ [−1, 2]. This extension
is a straightforward consequence of known results, but it was left unnoticed, and it provides further
evidence to our conjecture on the characterisation of quantum 𝛾-distances. Apart from it, we once
again apply the Falcone–Takesaki theory in order to generalise the Morozova–Chentsov–Petz family of
Markov monotone quantum riemannian metrics to the infinite dimensional case, providing an answer
to a question posed in [279].

Conventions

The following conventions are used in this text: 1) definitions, «citations», ‘notions subjectable to
strict definition’, “vague notions”, and attention markers; 2) the mathematical style of text formatting
(definition/theorem/proof) is used only for stating essentially new mathematical results; 3) whenever
possible, we refer to original works containing results that are discussed or used; 4) the folk attributions
of surnames to mathematical concepts are changed to historically correct ones whenever there is a
definite evidence for the latter, and the concepts with attribution of three or four surnames to it are
turned to an acronym after first use, while in the case of more authors we use only the descriptive
naming of objects;1 5) for the Latin transliteration of the Cyrillic script (in references and surnames)
we use the following modification of the system GOST 7.79-2000B: c = c, q = ch, h = kh, � = zh, x
= sh, w = shh, � = yu, � = ya, ë = ë, � = ‘, ~ = ’, � = è, $i = ı̆, with an exception that surnames
beginning with H are transliterated to H.2 For Russian texts: y = y, i = i; for Ukrainian: i = y, i =
i, ï = ï. All Cyrillic titles and names were transliterated from the original papers and books.

2 Information models

In Section 2.3 we discuss quantum and statistical information models, in order to show that an abstract
definition of a quantum information model as an arbitrary subset ℳ(𝒩 ) ⊆ 𝒩+

⋆ of the positive cone
𝒩+
⋆ of Banach predual 𝒩⋆ of arbitrary 𝑊 *-algebra 𝒩 provides a natural generalisation of the notion

of a statistical model. For this purpose, the terminology, notation and results of commutative and
noncommutative integration theories will be introduced and discussed, respectively, in Sections 2.1 and
2.2. The exposition in these two sections is based on [404]. Following the principle that a complete
specification of a mathematical theory requires a specification of a category that implements it, in
Section 2.4 we will discuss the categories of quantum and statistical information models, with arrows
given by coarse grainings, defined as Banach preduals of Markov maps (that is, normal unital linear
completely positive functions). This category determines both the information models (as objects)
and also the allowed methods of inference (as arrows), which in turn can be used to characterise
the geometric structure of these models. The last idea was proposed and developed by Chencov and
Morozova [151, 152, 153, 501, 502, 503, 504, 154, 505, 506, 507] and was a key principle guiding
development of the smooth information geometry in both commutative and noncommutative case (see
Section 5 for a detailed discussion). The definition of a quantum model ℳ(𝒩 ) does not introduce
more specific constraints for the purpose of generality. In our opinion, various additional structures
and assumptions (such as smoothness, convexity, finite-dimensionality, etc.) should be introduced
in the context of specific subtheories, giving rise to associated categories of quantum models. Such
conditions and the geometric structures associated with them will be studied in Sections 3 and 5.

1The only definite exception that we have made consciously is the case of objects named by their inventors with
someone else’s name(s), if this naming convention became influential. The examples include the KMS condition (invented
and named by [295]), the BLP space (invented and named by [549]), and the abstract notion of a ‘Hilbert space’, invented
(and named) by von Neumann [749]. Hilbert invented only its special case, an ℓ2 space, while an 𝐿2(R, d𝜆) space was
invented by Riesz. More generally, we have adopted the sequential adaptation of rules: (1) strong relevance of temporal
priority, (2) weak relevance of folk popularity, (3) weak avoidance of acronyms. As a borderline example, we speak of
the “Morse–Transue–Nakano–Luxemburg norm”, abbreviated to the “MTNL norm”, despite 5 years of difference between
[508, 527] and [472] due to wide popularity of the term “Luxemburg norm” (enforced by [408, 604]), but we speak of
the “Csiszár–Morimoto f-distance” despite 3 years of difference between [176, 500] and the Ali–Silvey paper [11]. On the
contrary to this partially restrictive naming system, the references are made as complete as it is reasonably possible.

2This is required for agreement with the widespread practice to transliterate Holevo as Holevo, etc.
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2.1 Integration on boolean algebras

A partially ordered set (or a poset) [319] is defined as a pair (𝑋,≤), where 𝑋 is a set, and ≤ is a
relation on 𝑋 such that

𝑥 ≤ 𝑥, (𝑥 ≤ 𝑦, 𝑦 ≤ 𝑥) ⇒ 𝑥 = 𝑦, (𝑥 ≤ 𝑦, 𝑦 ≤ 𝑧) ⇒ 𝑥 ≤ 𝑧 ∀𝑥, 𝑦, 𝑧 ∈ 𝑋. (1)

If (𝑋,≤) is a poset and 𝑌 ⊆ 𝑋, then 𝑌 is called: bounded above iff ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝑦 ≤ 𝑥; bounded
below iff ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝑥 ≤ 𝑦; upwards directed iff 𝑌 is nonempty and every pair of elements of
𝑌 is bounded above; downwards directed iff 𝑌 is nonempty and every pair of elements is bounded
below. A supremum (or the least upper bound) of 𝑌 ⊆ 𝑋, denoted by sup𝑌 , is defined as 𝑥 ∈ 𝑋
such that

𝑦 ≤ 𝑥, 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧 ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ 𝑌, (2)

while an infimum (or the greatest lower bound) of 𝑌 ⊆ 𝑋, denoted by inf 𝑌 , is defined as 𝑥 ∈ 𝑋
such that

𝑥 ≤ 𝑦, 𝑧 ≤ 𝑦 ⇒ 𝑧 ≤ 𝑥 ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ 𝑌. (3)

If 𝐼 is a set and {𝑥𝜄 | 𝜄 ∈ 𝐼} ⊆ 𝑋, then sup{𝑥𝜄 | 𝜄 ∈ 𝐼} =: sup𝜄∈𝐼{𝑥𝜄} =: sup𝜄{𝑥𝜄} (and analogously
for inf). If 𝐼 = N and 𝑖, 𝑛 ∈ N, then sup𝑖{𝑥𝑖} =:

⋁︀
𝑖 𝑥𝑖, inf𝑖{𝑥𝑖} =:

⋀︀
𝑖 𝑥𝑖, sup{𝑥1, . . . , 𝑥𝑛} =:

𝑥1 ∨ . . . ∨ 𝑥𝑛 and inf{𝑥1, . . . , 𝑥𝑛} =: 𝑥1 ∧ . . . ∧ 𝑥𝑛. If (𝑋,≤) is a poset, then 𝑌 ⊆ 𝑋 is called order
closed iff sup𝑍1 ∈ 𝑌 for every nonempty upwards directed 𝑍1 ⊆ 𝑌 such that sup𝑍1 ∈ 𝑋 and
inf 𝑍2 ∈ 𝑌 for every nonempty downwards directed 𝑍2 ⊆ 𝑌 such that inf 𝑍2 ∈ 𝑋. A poset (𝑋,≤) is
called: Dedekind–MacNeille complete [209, 477] iff every nonempty bounded above subset of 𝑋
has a supremum, or, equivalently, iff every bounded below subset of 𝑋 has an infimum; countably
additive complete iff every nonempty bounded above countable subset of 𝑋 has a supremum and
every nonempty bounded below countable subset of 𝑋 has an infimum; lattice [559, 560, 656, 553]
iff every subset of 𝑋 consisting of two elements has a supremum and infimum. A lattice 𝑋 is called:
distributive [656] iff

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, (4)
𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋; (5)

boolean [93, 94, 762] iff it is distributive, contains a least element 0 ∈ 𝑋 such that 0 ≤ 𝑥 ∀𝑥 ∈ 𝑋
and a greatest element 1 ∈ 𝑋 such that 𝑥 ≤ 1 ∀𝑥 ∈ 𝑋, and

∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 such that 𝑥 ∧ 𝑦 = 0, 𝑥 ∨ 𝑦 = 1, and 𝑦 =: ¬𝑥; (6)

Riesz [197, 623, 624, 625] iff it is a vector space over R such that

𝑥 ≤ 𝑦 ⇒ 𝑥+ 𝑧 ≤ 𝑦 + 𝑧, 𝑥 ≥ 0 ⇒ 𝜆𝑥 ≥ 0 ∀𝜆 ≥ 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝑋; (7)

Banach [373, 374, 78] iff it is a Riesz lattice equipped with a norm ||·|| : 𝑋 → R+ such that |𝑥| ≤
|𝑦| ⇒ ||𝑥|| ≤ ||𝑦|| and it is Cauchy complete with respect to this norm, where |𝑥| := 𝑥 ∨ (−𝑥); an
f-algebra [79] iff it is a Riesz lattice equipped with an associative multiplication · : 𝑋 ×𝑋 → 𝑋 such
that (𝑋,+, · ) is an algebra over R, 𝑥, 𝑦 ≥ 0 ⇒ 𝑥 · 𝑦 ≥ 0, and (𝑥 ∧ 𝑦 = 0, 𝑧 ≥ 0) ⇒ (𝑥 · 𝑧) ∧ 𝑦 = 0.
Every Dedekind–MacNeille complete lattice is countably additive complete. Every Riesz lattice is
distributive [263]. If 𝑋 is a Riesz lattice and 𝑥 ∈ 𝑋 then 𝑥+ := 𝑥 ∨ 0 and 𝑥− := (−𝑥) ∨ 0 satisfy
𝑥 = 𝑥+ − 𝑥− and |𝑥| = 𝑥+ + 𝑥−. A Riesz lattice 𝑋 is called archimedean iff

{𝑛𝑥 | 𝑛 ∈ N} is bounded above ⇒ 𝑥 ≤ 0 ∀𝑥 ∈ 𝑋. (8)

Every countably additive complete Riesz lattice is archimedean. Every Banach lattice is archimedean.
Every archimedean f-algebra is commutative [24, 79]. An element 𝑒 ∈ 𝑋+ := {𝑥 ∈ 𝑋 | 𝑥 ≥ 0} of an
archimedean Riesz lattice 𝑋 is called an order unit iff ∀𝑥 ∈ 𝑋 ∃𝜆 > 0 |𝑥| ≤ 𝜆𝑒 [263]. If 𝑋 is an
archimedean Riesz lattice with an order unit 𝑒, then an order unit norm on 𝑋 is defined as a map
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||·||𝑒 : 𝑋 → R+ such that ||𝑥||𝑒 := min{𝜆 ∈ R | |𝑥| ≤ 𝜆𝑒}. An MI-space [410, 371] is defined as a
Banach lattice with an order unit norm. An abstract 𝐿𝑝 space [77, 88, 371] is defined for 𝑝 ∈ [1,∞[
as a Banach lattice 𝑋 with norm such that

|𝑥| ∧ |𝑦| = 0 ⇒ ||𝑥+ 𝑦||𝑝 = ||𝑥||𝑝 + ||𝑦||𝑝 ∀𝑥, 𝑦 ∈ 𝑋, (9)

and as a countably additive complete MI-space 𝑋 for 𝑝 = ∞. An abstract 𝐿∞ space will be called
proper iff it is Banach dual to some Banach space. Every abstract 𝐿𝑝 space for 𝑝 ∈ [1,∞[ is Dedekind–
MacNeille complete. A commutative ring (𝒜,+, · ) is called boolean iff 𝑥2 = 𝑥 ∀𝑥 ∈ 𝒜. Every boolean
lattice defines a boolean ring with unit by 𝑥 + 𝑦 := (𝑥 ∧ ¬𝑦) ∨ (¬𝑥 ∨ 𝑦) and 𝑥 · 𝑦 := 𝑥 ∧ 𝑦, and the
converse is also true [693]. By this reason both are referred to as a boolean algebra. A simplest
nontrivial example of a boolean algebra is 2, consisting of two elements {0, 1} such that 0 ≤ 1 and
0 ̸= 1.

An order closed vector subspace 𝑌 of a Riesz lattice 𝑋 is called a band iff (𝑥 ∈ 𝑌, |𝑦| ≤ |𝑥|) ⇒
𝑦 ∈ 𝑌 . If 𝑋 is an archimedean Riesz lattice and 𝑍 ⊆ 𝑋, then

𝑍⊥ := {𝑥 ∈ 𝑋 | |𝑥| ∧ |𝑦| = 0 ∀𝑦 ∈ 𝑍} (10)

is a band and 𝑍⊥⊥ = 𝑍. A subset 𝑌 of an archimedean Riesz lattice 𝑋 is called a projection band
iff 𝑌 + 𝑌 ⊥ = 𝑋. If 𝑋 is archimedean and Dedekind–MacNeille complete, then each band of 𝑋 is a
projection band. The set of all bands of an archimedean Riesz lattice 𝑋 forms a Dedekind–MacNeille
complete boolean algebra 𝒜, with 𝑌 ∧𝑍 := 𝑌 ∩𝑍, 𝑌 ∨𝑍 := (𝑌 +𝑍)⊥⊥, 1 := 𝑋, 0 := {0}, ¬𝑌 := 𝑌 ⊥,
(𝑌 ≤ 𝑍) := (𝑌 ⊆ 𝑍), while the set of all projection bands of 𝑋 forms a boolean subalgebra of 𝒜.
These two boolean algebras coincide iff 𝑋 is Dedekind–MacNeille complete.

If (𝑋1,≤1) and (𝑋2,≤2) are partially ordered sets, then a function 𝑓 : 𝑋1 → 𝑋2 is called: order
preserving iff 𝑥 ≤1 𝑦 ⇒ 𝑓(𝑥) ≤2 𝑓(𝑦) ∀𝑥, 𝑦 ∈ 𝑋1; order continuous [527] iff it is order preserv-
ing, 𝑓(sup𝑌 ) = sup𝑥∈𝑌 {𝑓(𝑥)} for every nonempty upwards directed 𝑌 ⊆ 𝑋1 with sup𝑌 ∈ 𝑋1, and
𝑓(inf 𝑌 ) = inf𝑥∈𝑌 {𝑓(𝑥)} for every nonempty downwards directed 𝑌 ⊆ 𝑋1 with inf 𝑌 ∈ 𝑋1; sequen-
tially order continuous iff it is order preserving, 𝑓(sup𝑖{𝑥𝑖}) = sup𝑖{𝑓(𝑥𝑖)} for every nondecreasing
sequence {𝑥𝑖} ⊆ 𝑋1, and 𝑓(inf𝑖{𝑥𝑖}) = inf𝑖{𝑓(𝑥)} for every nonincreasing sequence {𝑥𝑖} ⊆ 𝑋1. If 𝑋1

and 𝑋2 are lattices, then a lattice homomorphism is defined as a function 𝑓 : 𝑋1 → 𝑋2 such that
𝑓(𝑥∨ 𝑦) = 𝑓(𝑥)∨ 𝑓(𝑦) and 𝑓(𝑥∧ 𝑦) = 𝑓(𝑥)∧ 𝑓(𝑦). If 𝒜1 and 𝒜2 are boolean algebras, then a boolean
homomorphism is defined as a ring homomorphism 𝑓 : 𝒜1 → 𝒜2 such that 𝑓(1) = 1. If 𝑋1 and 𝑋2

are Riesz lattices, then a Riesz homomorphism is defined as a linear function 𝑓 : 𝑋1 → 𝑋2 such
that any of equivalent conditions holds: 𝑓(𝑥+) = (𝑓(𝑥))+; 𝑓(|𝑥|) = |𝑓(𝑥)|; 𝑓(𝑥 ∧ 𝑦) = 𝑓(𝑥) ∧ 𝑓(𝑦);
𝑓(𝑥 ∨ 𝑦) = 𝑓(𝑥) ∨ 𝑓(𝑦). If 𝑋1 and 𝑋2 are Banach lattices then a Riesz homomorphism 𝑓 : 𝑋1 → 𝑋2

is called: unit preserving iff 𝑋1 has an order unit norm with an order unit 𝑒1, 𝑋2 has an order
unit norm with an order unit 𝑒2 and 𝑓(𝑒1) = 𝑒2; norm preserving iff ||𝑓(𝑥)||𝑋2

= ||𝑥||𝑋1
; isometric

iff it is norm preserving and continuous with respect to norm topologies on 𝑋1 and 𝑋2. A boolean
isomorphism is defined as a bijective boolean homomorphism, while a Riesz isomorphism is de-
fined as a bijective Riesz homomorphism. Isometric Riesz isomorphisms of Banach lattices coincide
with their isometric isomorphisms (surjective isometries). Every isometric Riesz isomorphism is order
continuous. Every boolean homomorphism and every Riesz lattice homomorphism is a lattice homo-
morphism. Every bijective lattice homomorphism is order continuous. Every boolean homomorphism
is order preserving. A multiplication in archimedean f-algebra is order continuous.

A measure on a boolean algebra 𝒜 is defined as a function 𝜇 : 𝒜 → [0,∞] such that 𝜇(0) = 0. It
is called: countably additive iff

𝜇(
⋁︁
𝑖

𝑥𝑖) =
∑︁
𝑖

𝜇(𝑥𝑖) for (𝑖 ̸= 𝑗 ⇒ 𝑥𝑖 ∧ 𝑥𝑗 = 0); (11)

strictly positive iff 𝑥 ̸= 0 ⇒ 𝜇(𝑥) > 0; finite iff cod(𝜇) ⊆ R+; semi-finite iff

∀𝑥 ∈ 𝒜 ∃𝑦 ∈ 𝒜 𝜇(𝑥) = ∞ ⇒ (𝑦 ≤ 𝑥 and 0 < 𝜇(𝑦) <∞). (12)
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The space of all semi-finite countably additive measures on a boolean algebra 𝒜 will be denoted 𝒲(𝒜),
while the subset of strictly positive elements of 𝒲(𝒜) will be denoted 𝒲0(𝒜). A boolean algebra will
be called: ccb-algebra iff it is countably additive complete; mcb-algebra iff it allows a semi-finite
strictly positive countably additive measure and is Dedekind–MacNeille complete. A pair (𝒜, 𝜇) of a
ccb-algebra 𝒜 and a strictly positive countably additive measure 𝜇 on 𝒜 is called a measure algebra.
A measure algebra (𝒜, 𝜇) is called: semi-finite iff 𝜇 is semi-finite; localisable iff 𝒜 is an mcb-algebra
and 𝜇 is semi-finite. If (𝒜, 𝜇) is a measure algebra, then 𝒜𝜇 := {𝑥 ∈ 𝒜 | 𝜇(𝑥) < ∞} is a boolean
algebra and an ideal in 𝒜. An evaluation on a boolean algebra 𝒜 is defined as a function 𝜑 : 𝒜 → R
satisfying 𝜑(0) = 0 and countably additive in the sense of (11) with 𝜇 substituted by 𝜑. It is called:
positive iff cod(𝜑) ⊆ R+; strictly positive iff 𝑥 ̸= 0 ⇒ 𝜑(𝑥) > 0. The set of all evaluations on 𝒜 will
be denoted eval(𝒜), and its subsets of all positive (resp., strictly positive) elements will be denoted by
eval(𝒜)+ (resp. eval(𝒜)+0 ). Every positive evaluation is an element of 𝒲(𝒜), hence the diagram

eval(𝒜)+0
� � //

� _

��

𝒲0(𝒜)� _

��
eval(𝒜)+ �

� //𝒲(𝒜)

(13)

is commutative.
If 𝒜 is a ccb-algebra, then 𝐿0(𝒜) is defined as a set of all functions 𝑓 : R → 𝒜 such that

𝑓(𝜆1) = sup
𝜆2>𝜆1

𝑓(𝜆2) ∀𝜆1 ∈ R, inf
𝜆∈R

𝑓(𝜆) = 0, sup
𝜆∈R

𝑓(𝜆) = 1. (14)

The 𝐿0(𝒜) space can be equipped with an f-algebra structure, provided by

(𝑥 · 𝑦)(𝜆1) := sup

{︂
𝑥(𝜆2) ∧ 𝑦

(︂
𝜆1
𝜆2

)︂
| 𝜆2 ∈ Q, 𝜆2 > 0

}︂
∀𝑥, 𝑦 ≥ 0, (15)

and
𝑥 · 𝑦 := 𝑥+ · 𝑥+ − 𝑥+ · 𝑦− − 𝑥− · 𝑦+ + 𝑥− · 𝑦− ∀𝑥, 𝑦 ∈ 𝐿0(𝒜). (16)

For any measure algebra (𝒜, 𝜇), the map

||·||1 : 𝐿0(𝒜) ∋ 𝑓 ↦→
∫︁ ∞

0
d𝜆𝜇(|𝑓(𝜆)|) ∈ [0,∞], (17)

where d𝜆 is a Lebesgue measure on R, allows to define

𝐿1(𝒜, 𝜇) := {𝑓 ∈ 𝐿0(𝒜) | ||𝑓 ||1 <∞}. (18)

Moreover, for 𝑝 ∈ ]1,∞[,

|𝑓(𝜆)|𝑝 :=

{︂ ⃒⃒
𝑓(𝜆1/𝑝)

⃒⃒
: 𝜆 ≥ 0

1 : 𝜆 < 0
(19)

allows to define
𝐿𝑝(𝒜, 𝜇) := {𝑓 ∈ 𝐿0(𝒜) | |𝑓 |𝑝 ∈ 𝐿1(𝒜, 𝜇)} (20)

and
||·||𝑝 : 𝐿𝑝(𝒜, 𝜇) ∋ 𝑓 ↦→ |||𝑓 |𝑝||1/𝑝1 ∈ R+. (21)

For 𝑝 ∈ [1,∞[ the maps ||·||𝑝 are norms on 𝐿𝑝(𝒜, 𝜇) under which 𝐿𝑝(𝒜, 𝜇) are Cauchy complete.
If (𝒜, 𝜇) is a measure algebra and 𝑥 ∈ 𝐿1(𝒜, 𝜇), then the function

∫︀
𝜇 : 𝐿1(𝒜, 𝜇) → R, defined by∫︁

𝜇𝑥 :=
⃒⃒⃒⃒
𝑥+
⃒⃒⃒⃒
1
−
⃒⃒⃒⃒
𝑥−
⃒⃒⃒⃒
1

=

∫︁ ∞

0
d𝜆𝜇(𝑥(𝜆)) −

∫︁ ∞

0
d𝜆𝜇(−𝑥(𝜆)), (22)
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is linear and order continuous, and satisfies

||𝑥||1 =

∫︁
𝜇|𝑥| ∀𝑥 ∈ 𝐿1(𝒜, 𝜇), (23)

||𝑥||𝑝 =

(︂∫︁
𝜇|𝑥|𝑝

)︂1/𝑝

= |||𝑥|𝑝||1/𝑝1 ∀𝑥 ∈ 𝐿𝑝(𝒜, 𝜇) ∀𝑝 ∈ [1,∞[. (24)

Let 𝒜 be an arbitrary boolean algebra, let 𝑋 be a vector space of all sums
∑︀𝑛

𝑖=1 𝜆𝑖𝑥𝑖 with {𝜆𝑖} ⊆ R
and {𝑥𝑖} ⊆ 𝒜, and let 𝑌 be a vector subspace of 𝑋 spanned by the elements of 𝑋 of the form
(𝑥1 ∨ 𝑥2) − 𝑥1 − 𝑥2 for 𝑥1, 𝑥2 ∈ 𝒜 such that 𝑥1 ∧ 𝑥2 = 0. The space 𝑋/𝑌 can be equipped with the
norm

||𝑓 ||∞ := min{𝜆 ≥ 0 | |𝑓 | ≤ 𝜆𝜒(1)} ∀𝑓 ∈ 𝑋/𝑌, (25)

where 𝜒 : 𝒜 → 𝑋/𝑌 is defined as a map from 𝑥 ∈ 𝒜 to an image of 𝑥 ∈ 𝑋 in 𝑋/𝑌 . The space 𝐿∞(𝒜)
is defined as a Cauchy completion of 𝑋/𝑌 in ||·||∞.3 The order unit of 𝐿∞(𝒜) is given by the constant
function taking the value 1 everywhere. The projection band algebra of 𝐿∞(𝒜) is boolean isomorphic
to 𝒜. 𝐿∞(𝒜) is Dedekind–MacNeille complete iff 𝒜 is, and is countably additive complete iff 𝒜 is. If
𝑓 : 𝒜1 → 𝒜2 is a boolean homomorphism, then the formula

𝐿∞(𝑓)(𝜒(𝑥)) = 𝜒(𝑓(𝑥)) ∀𝑥 ∈ 𝒜1 (26)

determines a unique Riesz homomorphism 𝐿∞(𝑓) : 𝐿∞(𝒜1) → 𝐿∞(𝒜2) which is unit preserving, and
is surjective (resp.: injective; order continuous) iff 𝑓 is surjective (resp.: injective; order continuous).

The spaces 𝐿𝑝(𝒜, 𝜇) inherit an f-algebra structure from 𝐿0(𝒜) and are Dedekind–MacNeille com-
plete. If 𝒜 is a ccb-algebra and 𝜇1, 𝜇2 ∈ 𝒲(𝒜), then 𝐿𝑝(𝒜, 𝜇1) and 𝐿𝑝(𝒜, 𝜇2) are isometrically Riesz
isomorphic. If (𝒜, 𝜇) is a localisable measure algebra, then the band algebra of 𝐿𝑝(𝒜, 𝜇) is boolean
isomorphic to 𝒜. The space eval(𝒜) is an abstract 𝐿1 space, and if (𝒜, 𝜇) is a semi-finite measure
algebra, then there exists a bijective Riesz isomorphism between eval(𝒜) and 𝐿1(𝒜, 𝜇). Hence, there
exists a bijection between 𝐿1(𝒜, 𝜇)+ and eval(𝒜)+. For any measure algebra (𝒜, 𝜇) and 𝛾 ∈ ]0, 1[ there
is a Banach space duality 𝐿1/𝛾(𝒜, 𝜇)⋆ ∼= 𝐿1/(1−𝛾)(𝒜, 𝜇) determined by the map

𝐿1/𝛾(𝒜, 𝜇) × 𝐿1/(1−𝛾)(𝒜, 𝜇) ∋ (𝑥, 𝑦) ↦→
∫︁
𝜇𝑥𝑦 ∈ R. (27)

The space 𝐿∞(𝒜) can be identified with the linear subspace of 𝐿0(𝒜) generated by 𝜒(1), and in such
case 𝐿1(𝒜, 𝜇) × 𝐿∞(𝒜) ∋ (𝑥, 𝑦) ↦→ 𝑥 · 𝑦 ∈ 𝐿1(𝒜, 𝜇) is a bilinear maps, while

𝐿1(𝒜, 𝜇) × 𝐿∞(𝒜) ∋ (𝑥, 𝑦) ↦→
∫︁
𝜇𝑥𝑦 ∈ R (28)

is a bilinear functional. According to Segal’s theorem [658], the space 𝐿1(𝒜, 𝜇)⋆ is isometrically
Riesz isomorphic to 𝐿∞(𝒜) iff (𝒜, 𝜇) is localisable, and in such case all Banach preduals of 𝐿∞(𝒜)
are isometrically (and Riesz) isomorphic. According to the Bohnenblust–Kakutani–Nakano theorem
[88, 371, 370, 89, 27]:

(i) every abstract 𝐿𝑝 space𝑋 for 𝑝 ∈ [1,∞[ is isometrically Riesz isomorphic to some 𝐿𝑝(𝒜, 𝜇) space,
where 𝒜 is uniquely determined as an mcb-algebra of projection bands of 𝑋, while 𝜇 ∈ 𝒲(𝒜) is
(nonuniquely) determined by 𝒜 and a norm of 𝑋, so that (𝒜, 𝜇) is a localisable measure algebra;

(ii) every abstract 𝐿∞ space 𝑋 determines a ccb-algebra 𝒜 of its projection bands, and 𝑋 is iso-
metrically Riesz isomorphic to 𝐿∞(𝒜). Hence, every Dedekind–MacNeille complete abstract 𝐿∞
space 𝑋 is isometrically Riesz isomorphic to 𝐿∞(𝒜), where 𝒜 is a Dedekind–MacNeille complete
boolean algebra.

3Equivalently, one can define (real or complex) Banach lattice 𝐿∞(𝒜) as the space of all (real or complex) continuous
functions on the Stone spectrum spS(𝒜), endowed with its multiplication, linear and order structures, and norm given
by ||𝑓 || := supx∈spS(𝒜){|𝑓(x )|}.
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By Segal’s theorem [658], this implies that

(iii) every proper abstract 𝐿∞ space 𝑋 is isometrically Riesz isomorphic to 𝐿∞(𝒜), where 𝒜 is an
mcb-algebra.

For a given set 𝒳 , a countably additive algebra on 𝒳 is defined as a family f(𝒳 ) of subsets of
𝒳 such that

∅ ∈ f(𝒳 ), 𝒴 ∈ f(𝒳 ) ⇒ 𝒳 ∖ 𝒴 ∈ f(𝒳 ),
⋃︁
𝑖

𝒳𝑖 ∈ f(𝒳 ) for any sequence {𝒳𝑖} ⊆ f(𝒳 ). (29)

A countably additive ideal [734] of a countably additive algebra f(𝒳 ) on 𝒳 is defined as a family
f0(𝒳 ) of subsets of f(𝒳 ) such that

1) ∅ ∈ f0(𝒳 ),

2) (𝒳1 ∈ f0(𝒳 ), 𝒳2 ∈ f(𝒳 ), 𝒳2 ⊆ 𝒳1) ⇒ 𝒳2 ∈ f0(𝒳 ),

3)
⋃︀
𝑖𝒳𝑖 ∈ f0(𝒳 ) for any countable set {𝒳𝑖} ⊆ f0(𝒳 ).

A premeasurable space is defined as a pair (𝒳 ,f(𝒳 )), while a measurable space is defined as a
triple (𝒳 ,f(𝒳 ),f0(𝒳 )), where f(𝒳 ) is any countable additive algebra on 𝒳 , while f0(𝒳 ) any count-
ably additive ideal of f(𝒳 ). A complete morphism of premeasurable spaces, (𝒳1,f1(𝒳1),f0

1(𝒳1)) →
(𝒳2,f2(𝒳2),f0

2(𝒳2)), is defined as a map 𝑓 : 𝒳1 → 𝒳2 such that 𝑓−1(𝒴) ∈ f1(𝒳1) ∀𝒴 ∈ f2(𝒳2) and
𝑓−1(𝒵) ∈ f0

1(𝒳1) ∀𝒵 ∈ f0(𝒳2). A measure on a premeasurable space (𝒳 ,f(𝒳 )) is defined as
a function �̃� : f(𝒳 ) → [0,∞] such that �̃�(∅) = 0. A measure is called countably additive iff
�̃�(
⋃︀
𝑖𝒳𝑖) =

∑︀
𝑖 �̃�(𝒳𝑖) for any countable sequence {𝒳𝑖} ⊆ f(𝒳 ) satisfying 𝑖 ̸= 𝑗 ⇒ 𝒳𝑖 ∩ 𝒳𝑗 = ∅. A

set of all countably additive measures on (𝒳 ,f(𝒳 )) will be denoted Meas+(𝒳 ,f(𝒳 )). As set of finite
elements of Meas+(𝒳 ,f(𝒳 )) will be denoted Meas+fin(𝒳 ,f(𝒳 )). Moreover, Meas(𝒳 ,f(𝒳 )) := {�̃� :=
�̃�1 − �̃�2 | �̃�1, �̃�2 ∈ Meas+(𝒳 ,f(𝒳 ))}. A measure space is defined as a triple (𝒳 ,f(𝒳 ), �̃�), where
(𝒳 ,f(𝒳 )) is a premeasurable space, and �̃� is countably additive measure on it. Given a measure space
(𝒳 ,f(𝒳 ), �̃�), a set 𝒴 ⊆ 𝒳 is called �̃�-null iff there exists 𝒵 ⊆ f(𝒳 ) such that 𝒴 ⊆ 𝒵 and �̃�(𝒵) = 0.
A family of all �̃�-null subsets of 𝒳 is denoted by null(𝒳 ,f(𝒳 ), �̃�). One says that the property 𝑄(x )
holds for �̃�-almost every x ∈ 𝒳 iff {x ∈ 𝒳 | 𝑄(x ) is false} ∈ null(𝒳 ,f(𝒳 ), �̃�). The set

f�̃�(𝒳 ) := f(𝒳 ) ∩ null(𝒳 ,f(𝒳 ), �̃�) = {𝒴 ∈ f(𝒳 ) | �̃�(𝒴) = 0} (30)

is a countably additive ideal of f(𝒳 ), hence, every measure space (𝒳 ,f(𝒳 ), �̃�) determines a corre-
sponding measurable space (𝒳 ,f(𝒳 ),f�̃�(𝒳 )). A measure space (𝒳 ,f(𝒳 ), �̃�) is called: semi-finite
iff

∀𝒳1 ∈ f(𝒳 ) ∃𝒳2 ∈ f(𝒳 ) �̃�(𝒳1) = ∞ ⇒ (𝒳2 ⊆ 𝒳1 and 0 < �̃�(𝒳2) <∞); (31)

localisable iff it is semi-finite and for all 𝑌 ⊆ f(𝒳 ) there exists 𝒳1 ∈ f(𝒳 ) such that

1) 𝒴 ∖ 𝒳1 ∈ null(𝒳 ,f(𝒳 ), �̃�) ∀𝒴 ∈ 𝑌 ,

2) (𝒳2 ∈ f(𝒳 ), 𝒴 ∖ 𝒳2 ∈ null(𝒳 ,f(𝒳 ), �̃�) ∀𝒴 ∈ 𝑌 ) ⇒ 𝒳1 ∖ 𝒳2 ∈ null(𝒳 ,f(𝒳 ), �̃�).

A measurable space (𝒳 ,f(𝒳 ),f0(𝒳 )) will be called localisable iff there exists a measure �̃� on
(𝒳 ,f(𝒳 )) such that f0(𝒳 ) = f�̃�(𝒳 ) and (𝒳 ,f(𝒳 ),f�̃�(𝒳 )) is localisable. If (𝒳 ,f(𝒳 )) is a pre-
measurable space and 𝒴 ⊆ 𝒳 , then f𝒳 (𝒴) := {𝒵 ∩ 𝒴 | 𝒵 ∈ f(𝒳 )} is a countably additive algebra on
𝒴. A function 𝑓 : 𝒴 → R is called f(𝒳 )-measurable iff {x ∈ 𝒳 | 𝑓(x ) ≤ 𝜆} ⊆ f𝒳 (𝒴) ∀𝜆 ∈ R.

By Wecken’s theorem [757], every measurable space (𝒳 ,f(𝒳 ),f0(𝒳 )) determines a ccb-algebra 𝒜
by 𝒜 := f(𝒳 )/f0(𝒳 ), and, in particular, every measure space (𝒳 ,f(𝒳 ), �̃�) determines a ccb-algebra

𝒜�̃� := f(𝒳 )/f�̃�(𝒳 ) = f(𝒳 )/{𝒴 ∈ f(𝒳 ) | �̃�(𝒴) = 0}, (32)

and a measure algebra (𝒜�̃�, 𝜇), with

𝜇([𝒵]𝒜�̃�) := �̃�(𝒵) ∀𝒵 ∈ f(𝒳 ), (33)

8



where the map f(𝒳 ) ∋ 𝒵 ↦→ [𝒵]𝒜�̃� ∈ 𝒜�̃� is defined by (32), and is sequentially order contin-
uous. On the other hand, for every ccb-algebra 𝒜 the Loomis–Sikorski theorem [468, 683] pro-
vides an explicit construction of a measurable space (spS(𝒜),fLS(spS(𝒜)),f0

LS(spS(𝒜))), such that
fLS(spS(𝒜))/f0

LS(spS(𝒜)) is boolean isomorphic to 𝒜.4 As a consequence, one can show that for
every measure algebra (𝒜, 𝜇) there exists a measure preserving isomorphism to a measure algebra
of some measure space. By Kelley–Namioka theorem [387], the measure space is localisable iff the
corresponding ccb-algebra is an mcb-algebra.

A function 𝑓 : 𝒳 → R is called �̃�-simple iff 𝑓 =
∑︀𝑛

𝑖=1 𝜆𝑖𝜒𝒴𝑖 , where 𝑛 ∈ N, {𝜆𝑖} ⊆ R, {𝒴𝑖} ⊆ 𝒳
are f(𝒳 )-measurable sets with �̃�(𝒴𝑖) < ∞, and 𝜒𝒴𝑖 are characteristic functions of 𝒴𝑖. A �̃�-integral
of a �̃�-simple 𝑓 is defined as

∫︀
�̃�𝑓 :=

∑︀𝑛
𝑖=1 𝜆𝑖𝜇(𝒴𝑖). A function 𝑓 : 𝒳 → R is called �̃�-integrable iff

𝑓 = 𝑓𝑎 − 𝑓𝑏, where 𝑓𝑜 ∈ {𝑓𝑎, 𝑓𝑏} satisfy

1) 𝒳 ∖ dom𝑓𝑜 is �̃�-null,

2) 𝑓𝑜(x ) ∈ R+ ∀x ∈ dom𝑓𝑜,

3) there exists a nondecreasing sequence {𝑓𝑖} of simple functions 𝑓𝑖 : 𝒳 → R+ such that sup𝑖{
∫︀
�̃�𝑓𝑖} <

∞ and lim𝑖→∞ 𝑓𝑖(x ) = 𝑓𝑜(x ) holds �̃�-almost everywhere.

A �̃�-integral of �̃�-integrable 𝑓 is defined as
∫︀
�̃�𝑓 :=

∫︀
�̃�𝑓𝑎−

∫︀
�̃�𝑓𝑏. If (𝒳 ,f(𝒳 ), �̃�) is a measure space,

then the set of functions 𝑓 : 𝒳 → R such that

i) 𝒳 ∖ dom𝑓 is �̃�-null,

ii) ∃𝒴 ⊆ 𝒳 such that 𝒳 ∖ 𝒴 is �̃�-null and 𝑓 |𝒴 is f𝒳 (𝒴)-measurable,

is denoted by ℒ0(𝒳 ,f(𝒳 ), �̃�). A space ℒ∞(𝒳 ,f(𝒳 ), �̃�) is defined as a set of 𝑓 ∈ ℒ0(𝒳 ,f(𝒳 ), �̃�) such
that

∃𝜆 ≥ 0 𝒳 ∖ {x ∈ dom𝑓 | |𝑓(x )| ≤ 𝜆} ∈ null(𝒳 ,f(𝒳 ), �̃�). (34)

A space ℒ𝑝(𝒳 ,f(𝒳 ), �̃�), for 𝑝 ∈ ]1,∞[, is defined as a set of all 𝑓 ∈ ℒ0(𝒳 ,f(𝒳 ), �̃�) such that |𝑓 |𝑝 is
�̃�-integrable. For 𝑝 ∈ [1,∞] ∪ {0} [621, 599, 237]

𝐿𝑝(𝒳 ,f(𝒳 ), �̃�) := ℒ𝑝(𝒳 ,f(𝒳 ), �̃�)/ =�̃�, (35)

where =�̃� is an equivalence relation on elements of ℒ0(𝒳 ,f(𝒳 ), �̃�) such that 𝑓1 =�̃� 𝑓2 iff 𝑓1 = 𝑓2 holds
�̃�-almost everywhere.

Every 𝐿𝑝(𝒳 ,f(𝒳 ), �̃�) space for 𝑝 ∈ [1,∞[ is a Banach lattice that is isometrically Riesz isomorphic
to 𝐿𝑝(𝒜�̃�, 𝜇) with (𝒜�̃�, 𝜇) determined by (32) and (33). All mutually isometrically Riesz isomorphic
𝐿𝑝(𝒳 ,f(𝒳 ), �̃�) spaces constructed over various measure spaces (𝒳 ,f(𝒳 ), �̃�) can be identified with
a single 𝐿𝑝(𝒜, 𝜇) space, with 𝒜 ∼= f(𝒳 )/f�̃�(𝒳 ) and 𝜇([·]𝒜) = �̃�. Finally, for any (𝒳 ,f(𝒳 ), �̃�) one
has an isometric Riesz isomorphism 𝐿∞(𝒳 ,f(𝒳 ), �̃�) ∼= 𝐿∞(f(𝒳 )/f�̃�(𝒳 )) ∼= 𝐿∞(𝒜). The restriction
of validity of isometric isomorphism 𝐿1(𝒜, 𝜇)⋆ ∼= 𝐿∞(𝒜) to localisable measure algebras (𝒜, 𝜇) is
equivalent with restriction of validity of the Steinhaus–Nikodým theorem [688, 538] 𝐿1(𝒳 ,f(𝒳 ), �̃�) ∼=
𝐿∞(𝒳 ,f(𝒳 ), �̃�) to localisable measure spaces, which was established by Segal [658]. The relationships
between Riesz lattice theoretic, boolean algebra theoretic, and measure space theoretic approaches to
integration theory can be summarised by the following theorem: [the categories of (1)(2)(3)
are equivalent]. For a detailed discussion see [404] and [262].

The key role played by mcb-algebras in the BKN theorem and the above equivalences suggests that
it might be possible to deal with Banach lattice isomorphic 𝐿𝑝(𝒜, 𝜇) spaces for 𝑝 ∈ [1,∞] without
specifying any particular measure 𝜇 ∈ 𝒲0(𝒜) associated with a given mcb-algebra 𝒜. In what follows,

4The Stone spectrum [693] of a boolean algebra 𝒜 is defined as a set spS(𝒜) of nonzero boolean homomorphisms from
𝒜 to 2, spS(𝒜) := HomB(𝒜,2) ∖ {0}, equipped with a topology of open sets given by {𝒴 ⊆ spS(𝒜) | ∀x ∈ 𝒴 ∃𝑥 ∈ 𝒜 x ∈
�̂� ⊆ 𝒴}, where ·̂ : 𝒜 → HomTop(spS(𝒜),2) is the Stone representation map defined by �̂� := {x ∈ spS(𝒜) | x (𝑥) = 1}.
The set {�̂� ⊆ spS(𝒜) | 𝑥 ∈ 𝒜} consists of all subsets of spS(𝒜) that are open and closed, and is boolean isomorphic to
𝒜. The algebra fLS(spS(𝒜)) consists of all open-and-closed subsets of spS(𝒜), while the ideal f0

LS(spS(𝒜)) consists of
all subsets of spS(𝒜) that are unions of sequences of such subsets 𝒴 ⊆ spS(𝒜) that int(𝒴) = ∅.
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we will construct a family of canonical 𝐿𝑝(𝒜) spaces that are associated functorially to mcb-algebras
𝒜. This construction is new for 𝑝 ∈ [1,∞[, and it is aimed to provide a commutative counterpart
to the Kosaki and Falcone–Takesaki constructions of canonical noncommutative 𝐿𝑝(𝒩 ) spaces. In
principle, one could try to define the space 𝐿𝑝(𝒜) as an equivalence class of 𝐿𝑝(𝒜, 𝜇) spaces divided by
the isometric Riesz isomorphisms generated by varying 𝜇 within 𝒲0(𝒜). However, this would remove
too much structure, making category theoretic description inapplicable (or less applicable). Hence,
instead of ‘isomorphism invariant’ definition, we will provide ‘isomorphism covariant’ construction,
which follows the ideas of Neveu [534] and Zhu [788]. This will enable us to provide an explicit
description of the relationship between the canonical integration theory and the commutative case of
canonical noncommutative integration theory, without passing to representations in terms of measure
algebras or measure spaces.

For any countably additive measures 𝜇1, 𝜇2 on a ccb-algebra 𝒜, 𝜇1 is called: absolutely contin-
uous with respect to 𝜇2 (denoted by 𝜇1 ≪ 𝜇2) iff

∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥 ∈ 𝒜 𝜇2(𝑥) ≤ 𝜖2 ⇒ 𝜇1(𝑥) ≤ 𝜖1, (36)

or, equivalently, iff
𝜇2(𝑥) = 0 ⇒ 𝜇1(𝑥) = 0 ∀𝑥 ∈ 𝒜; (37)

compatible [448] with 𝜇2 iff

∀𝑥 ∈ 𝒜 0 < 𝜇1(𝑥) <∞ ⇒ (∃𝑦 ∈ 𝒜 𝑦 ≤ 𝑥, 𝜇1(𝑦) > 0, 𝜇2(𝑦) <∞). (38)

If 𝜇1, 𝜇2 ∈ 𝒲0(𝒜), then 𝜇1 ≪ 𝜇2 ≪ 𝜇1. If 𝑓 ∈ 𝐿1(𝒜, 𝜇) and 𝑥 ∈ 𝒜, then∫︁
𝑥
𝜇𝑓 :=

∫︁ ∞

0
d𝜆𝜇(𝑥 ∧ 𝑓(𝜆)). (39)

If 𝒜 is an mcb-algebra and 𝜇1, 𝜇2 ∈ 𝒲(𝒜), then the Segal–Lewin–Lewin theorem [658, 448] (see also
[783, 494, 386, 746, 138]) states that for 𝜇2 ≪ 𝜇1 and 𝜇2 compatible with 𝜇1

∃!𝑓 ∈ 𝐿1(𝒜, 𝜇1) ∀𝑥 ∈ 𝒜 𝜇2(𝑥) =

∫︁
𝑥
𝜇1𝑓. (40)

Such 𝑓 will be called a Radon–Nikodým quotient and denoted by 𝜇2
𝜇1

. This theorem is a generalisa-
tion of the Lebesgue–Radon–Daniell–Nikodým theorem [439, 599, 198, 537] (which holds for countably
additive finite measures). For 𝜇1, 𝜇2 ∈ 𝒲0(𝒜) the compatibility of 𝜇1 with 𝜇2 is equivalent with

∀𝑥 ∈ 𝒜𝜇1 ∃𝒜 ∋ 𝑦 ≤ 𝑥 𝑦 ∈ 𝒜𝜇2 . (41)

If 𝜇1, 𝜇2, 𝜇3 ∈ 𝒲0(𝒜) are mutually compatible, then their Radon–Nikodým quotients satisfy 𝜇1
𝜇2

𝜇2
𝜇3

= 𝜇1
𝜇3

and (︂
𝜇𝑖
𝜇𝑗

)︂−1

=

(︂
𝜇𝑗
𝜇𝑖

)︂
∀𝑖, 𝑗 ∈ {1, 2, 3}. (42)

As a consequence, for 𝛾 ∈ ]0, 1], 𝜇1, 𝜇2 ∈ 𝒲0(𝒜) such that 𝜇1 and 𝜇2 are mutually compatible,
𝑓1 ∈ 𝐿1/𝛾(𝒜, 𝜇1), 𝑓2 ∈ 𝐿1/𝛾(𝒜, 𝜇2), the formula

(𝑓1, 𝜇1) ∼1/𝛾 (𝑓2, 𝜇2) : ⇐⇒ 𝑓1 = 𝑓2

(︂
𝜇2
𝜇1

)︂1/𝛾

(43)

determines an equivalence relation on 𝐿0(𝒜)×𝒲0(𝒜), which defines the family of equivalence classes

{𝑓𝜇𝛾 := (𝑓, 𝜇)/ ∼1/𝛾 | 𝜇 ∈ 𝒲0(𝒜), 𝑓 ∈ 𝐿1/𝛾(𝒜, 𝜇)}. (44)
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Let 𝐿1/𝛾(𝒜) denote the set {𝑓𝜇𝛾 | 𝜇 ∈ 𝒲0(𝒜), 𝑓 ∈ 𝐿1/𝛾(𝒜, 𝜇)} equipped with the operations

𝑓1𝜇
𝛾
1 + 𝑓2𝜇

𝛾
2 :=

(︂
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾
+ 𝑓2

(︂
𝜇2
𝜇4

)︂𝛾)︂
𝜇𝛾4 , (45)

𝜆(𝑓𝜇𝛾) := (𝜆𝑓)𝜇𝛾 , (46)

||𝑓𝜇𝛾 ||1/𝛾 :=

(︂∫︁
𝜇|𝑓 |1/𝛾

)︂𝛾
, (47)

𝑓1𝜇
𝛾
1 ∧ 𝑓2𝜇

𝛾
2 :=

(︂
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾
∧ 𝑓2

(︂
𝜇2
𝜇4

)︂𝛾)︂
𝜇𝛾4 , (48)

𝑓1𝜇
𝛾
1 ∨ 𝑓2𝜇

𝛾
2 :=

(︂
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾
∨ 𝑓2

(︂
𝜇2
𝜇4

)︂𝛾)︂
𝜇𝛾4 , (49)

where 𝜇4 ∈ 𝒲0(𝒜) is an arbitrary element of 𝒲0(𝒜) providing representation of an equivalence class
𝑓𝜇𝛾 (hence, it is compatible with 𝜇1, 𝜇2 ∈ 𝒲0(𝒜)).

Proposition 2.1. 𝐿1/𝛾(𝒜) is an abstract 𝐿1/𝛾 space for 𝛾 ∈ ]0, 1].

Proof. We need to check that 𝐿1/𝛾(𝒜) satisfies the following properties: 1) it is a lattice; 2) it is a
vector space over R; 3) 𝑥 ≤ 𝑦 ⇒ 𝑥+ 𝑧 ≤ 𝑦+ 𝑧; 4) 𝑥 ≥ 0 ⇒ 𝜆𝑥 ≥ 0 ∀𝜆 ≥ 0; 5) |𝑥| ≤ |𝑦| ⇒ ||𝑥|| ≤ ||𝑦||; 6)
||·||1/𝛾 is a norm; 7) it is Cauchy complete in ||·||1/𝛾 ; 8) |𝑥| ∧ |𝑦| = 0 ⇒ ||𝑥+ 𝑦||1/𝛾1/𝛾 = ||𝑥||1/𝛾1/𝛾 + ||𝑦||1/𝛾1/𝛾 . We
begin by noting that 2) follows directly from (45), (46) and the vector space structure of 𝐿1/𝛾(𝒜, 𝜇),
6) and 7) follow directly from 2), (47) and the Banach space structure of 𝐿1/𝛾(𝒜, 𝜇), while 1) follows
directly from (48), (49) and the lattice structure of 𝐿1/𝛾(𝒜, 𝜇). Hence, it remains to prove 3), 4), 5),
and 8).

3) 𝑓1𝜇
𝛾
1 ≤ 𝑓2𝜇

𝛾
2 ⇐⇒ 𝑓1

(︁
𝜇1
𝜇4

)︁𝛾
𝜇𝛾4 ≤ 𝑓2

(︁
𝜇2
𝜇4

)︁𝛾
𝜇𝛾4 ,

so 𝑓1𝜇
𝛾
1 + 𝑓3𝜇

𝛾
3 = 𝑓1

(︁
𝜇1
𝜇4

)︁𝛾
𝜇𝛾4 + 𝑓3

(︁
𝜇3
𝜇4

)︁𝛾
𝜇𝛾4 ≤ 𝑓2

(︁
𝜇2
𝜇4

)︁𝛾
𝜇𝛾4 + 𝑓3

(︁
𝜇3
𝜇4

)︁𝛾
𝜇𝛾4 = 𝑓2𝜇

𝛾
2 + 𝑓2𝜇

𝛾
3 .

4) 𝑓𝜇𝛾 ≥ 0 ⇐⇒ 𝑓 ≥ 0 ⇒ 𝜆𝑓 ≥ 0 ⇐⇒ (𝜆𝑓)𝜇𝛾 ≥ 0 ⇐⇒ 𝜆(𝑓𝜇𝛾) ≥ 0.

5) Using the f-algebra structure of 𝐿1/𝛾(𝒜, 𝜇4), we obtain

|𝑓𝜇𝛾 | = (𝑓𝜇𝛾) ∨ (−𝑓𝜇𝛾) =

(︂
𝑓

(︂
𝜇

𝜇4

)︂𝛾
∨ −𝑓

(︂
𝜇

𝜇4

)︂𝛾)︂
𝜇𝛾4 =

⃒⃒⃒⃒
𝑓

(︂
𝜇

𝜇4

)︂𝛾 ⃒⃒⃒⃒
𝜇𝛾4 . (50)

This allows us to write

|𝑓1𝜇𝛾1 | ≤ |𝑓2𝜇𝛾2 |, (51)⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒
𝜇𝛾4 ≤

⃒⃒⃒⃒
𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒
𝜇𝛾4 , (52)(︂⃒⃒⃒⃒

𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒
−
⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒)︂
𝜇𝛾4 ≥ 0, (53)⃒⃒⃒⃒

𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒
≥
⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒
, (54)⃒⃒⃒⃒⃒⃒⃒⃒

𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒⃒⃒⃒⃒
≥
⃒⃒⃒⃒⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒⃒⃒⃒⃒
, (55)(︃∫︁

𝜇4

⃒⃒⃒⃒
𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒1/𝛾)︃𝛾
≥

(︃∫︁
𝜇4

⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒1/𝛾)︃𝛾
, (56)(︂∫︁

𝜇2|𝑓2|1/𝛾
)︂𝛾

≥
(︂∫︁

𝜇1|𝑓1|1/𝛾
)︂𝛾

, (57)

||𝑓2𝜇𝛾2 ||1/𝛾 ≥ ||𝑓1𝜇𝛾1 ||1/𝛾 . (58)
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8) We have

||𝑓1𝜇𝛾1 + 𝑓2𝜇
𝛾
2 ||

1/𝛾
1/𝛾 = ||𝑓1 + 𝑓2||1/𝛾1/𝛾 , (59)

||𝑓1𝜇𝛾1 ||
1/𝛾
1/𝛾 + ||𝑓2𝜇𝛾2 ||

1/𝛾
1/𝛾 = ||𝑓1||1/𝛾1/𝛾 + ||𝑓2||1/𝛾1/𝛾 . (60)

In order to prove |𝑓1𝜇𝛾1 | ∧ |𝑓2𝜇𝛾2 | = 0 ⇐⇒ |𝑓1| ∧ |𝑓2| = 0, we need to use (𝑥 ∧ 𝑦 = 0, 𝑧 ≥ 0) ⇒
(𝑥 · 𝑧) ∧ 𝑦 = 0 in 𝐿1/𝛾(𝒜, 𝜇4), and the positivity of Radon–Nikodým quotient, which gives us

0 = |𝑓1𝜇𝛾1 | ∧ |𝑓2𝜇𝛾2 | =

⃒⃒⃒⃒
𝑓1

(︂
𝜇1
𝜇4

)︂𝛾 ⃒⃒⃒⃒
𝜇𝛾4 ∧

⃒⃒⃒⃒
𝑓2

(︂
𝜇2
𝜇4

)︂𝛾 ⃒⃒⃒⃒
𝜇𝛾4 ⇐⇒ (61)

0 =

⃒⃒⃒⃒
⃒𝑓1
(︂
𝜇1
𝜇4

)︂𝛾 (︃(︂𝜇1
𝜇4

)︂−1
)︃𝛾 ⃒⃒⃒⃒
⃒𝜇𝛾4 ∧

⃒⃒⃒⃒
⃒𝑓2
(︂
𝜇2
𝜇4

)︂𝛾 (︃(︂𝜇2
𝜇4

)︂−1
)︃𝛾 ⃒⃒⃒⃒
⃒𝜇𝛾4 = (|𝑓1| ∧ |𝑓2|)𝜇𝛾4 ⇐⇒ (62)

0 = |𝑓1| ∧ |𝑓2|. (63)

Thus, an abstract 𝐿1/𝛾 space structure of 𝐿1/𝛾(𝒜) follows from an abstract 𝐿1/𝛾 space structure of
𝐿1/𝛾(𝒜, 𝜇4) for 𝜇4 ∈ 𝒲0(𝒜).

Hence, every mcb-algebra 𝒜 allows to construct a family of canonical commutative 𝐿𝑝(𝒜) spaces
over 𝒜, with 𝑝 ∈ [1,∞], which are abstract 𝐿𝑝 spaces and do not depend on the choice of measure
on 𝒜. This assignment is functorial, with boolean homomorphisms 𝑓 : 𝒜1 → 𝒜2 mapped to the unit
preserving Riesz homomorphisms ̃︀𝑓 : 𝐿𝑝(𝒜1) → 𝐿𝑝(𝒜2), and with boolean isomorphisms mapped to
the unit preserving Riesz isomorphisms.

Proposition 2.2. The map [·]𝜇 : 𝐿1/𝛾(𝒜) ∋ 𝑥𝜇𝛾 ↦→ 𝑥 ∈ 𝐿1/𝛾(𝒜, 𝜇) is an isometric Riesz isomorphism.

Proof. Linearity follows from (45) and (46), isometry follows from (47), while the property [|𝑥|]𝜇 =
|[𝑥]𝜇| follows from (50).

Hence, for 𝜇 ∈ 𝒲0(𝒜) the function [·]𝜇 provides an isometrically Riesz isomorphic representation
of 𝐿1/𝛾(𝒜) space in terms of the 𝐿1/𝛾(𝒜, 𝜇) space.

Corollary 2.3. For any mcb-algebra 𝒜 there exists a bijective Riesz homomorphism 𝐿1(𝒜) ∼= eval(𝒜),
and the diagram

𝐿1(𝒜)+0
� � //

� _

��

𝒲0(𝒜)� _

��
𝐿1(𝒜)+ �

� //𝒲(𝒜)

(64)

commutes.

This is a strict analogue of (68) for mcb-algebras. Moreover, if 𝜇1, 𝜇2 ∈ 𝒲0(𝒜) and 𝜇1 is compatible
with 𝜇2, then

∫︀
𝜇1𝑓 =

∫︀
𝜇2

𝜇1
𝜇2
𝑓 ∀𝑓 ∈ 𝐿1(𝒜, 𝜇1). This allows us to define a canonical integral,∫︁

: 𝐿1(𝒜) ∋ 𝑥 ↦→
∫︁
𝑥 :=

∫︁
𝜇𝑓 ∈ R, (65)

where [𝑥]𝜇 = 𝑓 ∈ 𝐿1(𝒜, 𝜇), which is independent of the choice of an arbitrary 𝜇 ∈ 𝒲0(𝒜). As a result,
we obtain a bilinear functional

𝐿1/𝛾(𝒜) × 𝐿1/(1−𝛾)(𝒜) ∋ (𝑥, 𝑦) ↦→
∫︁
𝑥𝑦 =

∫︁
𝑦𝑥 ∈ R, (66)

which sets up a canonical Banach space duality between 𝐿1/𝛾(𝒜) and 𝐿1/(1−𝛾)(𝒜) spaces for 𝛾 ∈ ]0, 1],
and satisfies ||𝑥||1/𝛾 = (

∫︀
|𝑥|1/𝛾)𝛾 .
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2.2 Integration on 𝑊 *-algebras

A 𝐶*-algebra is a Banach space 𝒞 over C with unit I that is also an algebra over C and is equipped
with an operation * : 𝒞 → 𝒞 satisfying (𝑥𝑦)* = 𝑦*𝑥*, (𝑥 + 𝑦)* = 𝑥* + 𝑦*, 𝑥** = 𝑥, (𝜆𝑥)* = 𝜆*𝑥*,
and ||𝑥*𝑥|| = ||𝑥||2, where 𝜆* is a complex conjugation of 𝜆 ∈ C. A 𝑊 *-algebra is defined as such
𝐶*-algebra that has a Banach predual. If a predual of 𝐶*-algebra exists then it is unique. Given a
𝑊 *-algebra 𝒩 , we will denote its predual by 𝒩⋆. Moreover, 𝒩+

⋆ := {𝜑 ∈ 𝒩⋆ | 𝜑(𝑥*𝑥) ≥ 0 ∀𝑥 ∈ 𝒩},
𝒩+
⋆0 := {𝜑 ∈ 𝒩+

⋆ | 𝜔(𝑥*𝑥) = 0 ⇒ 𝑥 = 0 ∀𝑥 ∈ 𝒩}, 𝒩+
⋆1 := {𝜑 ∈ 𝒩+

⋆ | ||𝜑|| = 1}, 𝒩 sa :=
{𝑥 ∈ 𝒩 | 𝑥* = 𝑥}, 𝒩+ := {𝑥 ∈ 𝒩 | ∃𝑦 ∈ 𝒩 𝑥 = 𝑦*𝑦}, Proj(𝒩 ) := {𝑥 ∈ 𝒩 sa | 𝑥𝑥 = 𝑥}.
An element 𝑥 ∈ 𝒩 is called: partial isometry iff 𝑥*𝑥 ∈ Proj(𝒩 ); absolute value of 𝑦 ∈ 𝒩 ,
denoted 𝑥 = |𝑦|, iff 𝑦*𝑦 = 𝑥2. The elements of 𝒩+

⋆ will be called quantum states or states. For
𝒩 = B(ℋ), where B(ℋ) is defined as the space of all bounded linear operators on the Hilbert space
ℋ, 𝒩⋆ = G1(ℋ) := {𝑥 ∈ B(ℋ) | ||𝑥||G1(ℋ) := tr(

√
𝑥*𝑥) < ∞}. If (𝒳 ,f(𝒳 ), �̃�) is a localisable

measure space, then 𝐿∞(𝒳 ,f(𝒳 ), �̃�) is a commutative 𝑊 *-algebra, and 𝐿1(𝒳 ,f(𝒳 ), �̃�) is its predual.
Every commutative 𝑊 *-algebra can be represented in this form. This indicates how the theory of
𝑊 *-algebras generalises both the localisable measure theory and the theory of bounded operators over
Hilbert spaces.

A weight on a 𝑊 *-algebra 𝒩 is defined as a function 𝜔 : 𝒩+ → [0,+∞] such that 𝜔(0) = 0,
𝜔(𝑥+ 𝑦) = 𝜔(𝑥) + 𝜔(𝑦), and 𝜆 ≥ 0 ⇒ 𝜔(𝜆𝑥) = 𝜆𝜔(𝑥), with the convention 0 · (+∞) = 0. A weight is
called: faithful iff 𝜔(𝑥) = 0 ⇒ 𝑥 = 0; finite iff 𝜔(I) <∞; semi-finite iff a left ideal in 𝒩 given by

n𝜑 := {𝑥 ∈ 𝒩 | 𝜑(𝑥*𝑥) <∞} (67)

is weakly-⋆ dense in 𝒩 ; trace iff 𝜔(𝑥𝑥*) = 𝜔(𝑥*𝑥) ∀𝑥 ∈ 𝒩 ; normal iff 𝜔(sup{𝑥𝜄}) = sup{𝜔(𝑥𝜄)}
for any uniformly bounded increasing net {𝑥𝜄} ⊆ 𝒩+. A space of all normal semi-finite weights on a
𝑊 *-algebra 𝒩 is denoted 𝒲(𝒩 ), while the subset of all faithful elements of 𝒲(𝒩 ) is denoted 𝒲0(𝒩 ).
Every state is a finite normal weight, and every faithful state is a finite faithful normal state, hence
the diagram

𝒩+
⋆0
� � //
� _

��

𝒲0(𝒩 )� _

��
𝒩+
⋆
� � //𝒲(𝒩 )

(68)

commutes. The domain of a weight 𝜔 can be extended by linearity to the topological *-algebra

m𝜔 := spanC{𝑥*𝑦 | 𝑥, 𝑦 ∈ 𝒩 , 𝜔(𝑥*𝑥) <∞, 𝜔(𝑦*𝑦) <∞} = spanC{𝑥 ∈ 𝒩+ | 𝜔(𝑥) <∞} ⊆ 𝒩 , (69)

while 𝜔 can be extended to a positive linear functional on m𝜔, which coincides with 𝜔 on m𝜔 ∩𝒩+.
𝑊 *-algebras for which there exists at least one faithful normal state are called countably finite,

while these for which there exists at least one faithful normal semi-finite trace are called semi-finite.
Every 𝑊 *-algebra admits at least one faithful normal semi-finite weight. A 𝑊 *-algebra is called: type
I iff it is *-isomorphic to B(ℋ) for some Hilbert space ℋ; type III iff it is not semi-finite; type II iff
it is neither type I nor type III.

For 𝜓 ∈ 𝒲(𝒩 ),
supp(𝜓) = I− sup{𝑃 ∈ Proj(𝒩 ) | 𝜓(𝑃 ) = 0}. (70)

For 𝜔, 𝜑 ∈ 𝒩+
⋆ we will write 𝜔 ≪ 𝜑 iff supp(𝜔) ≤ supp(𝜑).5 An element 𝜔 ∈ 𝒩 ⋆+ is faithful iff

supp(𝜔) = I. If 𝜑 is a normal weight on a 𝑊 *-algebra 𝒩 (which includes 𝜔 ∈ 𝒩+
⋆ as a special case),

then the restriction of 𝜑 to a reduced 𝑊 *-algebra,

𝒩supp(𝜑) := {𝑥 ∈ 𝒩 | supp(𝜑)𝑥 = 𝑥 = 𝑥 supp(𝜑)} =
⋃︁
𝑥∈𝒩

{supp(𝜑)𝑥 supp(𝜑)}, (71)

5If 𝒩 = B(ℋ) and 𝜔 = tr(𝜌𝜔·) for 𝜌𝜔 ∈ G1(ℋ)+, then supp(𝜔) = ran(𝜌𝜔), so for any 𝜑 = tr(𝜌𝜑·) with 𝜌𝜑 ∈ G1(ℋ)+

one has 𝜔 ≪ 𝜑 iff ran(𝜌𝜔) ⊆ ran(𝜌𝜑).
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is a faithful normal weight (respectively, an element of (𝒩supp(𝜑))
+
⋆0). If 𝜑 is semi-finite, then 𝜑|𝒩 supp(𝜑) ∈

𝒲0(𝒩supp(𝜑)). Hence, given 𝜓 ∈ 𝒲(𝒩 ) and 𝑃 ∈ Proj(𝒩 ), 𝑃 = supp(𝜓) iff 𝜓|𝒩𝑃 ∈ 𝒲0(𝒩𝑃 )
and 𝜓(𝑃 ) = 𝜓(𝑃𝑥𝑃 ) ∀𝑥 ∈ 𝒩+. In particular, for 𝜔, 𝜑 ∈ 𝒩+

⋆ and 𝜔 ≪ 𝜑, we have 𝜔|𝒩supp(𝜑)
∈

𝒲0(𝒩supp(𝜑)).
A *-homomorphism of 𝐶*-algebras 𝒞1 and 𝒞2 is defined as a map 𝜍 : 𝒞1 → 𝒞2 such that

𝜍(𝜆1𝑥1 + 𝜆2𝑥2) = 𝜆1𝜍(𝑥1) + 𝜆2𝜍(𝑥2), 𝜍(𝑥1𝑥2) = 𝜍(𝑥1)𝜍(𝑥2), 𝜍(𝑥*) = 𝜍(𝑥)* for all 𝑥, 𝑥1, 𝑥2 ∈ 𝒞1. A
*-homomorphism 𝜍 : 𝒞1 → 𝒞2 of 𝐶*-algebras 𝒞1 and 𝒞2 is called: unital iff 𝜍(I) = I; a *-isomorphism
iff 0 = ker(𝜍) := {𝑥 ∈ 𝒞1 | 𝜍(𝑥) = 0}. A representation of a 𝐶*-algebra 𝒞 is defined as a pair (ℋ, 𝜋)
of a Hilbert space ℋ and a *-homomorphism 𝜋 : 𝒞 → B(ℋ). A representation 𝜋 : 𝒞 → B(ℋ) is called:
nondegenerate iff {𝜋(𝑥)𝜉 | (𝑥, 𝜉) ∈ 𝒞 ×ℋ} is dense in ℋ; normal iff it is continuous with respect to
the weak-⋆ topologies of 𝒞 and B(ℋ); faithful iff ker(𝜋) = {0}. An element 𝜉 ∈ ℋ is called cyclic for
a 𝐶*-algebra 𝒞 ⊆ B(ℋ) iff 𝒞𝜉 :=

⋃︀
𝑥∈𝒞{𝑥𝜉} is norm dense in B(ℋ). A representation 𝜋 : 𝒞 → B(ℋ)

of a 𝐶*-algebra 𝒞 is called cyclic iff there exists Ω ∈ ℋ that is cyclic for 𝜋(𝒞). According to the
Gel’fand–Năımark–Segal theorem [274, 657] for every pair (𝒞, 𝜔) of a 𝐶*-algebra 𝒞 and 𝜔 ∈ 𝒞⋆+ there
exists a triple (ℋ𝜔, 𝜋𝜔,Ω𝜔) of a Hilbert space ℋ𝜔 and a cyclic representation 𝜋𝜔 : 𝒞 → B(ℋ) with a
cyclic vector Ω𝜔 ∈ ℋ𝜔, and this triple is unique up to unitary equivalence. It is constructed as follows.
For a 𝐶*-algebra 𝒞 and 𝜔 ∈ 𝒞⋆+, one defines the scalar form ⟨·, ·⟩𝜔 on 𝒞,

⟨𝑥, 𝑦⟩𝜔 := 𝜔(𝑥*𝑦) ∀𝑥, 𝑦 ∈ 𝒞, (72)

and the Gel’fand ideal

ℐ𝜔 := {𝑥 ∈ 𝒞 | 𝜔(𝑥*𝑥) = 0} = {𝑥 ∈ 𝒞 | 𝜔(𝑥*𝑦) = 0 ∀𝑦 ∈ 𝒞}, (73)

which is a left ideal of 𝒞, closed in the norm topology (it is also closed in the weak-⋆ topology if
𝜔 ∈ 𝒞⋆+⋆ ). The form ⟨·, ·⟩𝜔 is hermitean on 𝒞 and it becomes a scalar product ⟨·, ·⟩𝜔 on 𝒞/ℐ𝜔. The
Hilbert space ℋ𝜔 is obtained by the completion of 𝒞/ℐ𝜔 in the topology of norm generated by ⟨·, ·⟩𝜔.
Consider the morphisms

[·]𝜔 : 𝒞 ∋ 𝑥 ↦−→ [𝑥]𝜔 ∈ 𝒞/ℐ𝜔, (74)
𝜋𝜔(𝑦) : [𝑦]𝜔 ↦−→ [𝑥𝑦]𝜔. (75)

The element 𝜔 ∈ 𝒞⋆+ is uniquely represented in terms of ℋ𝜔 by the vector [I]𝜔 =: Ω𝜔 ∈ ℋ𝜔, which is
cyclic for 𝜋𝜔(𝒞) and satisfies ||Ω𝜔|| = ||𝜔||. Hence

𝜔(𝑥) = ⟨Ω𝜔, 𝜋𝜔(𝑥)Ω𝜔⟩𝜔 ∀𝑥 ∈ 𝒞, (76)

An analogue of this theorem for weights follows the similar construction, but lacks cyclicity. If 𝒩 is a
𝑊 *-algebra, and 𝜔 is a weight on 𝒩 , then there exists the Hilbert space ℋ𝜔, defined as the completion
of n𝜔/ ker(𝜔) in the topology of a norm generated by the scalar product ⟨·, ·⟩𝜔 : n𝜔 × n𝜔 ∋ (𝑥, 𝑦) ↦→
𝜔(𝑥*𝑦) ∈ C,

ℋ𝜔 := n𝜔/ ker(𝜔) = {𝑥 ∈ 𝒩 | 𝜔(𝑥*𝑥) <∞}/{𝑥 ∈ 𝒩 | 𝜔(𝑥*𝑥) = 0} = n𝜔/ℐ𝜔, (77)

and there exist the maps

[·]𝜔 : n𝜔 ∋ 𝑥 ↦→ [𝑥]𝜔 ∈ ℋ𝜔, (78)
𝜋𝜔 : 𝒩 ∋ 𝑥 ↦→ ([𝑦]𝜔 ↦→ [𝑥𝑦]𝜔) ∈ B(ℋ𝜔), (79)

such that [·]𝜔 is linear, ran([·]𝜔) is dense in ℋ𝜔, and (ℋ𝜔, 𝜋𝜔) is a representation of 𝒩 . If 𝜔 ∈ 𝒲(𝒩 )
then (ℋ𝜔, 𝜋𝜔) is nondegenerate and normal. It is also faithful if 𝜔 ∈ 𝒲0(𝒩 ).

The commutant of a subalgebra 𝒩 of any algebra 𝒞 is defined as

𝒩 ∙ := {𝑦 ∈ 𝒞 | 𝑥𝑦 = 𝑦𝑥 ∀𝑥 ∈ 𝒩}, (80)

while the center of 𝒩 is defined as Z𝒩 := 𝒩 ∩ 𝒩 ∙. A unital *-subalgebra 𝒩 of an algebra B(ℋ)
is called: a factor iff Z𝒩 = CI; the von Neumann algebra [750, 514] iff 𝒩 = 𝒩 ∙∙. An image
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𝜋(𝒩 ) of any representation (ℋ, 𝜋) of a 𝑊 *-algebra 𝒩 is a von Neumann algebra iff 𝜋 is normal and
nondegenerate.

A subspace 𝒟 ⊆ ℋ of a complex Hilbert space ℋ is called a cone iff 𝜆𝜉 ∈ 𝒟 ∀𝜉 ∈ 𝒟 ∀𝜆 ≥ 0. A
cone 𝒟 ⊆ ℋ is called self-polar iff

𝒟 = {𝜁 ∈ ℋ | ⟨𝜉, 𝜁⟩ℋ ≥ 0 ∀𝜉 ∈ 𝒟}. (81)

Every self-polar cone 𝒟 ⊆ ℋ is pointed (𝒟 ∩ (−𝒟) = {0}), spans linearly ℋ (spanC𝒟 = ℋ), and
determines a unique conjugation6 𝐽 in ℋ such that 𝐽𝜉 = 𝜉 ∀𝜉 ∈ ℋ [296], as well as a partial order on
the set ℋsa := {𝜉 ∈ ℋ | 𝐽𝜉 = 𝜉} given by,

𝜉 ≤ 𝜁 ⇐⇒ 𝜉 − 𝜁 ∈ 𝒟 ∀𝜉, 𝜁 ∈ ℋsa. (82)

If 𝒩 is a 𝑊 *-algebra, ℋ is a Hilbert space, ℋ♮ ⊆ ℋ is a self-polar cone, 𝜋 is a nondegenerate faithful
normal representation of 𝒩 on ℋ, and 𝐽 is conjugation on ℋ, then the quadruple (ℋ, 𝜋, 𝐽,ℋ♮) is called
standard representation of 𝒩 and (ℋ, 𝜋(𝒩 ), 𝐽,ℋ♮) is called standard form of 𝒩 iff the conditions
[297]

𝐽𝜋(𝒩 )𝐽 = 𝜋(𝒩 )∙, 𝜉 ∈ ℋ♮ ⇒ 𝐽𝜉 = 𝜉, 𝜋(𝑥)𝐽𝜋(𝑥)𝐽ℋ♮ ⊆ ℋ♮, 𝜋(𝑥) ∈ Z𝜋(𝒩 ) ⇒ 𝐽𝜋(𝑥)𝐽 = 𝜋(𝑥)*.
(83)

hold. For any standard representation

∀𝜑 ∈ 𝒩+
⋆ ∃!𝜉𝜋(𝜑) ∈ ℋ♮ ∀𝑥 ∈ 𝒩 𝜑(𝑥) = ⟨𝜉𝜋(𝜑), 𝜋(𝑥)𝜉𝜋(𝜑)⟩ℋ (84)

holds. The map 𝜉𝜋 : 𝒩+
⋆ → ℋ♮ is order preserving.

For a given 𝑊 *-algebra 𝒩 , 𝜑 ∈ 𝒲(𝒩 ), and 𝜔 ∈ 𝒲0(𝒩 ) the map

𝑅𝜑,𝜔 : [𝑥]𝜔 ↦→ [𝑥*]𝜑 ∀𝑥 ∈ n𝜔 ∩ n*𝜑 (85)

is a densely defined, closable antilinear operator. Its closure admits a unique polar decomposition

𝑅𝜑,𝜔 = 𝐽𝜑,𝜔∆
1/2
𝜑,𝜔, (86)

where 𝐽𝜑,𝜔 is a conjugation operator, called relative modular conjugation, while ∆𝜑,𝜔 is a positive
self-adjoint operator on dom(∆𝜑,𝜔) ⊆ ℋ𝜔 with supp(∆𝜑,𝜔) = supp(𝜑)ℋ𝜔, called a relative modular
operator [33, 166, 217]. We define ∆𝜑 := ∆𝜑,𝜑. If 𝒩 ∼= B(ℋ), 𝜑 = tr(𝜌𝜑 · ), 𝜔 = tr(𝜌𝜔 · ), L𝜌 denotes
left multiplication by 𝜌, R−1

𝜌 denotes right multiplication by 𝜌−1, then ∆𝜑,𝜔 = L𝜌𝜑R
−1
𝜌𝜔 . The relative

modular operators allow to define a one-parameter family of partial isometries in supp(𝜑)𝒩 , called
Connes’ cocycle [165],

R ∋ 𝑡 ↦→ [𝜑 : 𝜔]𝑡 := ∆i𝑡
𝜑,𝜓∆−i𝑡

𝜔,𝜓 = ∆i𝑡
𝜑,𝜔∆−i𝑡

𝜔,𝜔 ∈ supp(𝜑)𝒩 , (87)

where 𝜓 ∈ 𝒲0(𝒩 ) is arbitrary, so it can be set equal to 𝜔. Connes showed that [𝜑 : 𝜔]𝑡 can be
characterised as a canonical object associated to any pair (𝜑, 𝜔) ∈ 𝒲(𝒩 )×𝒲0(𝒩 ) on any 𝑊 *-algebra
𝒩 , independently of any representation. As shown by Araki and Masuda [42] (see also [486]), the
definition of ∆𝜑,𝜔 and [𝜑 : 𝜔]𝑡 can be further extended to the case when 𝜑, 𝜔 ∈ 𝒲(𝒩 ), by means of a
densely defined closable antilinear operator

𝑅𝜑,𝜔 : [𝑥]𝜔 + (I− supp([n𝜑]𝜔))𝜁 ↦→ supp(𝜔)[𝑥*]𝜑 ∀𝑥 ∈ n𝜔 ∩ n*𝜑 ∀𝜁 ∈ ℋ, (88)

where (ℋ, 𝜋, 𝐽,ℋ♮) is a standard representation of a𝑊 *-algebra 𝒩 , and ℋ𝜑 ⊆ ℋ ⊇ ℋ𝜔. For 𝜑, 𝜔 ∈ 𝒩+
⋆

this becomes a closable antilinear operator [40, 396]

𝑅𝜑,𝜔 : 𝑥𝜉𝜋(𝜔) + 𝜁 ↦→ supp(𝜔)𝑥*𝜉𝜋(𝜑) ∀𝑥 ∈ 𝜋(𝒩 ) ∀𝜁 ∈ (𝜋(𝒩 )𝜉𝜋(𝜔))⊥, (89)
6A linear operator 𝐽 : dom(𝐽) → ℋ, where dom(𝐽) ⊆ ℋ, is called a conjugation iff it is antilinear, isometric, and

involutive (𝐽2 = I).
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acting on a dense domain (𝜋(𝒩 )𝜉𝜋(𝜔)) ∪ (𝜋(𝒩 )𝜉𝜋(𝜔))⊥ ⊆ ℋ, where (𝜋(𝒩 )𝜉𝜋(𝜔))⊥ denotes a comple-
ment of the closure in ℋ of the linear span of the action 𝜋(𝒩 ) on 𝜉𝜋(𝜔). In both cases, the relative
modular operator is determined by the polar decomposition of the closure 𝑅𝜑,𝜔 of 𝑅𝜑,𝜔,

∆𝜑,𝜔 := 𝑅*
𝜑,𝜔𝑅𝜑,𝜔. (90)

If (88) or (89) is used instead of (85), then the formula (87) has to be replaced by

R ∋ 𝑡 ↦→ [𝜑 : 𝜔]𝑡supp([n𝜑]𝜓) := ∆i𝑡
𝜑,𝜓∆−i𝑡

𝜔,𝜓, (91)

and [𝜑 : 𝜔]𝑡 is a partial isometry in supp(𝜑)𝒩 supp(𝜔) whenever [supp(𝜑), supp(𝜔)] = 0. For 𝜑, 𝜓 ∈
𝒲0(𝒩 ) Connes’ theorem [164, 165] states that the following conditions are equivalent:

i) ∃𝜆 > 0 𝜓 ≤ 𝜆𝜑,

ii) 𝑥 ∈ n𝜑 ⇒ 𝑥 ∈ n𝜓,

iii) 𝑡 ↦→ [𝜓 : 𝜑]𝑡 can be extended to a map that is valued in 𝒩 , bounded (by 𝜆1/2) and weakly-
⋆ continuous on a strip {𝑧 ∈ C | im(𝑧) ∈ [−1

2 , 0]}, holomorphic in interior of this strip, and
satisfying the boundary condition

𝜓(𝑥) = 𝜑
(︁

[𝜓 : 𝜑]−i/2
*𝑥[𝜓 : 𝜑]−i/2

)︁
∀𝑥 ∈ m𝜓. (92)

This theorem extends to 𝜓 ∈ 𝒲(𝒩 ), with R ∋ 𝑡 ↦→ [𝜓 : 𝜑]𝑡 ∈ supp(𝜓)𝒩 ∀𝑡 ∈ R [396]. Thus, whenever
the condition i) is satisfied, the analytic continuation of Connes’ cocycle

ℎ1/2 = [𝜓 : 𝜑]−i/2 (93)

plays the role of a noncommutative (square root of) Radon–Nikodým quotient.
Recall that any weight on a 𝑊 *-algebra 𝒩 can be uniquely extended to a linear functional on

m𝜑 which coincides with 𝜑 on 𝒩+ ∩ m𝜑. Given a semi-finite trace 𝜏 : 𝒩+ → [0,∞] on a semi-finite
𝑊 *-algebra 𝒩 , its extension to a two-sided ideal m𝜏 of 𝒩 satisfies

𝜏(𝑦𝑥) = 𝜏(𝑥𝑦) ∀𝑥 ∈ m𝜏 ∀𝑦 ∈ 𝒩 . (94)

In addition, if 𝜏 is normal, then for any 𝑥 ∈ m𝜏 the map

𝑦 ↦→ 𝜔𝑥(𝑦) := 𝜏(𝑥𝑦) (95)

is an element of 𝒩+
⋆ [238]. Moreover,

𝜏(𝑦𝑥) = 𝜏(𝑥1/2𝑦𝑥1/2) = 𝜏(𝑦1/2𝑥𝑦1/2) ∀𝑥 ∈ m+
𝜏 ∀𝑦 ∈ 𝒩+. (96)

So, the formula
𝜔𝑥(𝑦) := 𝜏(𝑥1/2𝑦𝑥1/2) ∀𝑦 ∈ 𝒩 (97)

gives rise to 𝜔𝑥 ∈ 𝒩+
⋆ with ||𝜔𝑥|| = 𝜏(|𝑥|) for each 𝑥 ∈ m𝜏 . Let 𝜏 be a faithful normal semi-finite trace

on a 𝑊 *-algebra 𝒩 . The map

||·||𝑝 : 𝒩 ∋ 𝑥 ↦→ ||𝑥||𝑝 := 𝜏(|𝑥|𝑝)1/𝑝 ∈ [0,∞] (98)

for 𝑝 ∈ [1,∞[ is a norm on a vector space {𝑥 ∈ 𝒩 | ||𝑥||𝑝 < ∞}. Denote the Cauchy completion of
this normed vector space by 𝐿𝑝(𝒩 , 𝜏). Equivalently, 𝐿𝑝(𝒩 , 𝜏) can be defined as a Cauchy completion
of {𝑥 ∈ 𝒩 | 𝜏(|𝑥|) < ∞} in the norm given by ||·||𝑝 [533], or as a Cauchy completion of spanC{𝑥 ∈
𝒩+ | 𝜏(supp(𝑥)) <∞} in ||·||𝑝 [588]. The space 𝐿1(𝒩 , 𝜏) can be equivalently defined also as a Cauchy
completion of m𝜏 in ||·||1, while 𝐿2(𝒩 , 𝜏) as a Cauchy completion of n𝜏 in ||·||2 [226, 708]. The property
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|𝜏(𝑥)| ≤ ||𝑥||1 ∀𝑥 ∈ m𝜏 allows the unique continuous extension of 𝜏 from a linear functional on m𝜏 to
a linear functional on 𝐿1(𝒩 , 𝜏). This extends a bilinear form

m𝜏 ×𝒩 ∋ (ℎ, 𝑥) ↦→ 𝜏(ℎ1/2𝑥ℎ1/2) ∈ C (99)

to the bilinear form 𝐿1(𝒩 , 𝜏) ×𝒩 → C, which defines a duality between 𝐿1(𝒩 , 𝜏) and 𝒩 , and makes
𝐿1(𝒩 , 𝜏) isometrically isomorphic to 𝒩⋆ [226]. Extending the notation 𝜔𝑥 of (95) to all elements of
𝒩⋆ corresponding to 𝑥 ∈ 𝐿1(𝒩 , 𝜏), we have

𝜔𝑥(𝑦) = 𝜏(𝑦𝑥) = 𝜏(𝑥𝑦) ∀𝑦 ∈ 𝒩 ∀𝑥 ∈ 𝐿1(𝒩 , 𝜏), (100)

and [238, 659]

∀𝜔 ∈ 𝒩+
⋆ ∃!𝑥 ∈ 𝐿1(𝒩 , 𝜏)+ ∀𝑦 ∈ 𝒩 𝜔(𝑦) = 𝜏(𝑥𝑦) = 𝜏(𝑥1/2𝑦𝑥1/2). (101)

Such 𝑥 will be called a Dye–Segal density of 𝜔 with respect to 𝜏 .
A closed densely defined linear operator 𝑥 : dom(𝑥) → ℋ with dom(𝑥) ⊆ ℋ and polar decompo-

sition 𝑥 = 𝑣|𝑥| will be called affiliated with a von Neumann algebra 𝒞 acting on ℋ iff 𝑣 ∈ 𝒞 and all
spectral projections of |𝑥| belong to 𝒞. Let 𝜏 be a fixed faithful normal semi-finite trace on a 𝑊 *-
algebra 𝒩 . Using the notion of measurability with respect to a trace 𝜏 , the above range of 𝐿𝑝(𝒩 , 𝜏)
spaces can be represented in terms of operators affiliated to a von Neumann algebra 𝜋𝜏 (𝒩 ) acting
on ℋ𝜏 , where (ℋ𝜏 , 𝜋𝜏 ) is the GNS Hilbert space of (𝒩 , 𝜏). A closed densely defined linear operator
𝑥 : dom(𝑥) → ℋ is called 𝜏-measurable [659, 533] iff ∃𝜆 > 0 𝜏(𝑃 |𝑥|(]𝜆,+∞[)) <∞. The space of all
𝜏 -measurable operators affiliated with 𝜋𝜏 (𝒩 ) will be denoted by M (𝒩 , 𝜏). For 𝑥, 𝑦 ∈ M (𝒩 , 𝜏) the
algebraic sum 𝑥+ 𝑦 and algebraic product 𝑥𝑦 may not be closed, hence in general they do not belong
to M (𝒩 , 𝜏). However, their closures (denoted with the abuse of notation by the same symbol) belong
to M (𝒩 , 𝜏). See [513] for further discussion of M (𝒩 , 𝜏) and its topologies. Consider the extension
of a trace 𝜏 from 𝒩+ to M (𝒩 , 𝜏)+ given by

𝜏 : M (𝒩 , 𝜏)+ ∋ 𝑥 ↦→ 𝜏(𝑥) := sup
𝑛∈N

{︂
𝜏

(︂∫︁ 𝑛

0
𝑃 𝑥(𝜆)𝜆

)︂}︂
∈ [0,∞], (102)

the map
||·||𝑝 : M (𝒩 , 𝜏) ∋ 𝑥 ↦→ ||𝑥||𝑝 := (𝜏(|𝑥|𝑝))1/𝑝 ∈ [0,∞], (103)

and the family of vector spaces

𝐿𝑝(𝒩 , 𝜏) := {𝑥 ∈ M (𝒩 , 𝜏) | ||𝑥||𝑝 <∞}, (104)

where 𝑝 ∈ [1,∞[. The map (103) is a norm on (104) [775], and 𝐿𝑝(𝒩 , 𝜏) are Cauchy complete with
respect to the topology of this norm. In addition, one defines 𝐿∞(𝒩 ) := 𝒩 . The Banach spaces
𝐿𝑝(𝒩 , 𝜏) defined this way coincide with the 𝐿𝑝(𝒩 , 𝜏) spaces defined before. The spaces 𝐿𝑝(𝒩 , 𝜏)
embed continuously into M (𝒩 , 𝜏) [533]. For all 𝛾 ∈ ]0, 1], the duality

𝐿1/𝛾(𝒩 , 𝜏) × 𝐿1/(1−𝛾)(𝒩 , 𝜏) ∋ (𝑥, 𝑦) ↦→ [[𝑥, 𝑦]] := 𝜏(𝑥𝑦) ∈ R (105)

determines an isometric isomorphism of Banach spaces

𝐿1/𝛾(𝒩 , 𝜏)⋆ ∼= 𝐿1/(1−𝛾)(𝒩 , 𝜏). (106)

Now we will consider the special case of the above spaces. The space of Riesz–Schauder [622, 654]
(or compact) operators over a Hilbert space ℋ,

G0(ℋ) := {𝑥 ∈ B(ℋ) | dim ran(𝑥) ≤ ∞}, (107)

where bar denotes the Cauchy completion in the norm of B(ℋ), allows to define the space G1(ℋ) of
trace class (or nuclear) operators [651, 652] and the space G2(ℋ) of Hilbert–Schmidt operators
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[655, 747, 692] as a Cauchy completion of G0(ℋ) in the norm ||𝑥||1 := tr(
⃒⃒√
𝑥*𝑥
⃒⃒
) and ||𝑥||2 := tr(𝑥*𝑥),

respectively. More generally, the spaces G𝑝(ℋ) of von Neumann–Schatten 𝑝-class operators over
a Hilbert space ℋ are defined as [751, 648, 651, 652, 649]

G𝑝(ℋ) := {𝑥 ∈ G0(ℋ) | ||𝑥||𝑝 := tr((𝑥*𝑥)𝑝/2)1/𝑝 <∞}, (108)

for 𝑝 ∈ [1,∞[, and they are Banach spaces with respect to the norm ||·||𝑝 for 𝑝 ∈ [1,∞[. In addition, one
sets G∞(ℋ) := B(ℋ) with ||𝑥||∞ := ||𝑥||B(ℋ). The spaces G𝑝(ℋ) are uniformly convex and uniformly
Fréchet differentiable for 𝑝 ∈ ]1,∞[ [226, 493, 425], and the following Banach space dualities hold
[650, 493]:

G0(ℋ)⋆ ∼= G1(ℋ), G1(ℋ)⋆ ∼= G∞(ℋ), G1/𝛾(ℋ)⋆ ∼= G1/(1−𝛾)(ℋ), (109)

for 𝛾 ∈ ]0, 1]. If 𝒩 ⊆ B(ℋ), then [226, 227]

∀𝜔 ∈ 𝒩 ⋆
(︀
𝜔 ∈ 𝒩⋆ ⇐⇒ ∃𝑥 ∈ G1(ℋ) 𝜔(·) = trB(ℋ)(𝑥 · )

)︀
. (110)

In such case ||𝜔|| = tr(𝑥). This theorem holds also for (𝜔, 𝑥) ∈ 𝒩+
⋆ × G1(ℋ)+, as well as for (𝜔, 𝑥) ∈

𝒩+
⋆1 × G1(ℋ)+1 . However, the uniqueness of 𝑥 in (110), as well as in its positive and normalised

cases, holds only for 𝒩 = B(ℋ), because in such case (110) defines a linear isometry 𝐿1(B(ℋ), tr) ∼=
G1(ℋ) ∼= B(ℋ)⋆ [225, 649]. More generally, if 𝒩 ⊆ B(ℋ), then [226]

𝒩⋆
∼= G1(ℋ)/{𝑥 ∈ G1(ℋ) | tr(𝑥𝑦) = 0 ∀𝑦 ∈ 𝒩}. (111)

The space G2(ℋ) can be equipped with the inner product

⟨𝑥, 𝑦⟩G2(ℋ) := tr(𝑦*𝑥) ∀𝑥, 𝑦 ∈ G2(ℋ), (112)

which turns it into a Hilbert space, called the Hilbert–Schmidt space. The von Neumann–Schatten
G𝑝(ℋ) spaces can be characterised by

G𝑝(ℋ) = 𝐿𝑝(B(ℋ), tr) ∀𝑝 ∈ [1,∞]. (113)

Falcone and Takesaki [247] have constructed a family of noncommutative 𝐿𝑝(𝒩 ) spaces that are
canonically associated to every 𝑊 *-algebra, including also those that do not admit faithful normal
semi-finite traces. For a detailed review of this construction, see [404]. Here we will need only several
facts about them. Its key feature is a construction of a semi-finite von Neumann algebra ̃︀𝒩 and a
faithful normal semi-finite trace ̃︀τ : ̃︀𝒩 → [0,∞] that are uniquely defined for any 𝑊 *-algebra 𝒩 , with
no dependence of an additional weight or state on 𝒩 . Using these objects, a topological *-algebra
M ( ̃︀𝒩 , ̃︀τ) of ̃︀τ-measureable operators is defined, as well as a canonical integral

∫︀
: M ( ̃︀𝒩 , ̃︀τ) → C. All

spaces 𝐿𝑝(𝒩 ) for 𝑝 ∈ C and such that re (𝑝) > 0 are Banach spaces (the corresponding norms will be
denoted ||·||𝑝) and their Banach duals are given by 𝐿𝑞(𝒩 ) spaces with 1

𝑝 + 1
𝑞 = 1. The space 𝐿∞(𝒩 ) is

defined as 𝒩 , and an isometric isomorphism 𝒩⋆
∼= 𝐿1(𝒩 ) holds. All 𝐿𝑝(𝒩 ) spaces with 𝑝 ∈ C∪{+∞}

and re (𝑝) > 0 embed into M ( ̃︀𝒩 , ̃︀τ). It is equipped with a function grad : M ( ̃︀𝒩 , ̃︀τ) → C satisfying

grad(𝑥*) = (grad(𝑥))*, (114)
grad(|𝑥|) = re (grad(𝑥)) = 1

2(grad(𝑥) + grad(𝑥)*), (115)
grad(𝑥𝑦) = grad(𝑥) + grad(𝑦), (116)

re (grad(𝑥)) ≥ 0 ⇒ |𝑥|1/re (grad(𝑥)) ∈ 𝒩+
⋆ , (117)

where 𝑥𝑦 is the closure of 𝑥𝑦. The Falcone–Takesaki canonical integral
∫︀

: ( ̃︀𝒩 , ̃︀τ) → C satifies∫︀
: 𝐿1(𝒩 ) ∋ 𝜑 ↦→

∫︀
𝜑 = 𝜑(I) ∈ C, the norms ||·||𝑝 for 𝑝 ∈ C and re (𝑝) ≥ 1 read

||·||𝑝 : 𝐿𝑝(𝒩 ) ∋ 𝑥 ↦→ ||𝑥||𝑝 :=

(︂∫︁
|𝑥|re (𝑝)

)︂1/re (𝑝)

∈ R+, (118)
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while the Banach space duality between 𝐿𝑝(𝒩 ) and 𝐿𝑞(𝒩 ) for 1/𝑝+1/𝑞 = 1 and 𝑝 ∈ {𝜆 ∈ C | re (𝜆) >
0} reads

𝐿𝑝(𝒩 ) × 𝐿𝑞(𝒩 ) ∋ (𝑥, 𝑦) ↦→ [[𝑥, 𝑦]] ̃︀𝒩 :=

∫︁
𝑥𝑦 ∈ C. (119)

Moreover, the space 𝐿2(𝒩 ) is also a Hilbert space with respect to the inner product

𝐿2(𝒩 ) × 𝐿2(𝒩 ) ∋ (𝑥1, 𝑥2) ↦→ ⟨𝑥1, 𝑥2⟩𝐿2(𝒩 ) :=

∫︁
𝑥*2𝑥1 ∈ C. (120)

If {𝑥𝑖}𝑛𝑖=1 ⊆ M ( ̃︀𝒩 , ̃︀τ),
∑︀𝑛

𝑖=1 grad(𝑥𝑖) =: 𝑟 ≤ 1 and re (grad(𝑥𝑖)) ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑛}, then the
noncommutative analogue of the Rogers–Hölder inequality holds [399],

||𝑥1 · · ·𝑥𝑛||1/𝑟 ≤ ||𝑥1||1/re (grad(𝑥1)) · · · ||𝑥𝑛||1/re (grad(𝑥𝑛)). (121)

The stronger condition
∑︀𝑛

𝑖=1 grad(𝑥𝑖) = 1 implies that 𝑥1 · · ·𝑥𝑛 ∈ 𝐿1(𝒩 ), and in such case∫︁
𝑥1 · · ·𝑥𝑛 =

∫︁
𝑥𝑛𝑥1 · · ·𝑥𝑛−1. (122)

Consider a 𝑊 *-algebra 𝒩 and a relation ∼𝑡 on 𝒩 ×𝒲0(𝒩 ) defined by [247]

(𝑥, 𝜓) ∼𝑡 (𝑦, 𝜑) ⇐⇒ 𝑦 = 𝑥[𝜓 : 𝜑]𝑡 ∀𝑥, 𝑦 ∈ 𝒩 ∀𝜓, 𝜑 ∈ 𝒲0(𝒩 ). (123)

The property [𝜔1 : 𝜔2]𝑡[𝜔2 : 𝜔3]𝑡 = [𝜔1 : 𝜔3]𝑡 ∀𝜔1, 𝜔2, 𝜔3 ∈ 𝒲0(𝒩 ) ∀𝑡 ∈ R of Connes’ cocycle implies
that ∼𝑡 is an equivalence relation in 𝒩 ×𝒲0(𝒩 ). The equivalence class (𝒩 ×𝒲0(𝒩 ))/ ∼𝑡 is denoted
by 𝒩 (𝑡), and its elements are denoted by 𝑥𝜓i𝑡. The operations

𝑥𝜓i𝑡 + 𝑦𝜓i𝑡 := (𝑥+ 𝑦)𝜓i𝑡, (124)

𝜆(𝑥𝜓i𝑡) := (𝜆𝑥)𝜓i𝑡 ∀𝜆 ∈ C, (125)⃒⃒⃒⃒
𝑥𝜓i𝑡

⃒⃒⃒⃒
:= ||𝑥||, (126)

equip 𝒩 (𝑡) with the structure of the Banach space, which is isometrically isomorphic to 𝒩 , considered
as a Banach space. By definition, 𝒩 (0) a 𝑊 *-algebra that is trivially *-isomorphic to 𝒩 . For 𝑡 ̸= 0
the spaces 𝒩 (𝑡) are not 𝑊 *-algebras, however

𝐿1/i𝑡(𝒩 ) = 𝒩 (𝑡) ∀𝑡 ∈ R. (127)

This suggests to use the symbolic notation 𝑦 = 𝑥𝜑grad(𝑦) = 𝑥𝜑𝛾 with (𝑥, 𝜑) ∈ 𝒩 ×𝒲0(𝒩 ) for a generic
element 𝑦 of the space 𝐿1/𝛾(𝒩 ) with re (𝛾) ∈ ]0, 1[, with boundary cases given by 𝑥 ∈ 𝐿∞(𝒩 ) = 𝒩
and 𝜑 ∈ 𝐿1(𝒩 ) ∼= 𝒩⋆. For 𝑥𝑖 = 𝑦𝑖𝜑

𝑧𝑖 with a fixed 𝜑 ∈ 𝒩+
⋆0, the equation (122) turns to the Araki

multiple KMS condition for 𝜎𝜑 and 𝛽 = 1 [31, 33, 42, 485]. More generally, the function

C𝑛 ∋ (𝑧1, . . . , 𝑧𝑛) ↦→ 𝜑𝑧11 𝑦1 · · ·𝜑
𝑧𝑛
𝑛 𝑦𝑛𝜑

1−𝑧1−...−𝑧𝑛
𝑛+1 ∈ 𝒩⋆ (128)

is a bounded holomorphic function on the tube

{(𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 | re (𝑧𝑖) > 0 ∀𝑖 ∈ {1, . . . , 𝑛},
𝑛∑︁
𝑖=1

re (𝑧𝑖) ≤ 1}, (129)

with respect to the norm topology of 𝒩⋆ [773]. The above algebraic relations can be used in order to
rewrite Connes’ cocycle as

[𝜔 : 𝜑]𝑡 = ∆i𝑡
𝜔,𝜑∆−i𝑡

𝜑 = 𝜔i𝑡𝜑−i𝑡, (130)

which holds for all 𝜑, 𝜔 ∈ 𝒲0(𝒩 ), and for all 𝜑, 𝜔 ∈ 𝒩+
⋆ provided supp(𝜔) ≤ supp(𝜑), and to rewrite

the Tomita–Takesaki modular automorphism as

𝜎𝜑𝑡 (𝑥) = ∆i𝑡
𝜑𝑥∆−i𝑡

𝜑 = 𝜑i𝑡𝑥𝜑−i𝑡, (131)
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which holds for all 𝜑 ∈ 𝒲0(𝒩 ), and for all 𝜑 ∈ 𝒲(𝒩 ), provided 𝑥 ∈ 𝒩supp(𝜑). These remarkable
algebraic properties were observed by Woronowicz [771] and were later developed by Connes [168,
169, 170] and Yamagami [773, 774]. For the negative powers of weights, 𝜑−𝑝 for 𝑝 > 0, there are no
corresponding 𝐿−𝑝(𝒩 ) spaces. However, as shown in [674], the right and left multiplications, R(𝜑−𝑝)
and L(𝜑−𝑝), for 𝜑 ∈ 𝒲0(𝒩 ) are well defined7 and satisfy R(𝜑−𝑝) = (R(𝜑𝑝))−1, L(𝜑−𝑝) = (L(𝜑𝑝))−1,
R(𝜑−𝑝)R(𝜑𝑝) = I, as well as

∆
1/𝑝
𝜑,𝜓 = R(𝜑−1/𝑝)L(𝜓1/𝑝), (132)

where 𝜓 ∈ 𝒲(𝒩 ). This gives∫︁
𝜓𝛾𝜑1−𝛾 =

∫︁
𝜓𝛾𝜑−𝛾𝜑 =

∫︁
(R(𝜑−𝛾)L(𝜓𝛾)I)𝜑 = 𝜑(R(𝜑−𝛾)L(𝜓𝛾)I) =

⟨
𝜉𝜋(𝜑),∆𝛾

𝜓,𝜑𝜉𝜋(𝜑)
⟩
ℋ

(133)

for any standard representation (ℋ, 𝜋, 𝐽,ℋ♮). In analogy with the equations (130) and (131), the
equation (133) holds also when 𝜑, 𝜓 ∈ 𝒩+

⋆ and 𝜓 ≪ 𝜑, because in such case 𝜑 is faithful on 𝒩supp(𝜑)

and this algebra contains the support of 𝜑.
The 𝐿𝑝(𝒩 ) spaces defined above are isometrically isomorphic with the 𝐿𝑝(𝒩 , 𝜓) spaces of Haagerup–

Terp [298, 713], Araki–Masuda [42, 485], Kosaki–Terp [398, 714], and Kosaki [396], which are all uni-
formly convex and uniformly Fréchet differentiable for 𝑝 ∈ ]1,∞[ (for proofs, see [713], [42, 485], [398],
and [396], respectively).8

The canonical (representation independent) character of the Falcone–Takesaki ‘noncommutative
integral’

∫︀
corresponds to the canonical (representation independent) character of Connes’ cocycle as

the noncommutative analogue of the Radon–Nikodým quotient.
The roles played in the commutative integration theory by mcb-algebras 𝒜 and their representations

in terms of measurable spaces (𝒳 ,f(𝒳 ),f0(𝒳 )) or measure spaces (𝒳 ,f(𝒳 ), �̃�) are analogous to the
roles played in the noncommutative integration theory by, respectively, 𝑊 *-algebras 𝒩 and their
standard representations (ℋ, 𝜋(𝒩 ), 𝐽,ℋ♮) or the GNS representations (ℋ𝜔, 𝜋𝜔,Ω𝜔). In particular, if
𝒩 is commutative, then each 𝜇𝜓 ∈ 𝒲(𝒜) determines a normal semi-finite trace on 𝒩 by

𝜓(𝑥) =

∫︁
𝜇𝜓𝑥 ∀𝑥 ∈ 𝒩+. (134)

If 𝜇𝜑 ∈ 𝒲0(𝒜) corresponds to 𝜑 ∈ 𝒲0(𝒩 ) and 𝑓 ∈ 𝐿1(𝒜, 𝜇𝜑) is its Radon–Nikodým quotient with
respect to 𝜇𝜓 ∈ 𝒲(𝒜), 𝑓 =

𝜇𝜓
𝜇𝜑

, which means

𝜓(𝑥) =

∫︁
𝜇𝜓𝑥 =

∫︁
𝜇𝜑
𝜇𝜓
𝜇𝜑
𝑥 = 𝜑

(︂
𝜇𝜓
𝜇𝜑
𝑥

)︂
∀𝑥 ∈ 𝐿∞(𝒜)+, (135)

then the faithfulness of 𝜓 corresponds to strict positivity of 𝜇𝜓 and implies 𝜇𝜓
𝜇𝜑

> 0. In such case, the

map R ∋ 𝑡 ↦→
(︁
𝜇𝜓
𝜇𝜑

)︁i𝑡
∈ 𝒩 satisfies

(︂
𝜇𝜓
𝜇𝜑

)︂i𝑡

= [𝜓 : 𝜑]𝑡 ∀𝑡 ∈ R. (136)

The boolean ideals 𝒜𝜇 ⊆ 𝒜 for 𝜇 ∈ 𝒲(𝒜) play the role analogous to the ideals n𝜓 ⊆ 𝒩 for 𝜓 ∈ 𝒲(𝒩 ).
In particular, the compatibility condition 𝑥 ∈ 𝒜𝜇1 ⇒ ∃𝑦 ≤ 𝑥 𝑦 ∈ 𝒜𝜇2 plays a crucial role in the
definition of the Radon–Nikodým quotient 𝜇1

𝜇2
of 𝜇1, 𝜇2 ∈ 𝒲0(𝒜), which corresponds to the crucial role

7More precisely, let the adjective ‘strong’ refers to the topological closure of some algebraic operation in M ( ̃︀𝒩 , ̃︀τ).
For any 𝜆 ≥ 0, 𝑡 > 0, 𝜑 ∈ 𝒩+

⋆0, the map R(𝜑𝑡) : 𝐿1/𝜆(𝒩 ) → 𝐿1/(𝜆+𝑡)(𝒩 ), defined as a strong composition with 𝜑𝑡 from
right, is everywhere defined, bounded, and injective with dense range. Moreover, the maps R(𝜑𝑡)−1 and R(𝜑−𝑡) have
the same range and agree (from this it follows that they are equal). The map R(𝜑−𝑡) is closed, and is understood as
a strong product, defined only when the closure is ̃︀τ-measurable. The same holds for R replaced by L. If 𝜑 ∈ 𝒩+

⋆0 is
replaced by 𝜑 ∈ 𝒲0(𝒩 ), then all those properties hold except that R(𝜑𝑡) and L(𝜑𝑡) are no longer everywhere defined or
bounded.

8See Section 3.2 for the definitions of uniform convexity and uniform Fréchet differentiability.
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played by the condition 𝑥 ∈ n𝜓1 ⇒ 𝑥 ∈ n𝜓2 in Connes’ theorem on the extension of Connes’ cocycle
[𝜓1 : 𝜓2]𝑡 of 𝜓1, 𝜓2 ∈ 𝒲0(𝒩 ) to the (square root of) noncommutative analogue of the Radon–Nikodým
quotient, [𝜓 : 𝜑]−i/2.

In order to keep the algebraic representation-independent formulation, we will prove that proper
abstract 𝐿∞ spaces coincide with the commutative 𝑊 *-algebras without refering to measure spaces.
This defines an equivalence between the category of mcb-algebras (with boolean isomorphisms), com-
mutative 𝑊 *-algebras (with normal unital *-isomorphisms), and proper abstract 𝐿∞ spaces (with unit
preserving isometric Riesz isomorphisms). Together with the full and faithful functor from the category
of 𝐿𝑝(𝒜) spaces with isometric Riesz isomorphisms to the category of 𝐿𝑝(𝒩 ) spaces with isometric
isomorphisms, this shows that canonical commutative integration theory is precisely a commutative
sector of canonical noncommutative integration theory.

Proposition 2.4. The categories of commutative 𝑊 *-algebras with unital normal *-homomorphisms
and proper 𝐿∞ spaces with order continuous unit preserving Riesz homomorphisms are equivalent, and
the same holds for mutual restriction of homomorphisms to isomorphisms.

Proof. Using Freudenthal’s spectral theorem [263], Lyubovin [474, 475] and Vulikh [752, 753] proved
that each commutative von Neumann algebra is a Dedekind–MacNeille complete Banach lattice (for
earlier proofs of this result, depedending on Gel’fand’s representation theorem, see [375, 250]), while
Luxemburg and Zaanen [473] proved that each commutative von Neumann algebra is an MI-space.
Both proofs hold for arbitrary 𝑊 *-algebra. Taking into account that each 𝑊 *-algebra has a unique
Banach predual, we conclude that each commutative 𝑊 *-algebra is a complex proper abstract 𝐿∞
space. Conversely, each real abstract 𝐿∞ space 𝑋 has a form 𝐿∞(𝒜) over a ccb-algebra 𝒜 of projection
bands of 𝑋. Hence (see e.g. [262]) 𝑋 is a real commutative Banach algebra and an archimedean real
f-algebra. As an f-algebra, it satisfies

⃒⃒
𝑦2
⃒⃒

= |𝑦|2, where 𝑦2 := 𝑦 · 𝑦. As an archimedean f-algebra it
satisfies [333]

∀𝑥 ∈ 𝑋 𝑥 ≥ 0 ⇐⇒ ∃!𝑦 ∈ 𝑋 𝑥 = 𝑦2, (137)

while as a Banach lattice it satisfies |𝑥| ≤ |𝑦| ⇒ ||𝑥||𝑋 ≤ ||𝑦||𝑋 . Hence, 𝑋 satisfies
⃒⃒⃒⃒
𝑦2
⃒⃒⃒⃒
𝑋

= ||𝑦||2𝑋 . Its
Banach algebra complexification 𝑋C := 𝑋 + i𝑋, equipped with multiplication, involution, and norm:

(𝑥1 + i𝑥2) · (𝑦1 + i𝑦2) := (𝑥1𝑦1 − 𝑥2𝑦2) + i(𝑥1𝑦1 + 𝑥2𝑦2), (138)
(𝑥1 + i𝑥2)

* := 𝑥1 − i𝑥2, (139)

||𝑥+ i𝑦||𝑋C
:=
⃒⃒⃒⃒
𝑥2 + 𝑦2

⃒⃒⃒⃒ 1/2
𝑋
, (140)

is a commutative 𝐶*-algebra (see e.g. [742]). On the other hand, the Banach lattice complexification
�̃�C of 𝑋 is equipped with the norm [71]

||𝑥+ i𝑦||�̃�C
:= |||𝑥+ i𝑦|||𝑋 =

⃒⃒⃒⃒⃒⃒ √︀
𝑥2 + 𝑦2

⃒⃒⃒⃒⃒⃒
𝑋
. (141)

These two complexifications coincide, because
⃒⃒⃒⃒
𝑥1/2

⃒⃒⃒⃒
𝑋

= ||𝑥||1/2𝑋 ∀𝑥 = 𝑦2 ≥ 0. Thus, every abstract
𝐿∞ space is a commutative 𝐶*-algebra with the multiplicative unit I given by the order unit. The
Dedekind–MacNeille completeness of 𝑋C implies that its boolean algebra 𝒜 of projection bands is
a Dcb-algebra, hence 𝑋C is a commutative 𝐴𝑊 *-algebra [376]. Finally, the existence of a unique
predual turns 𝑋 into a commutative 𝑊 *-algebra. Every algebra homomorphism 𝑓 of f-algebras with
multiplicative unit element is a Riesz homomorphism iff it satisfies 𝑓(|𝑥|) = |𝑓(𝑥)| [334]. But this is
equivalent to a condition that 𝑓 is a *-homomorphism, since 𝑓(𝑥*𝑥) = 𝑓(𝑥)*𝑓(𝑥) = |𝑓(𝑥)|2, hence
𝑓(|𝑥|) = |𝑓(𝑥)|, which follow from (137). From the equality of multiplicative unit I with an order unit,
and coincidence of definitions of normality and order continuity, it follows that a function 𝑓 : 𝑋1 → 𝑋2

between two commutative unital 𝑊 *-algebras 𝑋1 and 𝑋2 is a normal (resp., unital) *-homomorphism
iff it is order continuous (resp., unit preserving). Finally, the surjective isometries of commutative
𝑊 *-algebras coincide with their *-isomorphisms (and are normal), while the surjective isometries of
Banach lattices coincide with their isometric Riesz isomorphisms (and are order continuous).
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This establishes direct analogy between the properties of the family 𝐿1/𝛾(𝒜) spaces over mcb-
algebras 𝒜 and the properties of the family of 𝐿1/𝛾(𝒩 ) spaces over 𝑊 *-algebras 𝒩 . In what follows,
we will see that those two settings coincide in the case when 𝑊 *-algebra is commutative.

2.3 Statistical and quantum models

The Borel–Steinhaus–Kolmogorov [95, 96, 689, 394] approach to mathematical foundations of proba-
bility theory and statistics is developed within the frames of measure theory on abstract sets. For a
given choice of a ‘background’ premeasurable space (𝒳 ,f(𝒳 )), a statistical model is defined [83] as a
subset

ℳ(𝒳 ,f(𝒳 )) ⊆ Meas+(𝒳 ,f(𝒳 )) (142)

of the set Meas+(𝒳 ,f(𝒳 )) of all countably additive measures on (𝒳 ,f(𝒳 )). In order to deal with
the elements of ℳ(𝒳 ,f(𝒳 )), it is assumed that there exists a countably additive measure �̃� on
(𝒳 ,f(𝒳 )) such that ℳ(𝒳 ,f(𝒳 )) can be represented as a set of Radon–Nikodým quotients of elements
of Meas+(𝒳 ,f(𝒳 )) with respect to �̃�,

ℳ(𝒳 ,f(𝒳 )) ∼= ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+, (143)

where ∼= denotes the bijection between sets. This assumption requires absolute continuity of elements
of ℳ(𝒳 ,f(𝒳 )) with respect to �̃�. Among all statistical models of this form, the probabilistic models
are defined as subsets

ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+1 := {𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+ |
∫︁
�̃�𝑝 = 1}. (144)

The set 𝒳 is called a ‘sample space’ and is in principle arbitrary, the choice of f(𝒳 ) is provided
by some additional principle (e.g., one chooses an algebra fBorel(𝒳 ) of Borel subsets of 𝒳 if 𝒳 is a
topological space), while the choice of element �̃� of Meas+(𝒳 ,f(𝒳 )) is also arbitrary (e.g., one chooses
some element in the set Meas+⋆ (𝒳 ,fBorel(𝒳 )) of normal Radon measures on fBorel(𝒳 )). However, as
follows from the discussion in Section 2.1, there exist many different choices of (𝒳 ,f(𝒳 ), �̃�) that lead
to mutually isometrically isomorphic 𝐿1(𝒳 ,f(𝒳 ), �̃�) spaces. This suggests that one should be able
to reformulate the above setting in a more concise form. By Segal’s theorem [658], validity of the
Radon–Nikodým theorem, which is necessary and sufficient to guarantee that statistical models allow
representation of their elements in terms of the Radon–Nikodým quotients, is equivalent to requirement
that the Steinhaus–Nikodým [688, 538] isometric isomorphism holds,

𝐿1(𝒳 ,f(𝒳 ), �̃�)⋆ ∼= 𝐿∞(𝒳 ,f(𝒳 ), �̃�), (145)

and is equivalent to the condition that the measure space (𝒳 ,f(𝒳 ), �̃�) is localisable. But in view
of the results discussed in Section 2.1, this means that the notion of statistical model can be made
independent of the choice of a ‘sample space’ 𝒳 and a measure space (𝒳 ,f(𝒳 ), �̃�). It depends only
on the choice of an mcb-algebra 𝒜, which canonically determines associated family of 𝐿𝑝(𝒜) spaces
with 𝑝 ∈ [1,∞]. In consequence, we define: a statistical model as a subset ℳ(𝒜) ⊆ 𝐿1(𝒜)+; a
probabilistic model as a subset

ℳ(𝒜) ⊆ 𝐿1(𝒜)+1 := {𝑝 ∈ 𝐿1(𝒜)+ | ||𝑝|| = 1}. (146)

An element 𝜑 ∈ 𝐿1(𝒜)+ will be called a statistical state, while an element 𝜑 ∈ 𝐿1(𝒜)+1 will be
called a probabilistic state (or probabilistic expectation). If some representation of 𝐿1(𝒜) in
terms of 𝐿1(𝒜, 𝜇) or 𝐿1(𝒳 ,f(𝒳 ), �̃�) is chosen, then the element representing a statistical state (resp.,
probabilistic state) will be called statistical density (resp., probability density) with respect to 𝜇
or �̃� [467].

The postulate of expressibility of elements of ℳ(𝒳 ,f(𝒳 )) in terms of the Radon–Nikodým quo-
tients can be justified in various ways, and in particular by referring to the notion of sufficiency.
This idea of Fisher [254] was translated into mathematical terms by Neyman [536], and obtained
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an abstract measure theoretic formulation due to Halmos and Savage [304] in terms of the Radon–
Nikodým quotients of the elements of the model ℳ(𝒳 ,f(𝒳 )) ⊆ Meas+(𝒳 ,f(𝒳 )) with respect to a
single dominating9 measure �̃� on f(𝒳 ). However, this formulation covered only such models for which
the dominating measure �̃� was finite countably additive. The direct extension to more general case is
involved in pathologies [595, 129], which were shown to be solvable only for a class of models—called
‘compact’ [596, 213], ‘weakly dominated’ [517], or ‘coherent’ [318]—for which there exists a dominating
measure �̃� such that (𝒳 ,f(𝒳 ), �̃�) is localisable (see [471, 91] for reviews).10

Let us compare our proposal with other approaches to the mathematical foundations of probability
theory. Carathéodory’s approach to integration11 has led Kappos [377, 378, 379, 380] to develop
foundations of probability theory based on countably additive finite measures on ccb-algebras.12 Our
approach can be considered as a restriction of Kappos’ approach on the level of admitted class of
boolean algebras, but as an extension on the level of admitted measures.13 This change allows us to
define the canonical range of 𝐿𝑝(𝒜) spaces that are independent of the choice of ‘reference’ measure,
and which precisely correspond to the case when the Steinhaus–Nikodým duality and the Radon–
Nikodým theorem (for not necessarily finite measures) hold. On the other hand, the foundations of
probability theory based on Riesz lattices emerged from Daniell’s approach to integration14, and were
developed by Le Cam [435, 436, 437] (see also [695, 719, 740]) and Whittle [763, 764]. The main
difference between Whittle’s and Le Cam’s approach is that the former starts from Daniell’s integral
𝜔 over a Daniell lattice over a given ‘sample space’ 𝒳 , while the latter starts from an abstract Banach
lattice and recovers a ‘sample space’ by means of the Bohnenblust–Kakutani–Nakano representation
theorem.15 More precisely, the approach of Le Cam is based on consideration of an abstract 𝐿1 space
𝑋 as a fundamental entity of the theory. The probabilistic model (an ‘experiment’ in Le Cam’s
terminology) is defined as a subset of ℳ(𝑋) ⊆ {𝑥 ∈ 𝑋+ | ||𝑥|| = 1}. However, in order to guarantee
the well-behavedness of inferences on such model, it is necessary to restrict models under consideration
to the class of ‘coherent’ models, which is equivalent to the assumption that 𝑋⋆ is a proper abstract
𝐿∞ space, which is equivalent to assuming that the projection bands in 𝑋⋆ form an mcb-algebra 𝒜
such that 𝑋 is isometrically Riesz isomorphic to 𝐿1(𝒜), see [91, 719, 92]. Thus, Le Cam’s approach
restricts to ours in all cases when it is fully applicable. Finally, Whittle’s approach is based on
consideration of normalised Daniell–Stone integrals (‘probabilistic expectations’) on a given Daniell
lattice of functions 𝑓 : 𝒳 → R ∪ {+∞}. In order to equip Whittle’s approach with the structure
allowing the Steinhaus–Nikodým duality, one needs to pass to Banach lattice setting and impose the
existence of strong order unit as well as Dedekind–MacNeille completeness of 𝐿∞(𝑋,𝜔) space, which
amounts to recovering Le Cam’s setting, but in a representation that is dependent on the choice of
a ‘sample space’ 𝒳 and integral 𝜔, or, more generally, Daniell system (�̂�, �̂�). Our approach removes
this representation dependence.

In the BSK and Kappos’ approaches probability is defined as a normalised countably additive
measure, and is considered as an elementary notion. In Whittle’s and Le Cam’s approaches probability
is considered as a derived notion, defined by 𝑝(𝒴) := 𝜔(𝜒𝒴), where 𝜒𝒴(x ) is a characteristic function

9A measure �̃� ∈ Meas(𝒳 ,f(𝒳 )) is called to be dominating with respect to a given set 𝑋 ⊆ Meas(𝒳 ,f(𝒳 )) iff ̃︀𝜈 ≪ �̃�
∀̃︀𝜈 ∈ 𝑋. The definition of this term for measures on boolean algebras is analogous.

10This has in turn rendered the notion of pairwise sufficiency [304] equally fundamental as sufficiency, because they
coincide precisely for coherent models [682, 772].

11Von Neumann also gave lectures on this topic, but they were not published, cf. [663, 638].
12Such approach was suggested also by Weil [759].
13On the noncommutative level, Kappos’ approach corresponds to the theory of states and weights on Rickart 𝐶*-

algebras (which in principle allows to obtain some interesting results, because the elements of Rickart 𝐶*-algebras
admit unique polar decompositions [30, 283]), while our approach corresponds to the theory of states and weights on
𝑊 *-algebras.

14Quite ironically, Daniell has not used his approach to integration to make any foundational claims in his own work
on probability theory [199]. Wiener [767, 768] used Daniell’s approach to define Wiener’s integral (which obtained its
measure theoretic implementation much later), but he also had not provided any suggestion that Daniell’s approach
should be used in foundations of probability theory. First functional analytic foundational approach based on expectation
was proposed by Segal [660, 662], but it was not developed to full theory. Expectations were considered as more
fundamental than probabilities also by de Finetti [206]. See [691, 741, 671] for some additional historical comments.

15For the notions of Daniell integral, Daniell lattice, and Daniell system, see e.g. [404].

23



of 𝒴 ⊆ 𝒳 , while 𝜔 is a probabilistic expectation (Le Cam’s approach requires to provide first the
BKN representation). In our approach probability is also a derived notion, and is constructed either
by passing through the BKN representation, and then using Whittle’s or the BSK definition, or by
choosing any 𝜇 ∈ 𝒲(𝒜) on a mcb-algebra 𝒜 and using Kappos’ definition.

The setting of Banach lattices 𝐿𝑝(𝒜) canonically associated with mcb-algebras 𝒜 provides this
way a foundational approach that is free from the notions of ‘probability’ and ‘sample space’, is
independent of the choice of any ‘reference’ measure on 𝒜 or a ‘reference’ integral on 𝐿∞(𝒜), and is
equivalent to the BSK, Kappos’, Le Cam’s and Whittle’s approaches precisely on the range where these
approaches are fully applicable. These equivalences follow from equivalence of categories of: (1) proper
abstract 𝐿∞ spaces with order continuous unit preserving Riesz homomorphisms, (2) mcb-algebras
with order continuous boolean homomorphisms, (3) localisable measurable spaces with categorical
duals of complete morphisms.

The equivalence of these categories with the category of commutative 𝑊 *-algebras with unital
weak-⋆ *-homomorphisms allow us to exploit the above insights in a straightforward way, using the
Falcone–Takesaki theory of canonical 𝐿𝑝(𝒩 ) spaces over arbitrary 𝑊 *-algebras 𝒩 . For a given 𝑊 *-
algebra 𝒩 , we define a quantum model (or a quantum information model) as a subset ℳ(𝒩 ) ⊆
𝐿1(𝒩 )+ ∼= 𝒩+

⋆ . In agreement with terminology of Section 2.2, the elements of ℳ(𝒩 ) are called
states (or quantum states, or quantum information states, or quantum expectations). The
normalised quantum model is defined as a subset ℳ(𝒩 ) ⊆ 𝒩+

⋆1 = 𝒮(𝒩 ) ∩ 𝒩⋆, and its elements
are called normalised states (or normalised quantum expectations). If 𝒩 admits a faithful
normal semi-finite trace 𝜏 , and a representation of 𝒩+

⋆ in terms of 𝐿1(𝒩 , 𝜏)+ is considered, then
𝜌𝜑 ∈ 𝐿1(𝒩 , 𝜏)+ representing 𝜑 ∈ 𝒩+

⋆ will be called a density operator [426, 748]. From Section
2.2 it follows that for commutative 𝑊 *-algebras 𝒩 the quantum information models ℳ(𝒩 ) turn into
statistical models ℳ(𝒜), where 𝒩 ∼= 𝐿∞(𝒜) is an isometric isomorphism and a *-isomorphism, while
𝐿∞(𝒜) ∼= 𝐿1(𝒜)⋆ is an isometric isomorphism and a Riesz isomorphism. Restriction to normalised
states in this case gives 𝒩+

⋆1
∼= 𝐿1(𝒜)+1 .

If 𝒩 is any 𝑊 *-algebra and 𝜓 ∈ 𝒲0(𝒩 ), then ℳ(𝒩 ) can be represented as a subset (see [404])

ℳ(𝒩 , 𝜓) ⊆ 𝐿1(𝒩 , 𝜓)+ ∼= M 1(𝒩 o𝜎𝜓 R, 𝜏𝜓)+. (147)

This provides a noncommutative counterpart of representation of ℳ(𝒜) in terms of a subset ℳ(𝒜, 𝜇) ⊆
𝐿1(𝒜, 𝜇)+ for any choice of a measure 𝜇 ∈ 𝒲0(𝒜) on an mcb-algebra 𝒜. Finally, if 𝒩 does not contain
any type III factor and if 𝒩+

⋆ contains at least one faithful element 𝜔, then ℳ(𝒩 ) can be represented
in terms of the space ℳ(ℋ𝜔) ⊆ G1(ℋ𝜔)+ where G1(ℋ𝜔)⋆ ∼= B(ℋ𝜔). This provides a noncommutative
analogue of representation of ℳ(𝒜) in terms of a subset ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+ over
such measure space (𝒳 ,f(𝒳 ), �̃�) that (𝒳 ,f(𝒳 ),f�̃�(𝒳 )) is localisable and �̃� is strictly positive. This
analogy becomes strict if 𝒩 is commutative and �̃� is finite: every 𝜑 ∈ 𝐿1(𝒜)+ defines an element
𝜇 ∈ 𝒲(𝒜) by means of (64).

2.4 Markovian categories

Following Wald’s [754, 756] and Blackwell’s [83, 84] works, Chencov [148, 151, 152] and Morse &
Sacksteder [509, 643, 644] have introduced the category of statistical models with Banach preduals
of Markov maps as morphisms. (Further early works on this topic are [463, 484, 637, 636, 429, 483,
153].) The underlying idea was to consider this category as an underlying structure of mathematical
foundations of statistical theory.16 This expresses the central role that Markov morphisms began to
play at that time in statistical theory [435, 534, 122].

Given any set 𝒳 , the set of all subsets of 𝒳 will be denoted ℘(𝒳 ). If 𝒳 is finite, then #(𝒳 ) will
denote the number of its elements. For any premeasurable space (𝒳 ,f(𝒳 )) a probability simplex is
defined as the set

𝐿1(𝒳 ,f(𝒳 ))+1 := {�̃� ∈ Meas+(𝒳 ,f(𝒳 )) | �̃�(𝒳 ) = 1}. (148)
16Very similar perspective is implicitly contained in the work of Le Cam [435], and it was turned to an explicit

category theoretic formulation by Huber (cf. [331]) around the same time as the Chencov–Morse–Sacksteder approach
had appeared.
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If 𝒳 is a finite set with #(𝒳 ) =: 𝑛 ∈ N elements and f(𝒳 ) ∼= ℘(𝒳 ) then the space Meas(𝒳 ,f(𝒳 )) is
isomorphic to R𝑛, and

𝐿1(𝒳 , ℘(𝒳 ))+1
∼= {(𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑛 |

𝑛∑︁
𝑖=1

𝑝𝑖 = 1}, (149)

with 𝑝𝑖 := 𝑝(𝑥𝑖) for 𝑝 ∈ 𝐿1(𝒳 , ℘(𝒳 ))+1 . Such probability simplex 𝐿1(𝒳 ,f(𝒳 ))+1 will be called finite.
If 𝑗 ∈ {1, 2}, 𝒳𝑗 is a finite set, f𝑗(𝒳𝑗) ∼= ℘(𝒳𝑗), and #(𝒳1) = #(𝒳2) =: 𝑛 ∈ N, then a finite coarse
graining is defined as such function

𝑇⋆ : 𝐿1(𝒳1,f1(𝒳1))
+
1 ∋ 𝑝 ↦→ 𝑇⋆(𝑝) ∈ 𝐿1(𝒳2,f2(𝒳2))

+
1 (150)

that can be represented as 𝑛 × 𝑛 matrix with entries in R (i.e., an element of M𝑛(R)), which is
a stochastic matrix, defined by (𝑇⋆(𝑝))𝑗 =

∑︀𝑛
𝑖=1(𝑇⋆)𝑖𝑗𝑝𝑖, (𝑇⋆)𝑖𝑗 ≥ 0 and

∑︀𝑛
𝑗=1(𝑇⋆)𝑖𝑗I𝑗 = I𝑖 for all

𝑖, 𝑗 ∈ {1, . . . , 𝑛} (see e.g. [85]). It is the most general mapping between two finite probability simplexes.
The category ProbModfin consists of finite probability simplexes and finite coarse graining maps. If 𝒳
is finite and 𝐿1(𝒳 ,f(𝒳 ))+1 is a finite probability simplex, then the set of all finite coarse grainings from
𝐿1(𝒳 ,f(𝒳 ))+1 into itself forms a semi-group with respect to composition. When considered together,
they form a subcategory ProbModfin(𝒳 ) of ProbModfin [148, 509] (compare with [432, 282]).

The assumptions of finite dimensionality and normalisation can be dropped. Let (𝒜1, 𝜇1) and
(𝒜2, 𝜇2) be localisable measure algebras. A Markov map (named due to historical origins of this
idea in [482]) is defined as a positive linear function

𝑇 : 𝐿∞(𝒜1) → 𝐿∞(𝒜2) such that 𝑇 (I) = I. (151)

A coarse graining is defined as a positive linear function

𝑇⋆ : 𝐿1(𝒜2, 𝜇2) → 𝐿1(𝒜1, 𝜇1) such that ||𝑓 || = ||𝑇⋆(𝑓)|| ∀𝑓 ∈ 𝐿1(𝒜2, 𝜇2)
+, (152)

or, equivalently, ∫︁
𝜇1𝑇⋆(𝑓) =

∫︁
𝜇2𝑓 ∀𝑓 ∈ 𝐿1(𝒜2, 𝜇2). (153)

Every positive linear function on a Banach lattice is norm continuous. Markov maps are dual to
coarse grainings in terms of the Steinhaus–Nikodým duality 𝐿1(𝒜, 𝜇)⋆ ∼= 𝐿∞(𝒜): for every 𝑇⋆ (or,
respectively, 𝑇 ) there exists a unique 𝑇 (or, respectively, 𝑇⋆) such that∫︁

𝜇2𝑇 (𝑝)𝑓 =

∫︁
𝜇1𝑝𝑇⋆(𝑓) ∀𝑝 ∈ 𝐿∞(𝒜1) ∀𝑓 ∈ 𝐿1(𝒜2, 𝜇2). (154)

This allows us to define the category ProbMod of (measure algebraic representations of) probabilistic
models ℳ(𝒜, 𝜇) ⊆ 𝐿1(𝒜, 𝜇)+1 and coarse grainings, where (𝒜, 𝜇) varies over all localisable measure
algebras. Restriction to probabilistic models constructed over a fixed localisable measure algebra
(𝒜, 𝜇) defines a subcategory ProbMod(𝒜, 𝜇) of ProbMod. In general commutative case, we define:
a Markov map as a unit preserving positive (𝑥 ≥ 0 ⇒ 𝑇 (𝑥) ≥ 0) linear function between MI-spaces;
a coarse graining as a positive linear function 𝑇⋆ : 𝑋1 → 𝑋2 between abstract 𝐿1 spaces that
satisfies ||𝑇⋆(𝑥)|| = ||𝑥|| ∀𝑥 ∈ 𝑋+

1 [435] (Le Cam calls it a ‘transition’). The Banach space duality
𝐿1(𝒜)⋆ ∼= 𝐿∞(𝒜) and the Banach space duality between abstract 𝐿1 spaces and proper abstract 𝐿∞
spaces determines a duality between coarse grainings 𝑇⋆ : 𝑋1 → 𝑋2 and Markov maps 𝑇 : 𝑋⋆

2 → 𝑋⋆
1

by means of
[[𝑇⋆(𝑓), 𝜑]]𝑋×𝑋⋆ = [[𝑓, 𝑇 (𝜑)]]𝑋×𝑋⋆ ∀𝑓 ∈ 𝑋1 ∀𝜑 ∈ 𝑋⋆

2 . (155)

The category of abstract 𝐿1 spaces and coarse grainings is equivalent to a category of 𝐿1(𝒜) spaces
over mcb-algebras 𝒜 and coarse grainings. As a result, the category StatMod of statistical models
ℳ(𝒜) ⊆ 𝐿1(𝒜)+ over all mcb-algebras 𝒜 and coarse grainings is equivalent to a category L+

1 cg
of arbitrary subsets of positive cones 𝑋+ of abstract 𝐿1 spaces 𝑋 and coarse grainings. The latter
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embeds into the category L+
1 pos of arbitrary subsets of positive cones 𝑋+ of abstract 𝐿1 spaces 𝑋

and positive linear functions between them. Category StatMod(𝒜) is defined as a subcategory of
StatMod obtained by fixing the choice of a mcb-algebra 𝒜.

Let 𝒞, 𝒞1, 𝒞2 be 𝐶*-algebras and let M𝑛(𝒞) denote the algebra 𝑛× 𝑛 matrices with entries in 𝒞. A
function 𝑇 : 𝒞1 → 𝒞2 is called: positive iff 𝑇 (𝒞+

1 ) ⊆ 𝒞+
2 (for 𝒞1 = 𝒞2 =: 𝒞 this condition is sometimes

strengthened to 𝑇 (𝒞+) = 𝒞+); 𝑛-positive iff

𝑇 ⊗ idM𝑛(C) : 𝒞1 ⊗ M𝑛(C) = M𝑛(𝒞1) ∋ 𝑥⊗ 𝑦 ↦→ 𝑇 (𝑥) ⊗ 𝑦 ∈ M𝑛(𝒞2) = 𝒞2 ⊗ M𝑛(C) (156)

is positive for 𝑛 ∈ N; completely positive iff it is 𝑛-positive for all 𝑛 ∈ N [690]. A set of all completely
positive maps over 𝒞 forms a semi-group with respect to a composition. For commutative 𝒞1 and 𝒞2
every positive linear function is also completely positive, and this is still true if just one of them is
commutative [529, 694], but this is no longer true when both 𝒞1 and 𝒞2 are noncommutative. Every
*-homomorphism of 𝐶*-algebras is completely positive. Every conditional expectation ℰ : 𝒩1 → 𝒩2 of
𝑊 *-algebras 𝒩2 ⊆ 𝒩1 is completely positive [717, 525]. If 𝒩1 and 𝒩2 are 𝑊 *-algebras then a function
𝑓 : (𝒩2)⋆ → (𝒩1)⋆ is called positive iff 𝑓((𝒩2)

+
⋆ ) ⊆ (𝒩1)

+
⋆ . If 𝑇⋆ : (𝒩2)⋆ → (𝒩1)⋆ is a positive linear

function then the adjoint function 𝑇 : 𝒩1 → 𝒩2, defined by

[[𝜑2, 𝑇 (𝑥)]](𝒩2)⋆×𝒩2
= [[𝑇⋆(𝜑2), 𝑥]](𝒩1)⋆×𝒩1

∀𝑥 ∈ 𝒩1 ∀𝜑2 ∈ (𝒩2)⋆, (157)

is positive and normal, where [[·, ·]]𝒩⋆×𝒩 is a Banach space duality between 𝒩⋆ and 𝒩 . Moreover,
every positive normal function 𝑇 : 𝒩1 → 𝒩2 is an adjoint of a unique positive linear 𝑇⋆, and this
holds also under restriction to 𝒩 sa

𝑖 and (𝒩𝑖)
sa
⋆ for 𝑖 ∈ {1, 2}. A quantum Markov map is defined

as a normal unital completely positive linear function 𝑇 : 𝒩1 → 𝒩2. A quantum coarse graining
is defined as such 𝑇⋆ : (𝒩2)⋆ → (𝒩1)⋆ that (157) holds, where 𝑇 is a quantum Markov map. Every
quantum coarse graining is positive. If 𝒩1 = B(ℋ1) and 𝒩2 = B(ℋ2) for some Hilbert spaces ℋ1 and
ℋ2, then every quantum coarse graining 𝑇⋆ : G1(ℋ2) → G(ℋ1) is completely positive. As a result, the
category QModM of quantum information models ℳ(𝒩 ) over all 𝑊 *-algebras 𝒩 and their quantum
coarse graining (where ‘M’ stands for ‘Markov’) is a subcategory of the category QMod+ of quantum
information models ℳ(𝒩 ) over all 𝑊 *-algebras 𝒩 and the positive linear functions between them.
The restriction to a fixed 𝑊 *-algebra 𝒩 defines the subcategories QModM(𝒩 ) and QMod+(𝒩 ).
The set of all quantum Markov maps between 𝑊 *-algebras having 𝒩 as a codomain will be denoted
by Mark(𝒩 ), while the set of all 𝑇⋆ ∈ Mor(QModM) such that dom(𝑇⋆) = ℳ(𝒩 ) will be denoted by
Mark⋆(ℳ(𝒩 )). Under restriction to commutative 𝑊 *-algebra 𝒩 ∼= 𝐿∞(𝒜), these sets will be denoted
by Mark(𝒜) and Mark⋆(ℳ(𝒜)), respectively.

The categories introduced in this section form a commutative diagram

L+
1 cg

// //
((

((��

L+
1 pos
��

��
ProbModfin

// // ProbMod // // StatMod // //

OO

QModM // // QMod+

ProbModfin(𝒳 )

OO

OO

ProbMod(𝒜, 𝜇) // //
OO

OO

StatMod(𝒜) //
𝑐 //

OO

OO

QModM(𝒩 ) // //

OO

OO

QMod+(𝒩 ),

OO

OO

(158)
where the faithful functor 𝑐 exists if 𝐿∞(𝒜) is a 𝑊 *-subalgebra of 𝒩 , and is full if 𝐿∞(𝒜) ∼= 𝒩 (in
such case it defines an equivalence of categories).

3 Information distances

Given any set𝑋, a distance is defined as a map𝐷 : 𝑋×𝑋 → [0,∞] such that𝐷(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦.
A distance is called: bounded iff ran(𝐷) = R+; symmetric iff 𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥); metrical (or
Fréchet [256]) iff it is bounded, symmetric and satisfies triangle inequality

𝐷(𝑥, 𝑧) ≤ 𝐷(𝑥, 𝑦) +𝐷(𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋. (159)

26



We will use the symbol 𝑑 instead of 𝐷 to denote metrical distances. We define a statistical dis-
tance as a distance on a statistical model ℳ(𝒜) ⊆ 𝐿1(𝒜)+. A quantum distance is defined as a
distance on a quantum model ℳ(𝒩 ) ⊆ 𝒩+

⋆ .17 We will use the notion information distance to
refer unspecifically to statistical and quantum distances. A relative entropy is defined as a map
S : 𝑋 × 𝑋 → [−∞, 0] such that −S is an information distance. This closely follows Wiener’s idea
that «amount of information is the negative of the quantity defined as entropy» [769]. First works
in which information distances were discussed are [478, 74, 73, 75, 76, 601, 351, 284, 489, 303, 418].
See [312, 603] for a review of various quantifications of (dis)similarity in the statistical context, and
[3, 1, 2, 182, 239, 186, 160] for review and characterisations of various information distances and other
quantifications of (dis)similarity in the context of information theory. First known examples of metrical
quantum distances on 𝒩+

⋆ were: the Jauch–Misra–Gibson–Kronfli distance [343, 412, 300],

𝑑𝐿1(𝒩 )(𝜑, 𝜓) :=
1

2
||𝜑− 𝜓||𝒩⋆ ; (160)

the Bures distance [127],
𝑑Bures(𝜑, 𝜓) := inf

(ℋ,𝜋)
{||𝜁𝜋(𝜑) − 𝜁𝜋(𝜓)||ℋ} , (161)

where 𝜁𝜋(𝜔) ∈ ℋ is defined by 𝜔(𝑥) = ⟨𝜁𝜋(𝜔), 𝜋(𝑥)𝜁𝜋(𝜔)⟩ℋ ∀𝑥 ∈ 𝒩 for some representation (ℋ, 𝜋) of
𝒩 and the infimum varies over all possible representations; the Araki metrical distance [32, 35]; the
Gudder distance [293]. For further examples of metrical quantum distances see [212, 301]. First non-
metrical quantum distance was introduced by Umegaki [735, 736] for 𝑊 *-algebras admittion faithful
normal semi-finite traces. Its generalisation to arbitrary 𝑊 *-algebras was carried in [39, 40] (see also
[726, 598] for equivalent constructions), and reads

𝐷1(𝜔, 𝜑) =

{︂
(𝜑− 𝜔)(I) + ⟨𝜉𝜋(𝜔), log(∆𝜔,𝜑)𝜉𝜋(𝜔)⟩ℋ : 𝜔 ≪ 𝜑
+∞ : otherwise. (162)

Quantum distances will serve us as a principal tool for quantification of information content of
quantum states and quantum models. We will be interested in the families of quantum distances that
usually will be nonmetrical and, moreover, nonsymmetric. In Section 3.1 we discuss the family of
quantum distances that are nonincreasing under coarse grainings, called f-distances. This property
can be understood as a requirement of compatibility of the quantum distance on a quantum model
with the structure of the category QModM, expressing the requirement that “the coarse graining
of information models should always be indicated by nonincreasing of the quantification of relative
information content of information states”. As a result, various information geometric structures on
quantum models arising from this family of distances by means of Eguchi equations (416)-(418) are
also compatible with the structure of QModM (see Section 5.2). In Section 3.2 we consider a class̃︀𝐷Ψ of two-point functionals18 on vector spaces, known as Brègman functionals, which have another
remarkable property. They provide a generalisation of pythagorean theorem beyond the framework of
Euclidean and Hilbert spaces, allowing (under some conditions) for an additive decomposition under
nonlinear projection onto convex subset, where the projection is defined as a unique minimiser of this
functional. While some of the Brègman functionals are also distances, which allows to consider them
as information distances in the case of 𝐿1(𝒜) or 𝐿1(𝒩 ) vector spaces, this perspective is of limited
applicability, especially when infinite dimensional (nonparametric) quantum models are considered.

17The functions that we call ‘(quantum/statistical) distances’ are often called ‘(quantum) information divergences’.
However, this causes very unfortunate collision of terms with well established notion of divergence used in differential
calculus and differential geometry. Moreover, the term ‘divergence’ was introduced and used by Kullback and Leibler
[418] in the context of relative entropy, but in order to refer to an example of what we call a symmetric distance. Rényi
[614] proposed to use the term ‘information gain’. Chencov [152] proposed to use the term ‘deviation’, but it seems
for us to sound too awkward comparing with a generality and omnipresence of its designate. Eguchi [243] (following
Pfanzagl [582, 583]) used the term ‘contrast functional’. We think that it is more reasonable to extend the range of the
meaning of term ‘distance’, which is also in agreement with some of the prominent works in the field of information
theory, e.g. [144, 184, 557].

18As opposed to terminology of [404], in this paper we will use the term functional to refer to any K-valued, but not
necessarily K-linear, function on the vector space over K or on a cartesian product of such vector spaces.
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For this reason, in Section 3.3 we construct a family of dualistic Brègman distances. The key elements
of this construction are the Young–Fenchel inequality, dual pairs of coordinate systems and a suitable
generalisation of the bijective Legendre transform to the infinite dimensional case. This approach
includes the large part of theory of Brègman (and Alber) functionals as a special case.

The families of f-distances and Brègman distances are definitely two most important classes of
information distances (cf. e.g. [182, 185, 186]). This leads to ask about the class of quantum in-
formation distances that belong to both families. Amari has recently shown [19] that for the finite
dimensional statistical models 𝐿1(𝒳 ,f(𝒳 ), �̃�)+ this intersection is characterised by the Liese–Vajda
family of 𝛾-distances. Following this result, in Section 3.4 we use the Falcone–Takesaki theory of non-
commutative integration to construct the canonical noncommutative generalisation of the Liese–Vajda
family, and show that the resulting family of quantum 𝛾-distances belongs to an intersection of quan-
tum f-distances 𝐷f and quantum Brègman distances 𝐷Ψ. We conjecture that our family of quantum
𝛾-distances on 𝐿1(𝒩 )+ ∼= 𝒩+

⋆ is characterised by this property. Similarly to characterisation of quan-
tum f-distances by the monotonicity under coarse grainings, and characterisation of Brègman distances
by the generalised pythagorean equation, the proof of this conjecture remains an open problem.

Let 𝐷 be an information distance on an information model ℳ. Given 𝒬1,𝒬2 ⊆ ℳ and 𝜓 ∈ 𝒬1,
we define a 𝐷-projection from 𝒬1 to 𝒬2 as a map

P𝐷
𝒬2|𝒬1

: 𝜓 ↦→ arg inf
𝜑∈𝒬2

{𝐷(𝜑, 𝜓)} , (163)

whenever the right hand side is a singleton set. We will denote P𝐷
𝒬2

:= P𝐷
𝒬2|ℳ. From definition

of 𝐷 it follows that P𝐷
𝒬|𝒬(𝜓) = 𝜓 ∀𝜓 ∈ 𝒬 ∀𝒬 ⊆ ℳ, hence P𝐷

𝒬|𝒬 is an idempotent operation on
an arbitrary information submodel 𝒬. A family of 𝐷-projections {P𝐷

𝒬𝑖|𝒬𝑗 | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽}, where
𝐼 and 𝐽 are arbitrary sets, and 𝒬𝑖,𝒬𝑗 ⊆ ℳ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 , will be called zone consistent iff
P𝐷

𝒬𝑖|𝒬𝑗 = P𝐷
𝒬𝑖|𝒬𝑘 ∘P

𝐷
𝒬𝑘|𝒬𝑗 ∀𝑘 ∈ 𝐼 ∩ 𝐽 . A category consisting of objects given by quantum models as

objects and zone consistent 𝐷-projections as arrows will be denoted QMod𝐷. A restriction of objects
to subsets of 𝒩+

⋆ for a given 𝑊 *-algebra 𝒩 defines a category QMod𝐷(𝒩 ). Note that QMod𝐷

(respectively, QMod𝐷(𝒩 )) is not a subcategory od QMod+ (respectively, QMod+(𝒩 )), because
zone consistent 𝐷-projection P𝐷

𝒬2|𝒬1
may possess no extension to the full positive cone of 𝐿1(𝒬1).19

3.1 f-distances

A function 𝑓 : 𝑋 → [−∞,+∞] on a set 𝑋 is called: proper iff it never takes the value −∞ and
its effective domain efd(𝑓) := {𝑥 ∈ 𝑋 | 𝑓(𝑥) ̸= +∞} is nonempty. A proper function 𝑓 : 𝑋 →
[−∞,+∞] is called convex iff [352, 353]

𝑓(𝜆𝑥+ (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) ∀𝑥, 𝑦 ∈ efd(𝑓) ∀𝜆 ∈ [0, 1]. (164)

If this inequality is strict for all 𝜆 ∈ ]0, 1[ and all 𝑥, 𝑦 ∈ efd(𝑓) with 𝑥 ̸= 𝑦, then 𝑓 is called strictly
convex. A function 𝑓 : 𝑋 → [−∞,+∞] is called: concave iff −𝑓 is convex; strictly concave iff −𝑓
is strictly convex. A proper function 𝑓 : 𝑋 → [−∞,+∞] is convex iff its epigraph

epi(𝑓) := {(𝑥, 𝑡) ∈ 𝑋 × R | 𝑓(𝑥) ≤ 𝑡} (165)

is convex. If 𝑓1 is strictly convex and 𝑓2 is convex, then 𝑓1 +𝑓2 is strictly convex whenever it is proper.
A proper function 𝑓 : 𝑋 ×𝑋 → [−∞,+∞] is called jointly convex iff

𝑓(𝜆𝑥1 +(1−𝜆)𝑥2, 𝜆𝑥3 +(1−𝜆)𝑥4) ≤ 𝜆𝑓(𝑥1, 𝑥3)+(1−𝜆)𝑓(𝑥2, 𝑥4) ∀𝜆 ∈ [0, 1] ∀𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ efd(𝑓).
(166)

19For any quantum model ℳ(𝒩 ) we define 𝐿1(ℳ(𝒩 )) as a smallest space 𝐿1(𝒞), by means of a partial order given
by isometric embeddings, for some 𝑊 *-algebra 𝒞 that contains the linear span of ℳ(𝒩 ). Note that the existence of
infimum in such poset is not guaranteed a priori, and requires to be proven.
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If 𝑋 is a topological space, then a function 𝑓 : 𝑋 → [−∞,+∞] is called: closed iff its epigraph is a
closed subset of 𝑋×R; lower semi-continuous at 𝑥0 ∈ 𝑋 iff lim inf𝑥→𝑥0 𝑓(𝑥) ≥ 𝑓(𝑥0); lower semi-
continuous iff it is lower semi-continuous at all 𝑥 ∈ 𝑋. Every 𝑓 is closed iff is it lower semi-continuous
(with respect to the same topology) [48].

Consider a function f : R+ → R that is convex on ]0,∞[, satisfies f(1) = 0, is strictly convex at 1,
and f(0) := lim𝜆→+0 f(𝜆) ∈ ] −∞,+∞]. If fc(𝜆) := 𝜆f( 1

𝜆) for 𝜆 > 0 and fc(0) := lim𝜆→∞
1
𝜆 f(𝜆) ∈ ] −

∞,+∞], then fc : R+ → R is convex on ]0,∞[, and fcc = f [179]. The Csiszár–Morimoto f-distance
[176, 500, 11]20 on a statistical model ℳ(𝒜) is defined as a function 𝐷f : ℳ(𝒜) × ℳ(𝒜) → [0,∞]
such that

𝐷f(𝜔, 𝜑) :=

{︃ ∫︀
𝜈𝜑f
(︁
𝜇𝜔
𝜈𝜑

)︁
: 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise,
(167)

where 𝜇𝜔 and 𝜈𝜑 are measures on 𝒜 determined by 𝜑, 𝜔 ∈ ℳ(𝒜), and the conventions

f(0) · 0 := 0 (even if f(0) = ∞), 0 · f
(︂

0

0

)︂
:= 0, 0 · f

(︂
𝜆

0

)︂
:= 𝜆 lim

𝜆→+0

f(𝜆)

𝜆
, 𝜆 > 0 ⇒ 𝜆f

(︂
𝜆

0

)︂
:= 𝜆fc(0)

(168)
are used. Under the above assumptions, R+ × R+ ∋ (𝜆1, 𝜆2) ↦→ 𝜆2f

(︁
𝜆1
𝜆2

)︁
∈ ] − ∞,+∞] is jointly

convex and lower semi-continuous. From this it follows that 𝐷f(𝜔, 𝜑) is lower semi-continuous on
𝐿1(𝒜)+ × 𝐿1(𝒜)+0 endowed with norm topologies, and that it is jointly convex if f(0) = 0 [453].
The early examples of the Csiszár–Morimoto f-distance include: the Pearson–Kagan χ2-distance
[558, 368],

f(𝜆) = (𝜆− 1)2 ⇒ 𝐷f(𝜔, 𝜑) =

∫︁
(𝜇𝜔 − 𝜈𝜑)2

𝜈𝜑
=

∫︁
𝜈𝜑

(︂
𝜇𝜔
𝜈𝜑

− 1

)︂2

=: χ2(𝜔, 𝜑); (169)

a total variation distance [646],

f(𝜆) = |𝜆− 1| ⇒ 𝐷f(𝜔, 𝜑) =

∫︁
|𝜇𝜔 − 𝜈𝜑|; (170)

a squared Kakutani–Hellinger distance [321, 372],

f(𝜆) = (1 −
√
𝜆)2 ⇒ 𝐷f(𝜔, 𝜑) =

∫︁
(
√
𝜇𝜔 −√

𝜈𝜑)2; (171)

the Onicescu distance (‘information energy’) [552, 562],

f(𝜆) = 𝜆2 lim 𝐷f(𝜔, 𝜑) =

∫︁
𝜈𝜑

(︂
𝜇𝜔
𝜈𝜑

)︂2

; (172)

see also [490, 187, 739]. The distance (170) is a unique, up to a positive scalar multiple, Csiszár–
Morimoto f-distance that is also a metrical distance [388]. If there exists a function ̃︀f : R+ → R that
satisfies the same conditions as f above and, moreover,

f(𝜆) =̃︀f(𝜆) −D+
̃︀f(1), (173)

where D+ denotes the right derivative,

D+
̃︀f(𝜆) := lim

𝑡→+0

1

𝑡

(︁̃︀f(𝜆+ 𝑡) −̃︀f(𝜆)
)︁
, (174)

and if some representation of 𝒜 in terms of a localisable measurable space (𝒳 ,f(𝒳 ),f0(𝒳 )) is chosen,
then the definition (167) can be extended to

𝐷f(𝜔, 𝜑) :=

∫︁
𝜐
𝜈𝜑
𝜐
f

(︂
�̃�𝜔
𝜐

⧸︂
𝜈𝜑
𝜐

)︂
, (175)

20Somewhat similar functionals were considered earlier in [508] under the name “generalised Hellinger integrals”, and
with different assumptions on f (it was considered to be a Young function). See also [724, 725].
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where �̃�𝜔, 𝜈𝜑 ∈ Meas+fin(𝒳 ,f(𝒳 )), while 𝜐 ∈ Meas+(𝒳 ,f(𝒳 )) is such that f0(𝒳 ) = f𝜐(𝒳 ) (hence,
(𝒳 ,f(𝒳 ),f𝜐(𝒳 )) is localisable) and 𝜈𝜑 ≪ 𝜐 and �̃�𝜔 ≪ 𝜐, but otherwise arbitrary. This extends
the definition of (175) given in [706] to the case of not necessarily finite 𝜐 (see also [188, 454] for a
formulation taking into account the singular parts of the measures and [294] for a generalisation of 𝐷f

to a quantification of (dis)similarity of more than two arguments). The values of (175) are independent
of the choice of 𝜐 [453]. It was introduced in [178] for probability models, see also [639, 453] for a
discussion of relationship between (175) and (167) in that case.

Every Csiszár–Morimoto f-distance is a statistical distance (the assumption f(1) = 0 alone implies
that 𝜔 = 𝜑 ⇒ 𝐷f(𝜔, 𝜑) = 0), is jointly convex in both variables,

𝐷f(𝜆𝜔1 + (1 − 𝜆)𝜔2, 𝜆𝜑1 + (1 − 𝜆)𝜑2) ≤ 𝜆𝐷f(𝜔1, 𝜑1) + (1 − 𝜆)𝐷f(𝜔2, 𝜑2) ∀𝜆 ∈ [0, 1], (176)

and satisfies [738]

𝐷f(𝜔, 𝜑) = 𝐷fc(𝜑, 𝜔) ⇐⇒ ∃𝑡 ∈ R ∀𝜆 ∈ ]0,∞[ f(𝜆) − fc(𝜆) = (𝜆− 1)𝑡, (177)
𝐷f(𝜔, 𝜑) = 𝐷f(𝜑, 𝜔) ⇐ f(𝜆) = fc(𝜆) ∀𝜆 ∈ ]0,∞[ . (178)

Moreover, if f is twice differentiable at 𝜆 = 1 and f′′(1) > 0, with f′′ denoting the second derivative of
𝑓 , then [194]

lim
𝜔→𝜑

𝐷f(𝜔, 𝜑)

χ2(𝜔, 𝜑)
=

1

2
f′′(1). (179)

The properties of 𝐷f are analysed in detail in [453, 55, 710, 454, 455, 706]. The family (167) was
characterised by Csiszár [180], in the case then ℳ(𝒜) is a finite probability simplex 𝐿1(𝒳 ,f(𝒳 ))+1 ,
as a unique function 𝐷 : 𝐿1(𝒳 ,f(𝒳 ))+1 × 𝐿1(𝒳 ,f(𝒳 ))+1 → R such that

1) 𝐷(𝜔, 𝜑) ≥ 𝐷(𝑇⋆(𝜔), 𝑇⋆(𝜑)),

2) 𝐷(𝜔, 𝜑) = 𝐷(𝑇⋆(𝜔), 𝑇⋆(𝜑)) ⇐⇒ 𝜇𝜔
𝜈𝜑

=
𝜇𝑇⋆(𝜔)
𝜈𝑇⋆(𝜑)

,

3) 𝐷(𝜆𝜔1 + (1 − 𝜆)𝜔2, 𝜆𝜑1 + (1 − 𝜆)𝜑2) ≤ 𝜆𝐷(𝜑1, 𝜔1) + (1 − 𝜆)𝐷f(𝜑2, 𝜔2) ∀𝜆 ∈ ]0, 1[,

for all coarse grainings 𝑇⋆ : 𝐿1(𝒳 ,f(𝒳 ))+1 → 𝐿1(𝒳 ,f(𝒳 ))+1 satisfying 𝑇⋆(𝜑) =
∑︀

𝑥∈𝒴𝑖 𝜑(𝑥), where
𝒴𝑖 ⊆ 𝒳 satisfy 𝒴𝑖 ∩ 𝒴𝑗 = ∅ for 𝑖 ̸= 𝑗,

⋃︀
𝑖 𝒴𝑖 = 𝒳 and 𝑖 ∈ {1, . . . ,𝑚} with 𝑚 ∈ N arbitrary for each

𝑇⋆. Another characterisation of the Csiszár–Morimoto f-distances, involving a more general class of
information models and coarse grainings, but also essentially dependent on the conditions 1) and 2)
above, was given in [182].

In the most general representation independent formulation, the monotonicity inequality of 𝐷f

(called also ‘data processing theorem’ [178, 172]) reads

𝐷f(𝜔, 𝜑) ≥ 𝐷f(𝜔 ∘ 𝑇, 𝜑 ∘ 𝑇 ) ∀𝜔, 𝜑 ∈ ℳ(𝒜) ∀𝑇 ∈ Mark(𝐿∞(𝒜)), (180)

or, equivalently,

𝐷f(𝜔, 𝜑) ≥ 𝐷f(𝑇⋆(𝜔), 𝑇⋆(𝜑)) ∀𝜔, 𝜑 ∈ ℳ(𝒜) ∀𝑇⋆ ∈ Mark⋆(ℳ(𝒜)). (181)

For a detailed discussion of the case when the elements of ℳ(𝒜) are dominated by a finite countably
additive measure (including the measure theoretic characterisation of equality in (181)), see [176, 178,
518, 453, 454].

A function f : R+ → R is called: operator monotone increasing [470] iff

0 ≤ 𝑥 ≤ 𝑦 ⇒ f(𝑥) ≤ f(𝑦) ∀𝑥, 𝑦 ∈ B(ℋ); (182)

operator monotone decreasing iff (−f) is operator monotone increasing; operator convex [409]
iff

f(𝜆𝑥+ (1 − 𝜆)𝑦) ≤ 𝜆f(𝑥) + (1 − 𝜆)f(𝑦) ∀𝑥, 𝑦 ∈ B(ℋ)+ ∀𝜆 ∈ [0, 1]; (183)
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operator concave iff (−f) is operator convex [28]. Every operator monotone increasing function is
operator concave, while an operator concave function is operator monotone increasing if it is bounded
from below [307]. Every operator convex function on R+ is continuous on ]0,+∞[. See [66, 202, 234, 28,
72] for a discussion of operator convex and operator monotone increasing functions and [72, 326, 327]
for their integral representations. If 𝒞1 and 𝒞2 are 𝐶*-algebras, and 𝑇 : 𝒞1 → 𝒞2 is a unital positive
linear function, then the Schwarz–Kadison inequality 𝑇 (𝑥*𝑥) ≥ 𝑇 (𝑥*)𝑇 (𝑥) holds for all normal
𝑥 ∈ 𝒞1 [367]. A linear function 𝑇 : 𝒞1 → 𝒞2 will be called Schwarz21 iff

𝑇 (𝑥*𝑥) ≥ 𝑇 (𝑥*)𝑇 (𝑥) ∀𝑥 ∈ 𝒞1. (184)

Every 2-positive linear function between 𝐶*-algebras is Schwarz [157]. Hence, in particular, all com-
pletely positive linear maps, and all quantum Markov maps, are Schwarz.

If f : R+ → R is operator convex (hence, continuous on ]0,∞[) with f(0) ≤ 0 and f(1) = 0,
and if (ℋ, 𝜋, 𝐽,ℋ♮) is standard representation of a 𝑊 *-algebra 𝒩 , then the Kosaki–Petz f-distance
[397, 565] is defined as a function 𝐷f : 𝒩+

⋆ ×𝒩+
⋆ → [0,∞] such that

𝐷f(𝜔, 𝜑) :=

{︂
⟨𝜉𝜋(𝜑), f(∆𝜔,𝜑)𝜉𝜋(𝜑)⟩ℋ : 𝜔 ≪ 𝜑
+∞ : otherwise, (185)

where 𝜉𝜋(𝜑) is standard vector representative of 𝜑 in ℋ♮. See [397, 400, 550] for some functional
analytic properties of (185). It is a quantum distance. If 𝒩 is a type I 𝑊 *-algebra, then (185) takes
a form [567]

𝐷f(𝜔, 𝜑) :=

{︃ ⟨
I, f(L𝜌𝜔R−1

𝜌𝜑
)R𝜌𝜑I

⟩
G2(ℋ)

=
⟨
𝜌
1/2
𝜑 , f(L𝜌𝜔R

−1
𝜌𝜑

)𝜌
1/2
𝜑

⟩
G2(ℋ)

: 𝜔 ≪ 𝜑

+∞ : otherwise.
(186)

As an example of (186), the operator convex function f(𝜆) = (𝜆−1)2 gives rise to a quantum analogue
of the Pearson–Kagan distance (169), considered e.g. in [446],

𝐷f(𝜔, 𝜑) = tr(𝜌𝜑 − 2𝜌𝜔 + 𝜌2𝜔𝜌
−1
𝜑 ) = tr

(︁
(𝜌𝜑 − 𝜌𝜔)𝜌−1

𝜑 (𝜌𝜑 − 𝜌𝜔)
)︁
. (187)

By Petz’s theorem [565], if f is bounded from above (hence, operator monotone decreasing), then 𝐷f

given by (185) satisfies
𝐷f(𝜔, 𝜑) ≥ 𝐷f(𝑇⋆(𝜔), 𝑇⋆(𝜑)) ∀𝜔, 𝜑 ∈ 𝒩+

⋆ (188)

for any unital 2-positive function 𝑇 such that dom(𝑇⋆) = 𝒩+
⋆ (hence, in particular, for every quantum

coarse graining 𝑇⋆ ∈ Mark⋆(𝒩+
⋆ )), and the equality is attained iff 𝑇⋆ is an isomorphism (see [327] for a

proof when 𝒩 is of type I). In the case f(𝜆) = 𝜆 log 𝜆 this result is known as Uhlmann’s monotonicity
theorem [726]. If 𝑇 is a *-homomorphism, then (188) holds without assuming that f is bounded from
above (which corresponds to weakening operator monotonicity to operator convexity) and without
f(0) ≤ 0. In [716] the inequality (188) has been shown to hold for any quantum coarse graining 𝑇⋆
such that dom(𝑇⋆) = 𝒩+

⋆ and for any Kosaki–Petz f-distance (without assuming that f is bounded
from above), which provides a direct generalisation of (181) to

𝐷f(𝜔, 𝜑) ≥ 𝐷f(𝑇⋆(𝜔), 𝑇⋆(𝜑)) ∀𝜔, 𝜑 ∈ ℳ(𝒩 ) ∀𝑇⋆ ∈ Mark⋆(ℳ(𝒩 )). (189)

In [327] the inequality (188) has been shown to hold for all unital Schwarz functions 𝑇 such that
dom(𝑇⋆) = 𝒩+

⋆ and for any Kosaki–Petz distance. These two results were proven only for type I
𝑊 *-algebras, but it seems that they hold for all 𝑊 *-algebras. It is not known [577] whether (188) or
(189) characterise Kosaki–Petz f-distances in a way similar to Csiszár’s characterisation of the Csiszár–
Morimoto f-distances. Every Kosaki–Petz f-distance (𝜔, 𝜑) ↦→ 𝐷f(𝜔, 𝜑) is lower semi-continuous on
𝒩+
⋆ × 𝒩+

⋆0 endowed with the product of norm topologies [565]. If f(0) = 0 then 𝐷f(𝜔, 𝜑) is jointly
21In [327] such functions are called ‘Schwarz contractions’, their preduals are called ‘substochastic maps’, while the

preduals of unital ‘Schwarz contractions’ are called ‘stochastic maps’.
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convex in 𝜔 and 𝜑 (in the sense of (176)) [397, 565]. If 𝒩 is commutative and 𝒩 = 𝐿∞(𝒜) for some
mcb-algebra 𝒜, then every Kosaki–Petz f-distance on 𝒩+

⋆ is a Csiszár–Morimoto f-distance. Like its
commutative counterpart, the Kosaki–Petz f-distance satisfies also (178).

The early results on existence and characterisation of the projections determined by constrained
minimisation of the Csiszár–Morimoto f-distances [178, 452, 639, 640, 453, 182, 712, 184] were de-
veloped as an extension and generalisation of the early results on existence and characterisation of
the projections determined by minimisation of the WGKL distance (see Section 3.4) under linear
constraints [416, 417, 561, 150, 179, 181] (see [189] for a recent account of this topic). Further de-
velopment of the general theory of constrained minimisation of the Csiszár–Morimoto f-distances
was strongly influenced by the results of Borwein and Lewis [98, 99, 100, 101, 102, 103, 104, 97,
105, 106, 107, 110, 449, 109, 111, 108], who applied Rockafellar’s approach to minimisation prob-
lems based on convex duality [627, 628, 631, 630, 632] (see also [12, 86] for more recent discus-
sion), and by the partially related development of the ‘maximum entropy on the mean’ approach
[530, 531, 268, 196, 269, 208, 433, 69, 270, 434, 188]. This has led to establishing three general ap-
proaches to constrained variational extremisation of functions of type (167), developed by Broniatowski
& Keziou [119], Csiszár & Matúš [189, 190, 191, 193, 192], and Léonard [441, 440, 442, 443, 444, 445],
respectively. These approaches are not equivalent, and each has its own merits. In particular, [119]
covers the problems of minimisation of Kakutani–Hellinger and Burg22 distances (cf. e.g. [128, 68] for
their relevance), [192] establishes the pythagorean theorem, while [443] obtains existence and unique-
ness results for a very general family of constraints. In all these approaches the minimisation problem
is considered over the spaces of nonnormalised measures. Unfortunately, none of these approaches
has been generalised to noncommutative case yet, and also no other approaches dealing with the con-
strained variational extremisation of functionals (185) are known. We consider Léonard’s approach
as the most promising candidate for a generalisation to the case of 𝑊 *-algebras and their preduals,
due to its geometric character (it relies almost exclusively on convex and Banach space geometry and
duality), as opposed to measure theoretic and topological character of two alternative approaches.

3.2 Brègman functionals

At least six different inequivalent general notions of Brègman functional are present in the literature,
each one having its own virtues and flaws (we review them below, to a reasonable extent determined
by our later applications). The substantial part of the theory of Brègman functionals is developed
for the reflexive Banach spaces. However, this excludes the discussion of the most interesting case
of 𝐿1 spaces, which are naturally related with the WGKL and the Umegaki–Araki distances. For
that case, there are at least three approaches possible: the general approach based on one-sided
Gâteaux derivatives on arbitrary Banach spaces, the measure theoretic approach based on integrals
over premeasurable spaces and pointwise composition of gradients over R𝑛 with R𝑛-valued measure
functions, and the intermediate approach, which can be applied to arbitrary Banach space, but requires
its Fréchet differentiability.

The results on Brègman functionals and Brègman functional projections are scattered through the
literature, and the main role of this section is to collect them together in a systematic way. Our main
references for infinite dimensional convex variational analysis are [52, 584, 633, 162, 132, 108, 793, 116,
115, 421, 497, 113]. Standard expositions of a finite dimensional theory are [629, 632, 246, 161].

A dual pair is defined [214, 215, 476] as a triple (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d), where 𝑋 and 𝑋d are vector
spaces over K ∈ {R,C}, equipped with a bilinear duality pairing [[·, ·]]𝑋×𝑋d : 𝑋 ×𝑋d → K satisfying
23

[[𝑥, 𝑦]]𝑋×𝑋d = 0 ∀𝑥 ∈ 𝑋 ⇒ 𝑦 = 0, (190)

[[𝑥, 𝑦]]𝑋×𝑋d = 0 ∀𝑦 ∈ 𝑋d ⇒ 𝑥 = 0. (191)

22Defined as a Csiszár–Morimoto f-distance with f(𝜆) = − log 𝜆 + 𝜆 − 1. It will be identified in Section 3.4 with a
distance 𝐷𝛾=0 in the Liese–Vajda family of 𝛾-distances.

23We use here the general setting of dual vector spaces, and do not restrict our considerations to locally convex
topological vector spaces, because we have in mind the possible future use of convenient vector spaces [266, 411].
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An example of a dual pair is given by a Banach space 𝑋, 𝑋d = 𝑋⋆, and the dual pairing given by the
Banach space duality. The Fenchel subdifferential [251, 498, 121] of a proper Ψ : 𝑋 → [−∞,+∞]
at 𝑥 ∈ efd(Ψ) is a set

𝜕Ψ(𝑥) := {𝑦 ∈ 𝑋d | Ψ(𝑧) − Ψ(𝑥) ≥ re [[𝑧 − 𝑥, 𝑦]]𝑋×𝑋d ∀𝑧 ∈ 𝑋}. (192)

For 𝑥 ∈ 𝑋 ∖ efd(Ψ) one defines 𝜕Ψ(𝑥) := ∅. The elements of 𝜕Ψ(𝑥) are called Fenchel subgradients
at 𝑥. The Fenchel dual of Ψ is defined as ΨL : 𝑋d → [−∞,+∞] such that [80, 481, 251]

ΨL(𝑦) := sup
𝑥∈𝑋

{re [[𝑥, 𝑦]]𝑋×𝑋d − Ψ(𝑥)} ∀𝑦 ∈ 𝑋d. (193)

Given 𝑋dd such that (𝑋d, 𝑋dd, [[·, ·]]𝑋d×𝑋dd) is a dual pair and 𝑋 ⊆ 𝑋dd, one defines ΨLL : 𝑋 →
[−∞,+∞] by ΨLL := (ΨL)L. The functions ΨL and ΨLL are convex for any Ψ, and ΨLL|𝑋 ≤ Ψ. If
efd(Ψ) ̸= ∅, then ΨL(𝑥) > −∞ ∀𝑥 ∈ 𝑋d. If (𝑋,𝑋t) is a dual pair of locally convex topological vector
spaces, equipped with weak-⋆ and weak topologies, respectively, and Ψ is proper, then ΨL is weakly-⋆
lower semi-continuous, ΨLL is weakly lower semi-continuous, and (ΨLL|𝑋 = Ψ holds iff Ψ is weakly
lower semi-continuous and convex) [330, 120]. A lower semi-continuous convex Ψ on 𝑋 is proper iff
ΨL on 𝑋t is proper. If 𝑋 is a Banach space and Ψ : 𝑋 → [−∞,+∞] is proper, convex, then it is
lower semi-continuous in norm topology of 𝑋 iff it is lower semi-continuous in weak topology on 𝑋.
In what follows, we will always assume efd(Ψ) ̸= ∅. If Ψ : 𝑋 → R ∪ {+∞} is convex and 𝑦 ∈ 𝑋d,
then the Young–Fenchel inequality [779, 251]

Ψ(𝑥) + ΨL(𝑦) − re [[𝑥, 𝑦]]𝑋×𝑋d ≥ 0 (194)

holds, with equality iff 𝑦 ∈ 𝜕Ψ(𝑥). If (𝑋,𝑋t) is a dual pair of locally convex topological vector spaces,
and Ψ is proper, convex, and lower semi-continuous, then equality in (194) holds iff 𝑥 ∈ 𝜕ΨL(𝑦). There
exist various criteria for nonemptiness of Fenchel subdifferential. In particular, if (𝑋,𝑋d) are Banach
spaces, [[·, ·]]𝑋×𝑋d is a Banach space duality, and Ψ is proper, convex and lower semi-continuous in
norm topology of 𝑋, then the Fenchel–Rockafellar theorem [629, 115] states that 𝜕Ψ(𝑥) ̸= ∅ ∀𝑥 ∈
core(efd(Ψ)), where

core(𝑌 ) := {𝑥 ∈ 𝑌 | ∀ℎ ∈ {𝑧 ∈ 𝑋 | ||𝑧|| = 1} ∃𝜀 > 0 ∀𝑡 ∈ [0, 𝜀] 𝑥+ 𝑡ℎ ∈ 𝑌, ∅ ̸= 𝑌 ⊆ 𝑋} , (195)

and int(𝑌 ) ⊆ core(𝑌 ). If 𝑋 is a Banach space and Ψ : 𝑋 → [−∞,+∞] is proper, convex, and lower
semi-continuous in norm topology of 𝑋, then equivalent are: 𝑥 ∈ int(efd(Ψ)); 𝑥 ∈ core(efd(Ψ)); Ψ is
continuous at 𝑥. The key role of Fenchel subdifferential 𝜕Ψ(𝑥) is to characterise minimisers of Ψ at 𝑥.
In particular, if 𝑋 is a Banach space, 𝑥 ∈ 𝑋, and Ψ : 𝑋 → [−∞,+∞] is proper and convex, then

𝑥0 ∈ arg inf
𝑥∈𝑋

{Ψ(𝑥)} ⇐⇒ 0 ∈ 𝜕Ψ(𝑥0). (196)

If Ψ is also lower semi-continuous with respect to norm topology on 𝑋, then the conditions in (196)
are equivalent to 𝜕ΨL(0)∩𝑋⋆ ̸= ∅, where ΨL is a Fenchel dual with respect to the Banach duality of
𝑋 and 𝑋⋆.

If (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d) is a dual pair and Ψ : 𝑋 → ] −∞,+∞] is proper, then:

efd(𝜕Ψ) := {𝑥 ∈ efd(Ψ) | 𝜕Ψ(𝑥) ̸= ∅}, (197)

efc(𝜕Ψ) := {𝑦 ∈ 𝑋d | 𝑦 ∈ 𝜕Ψ(𝑥), 𝑥 ∈ efd(𝜕Ψ)}, (198)

(𝜕Ψ)−1 : 𝑋d ∋ 𝑦 ↦→ (𝜕Ψ)−1(𝑦) := {𝑥 ∈ 𝑋 | 𝑦 ∈ 𝜕Ψ(𝑥)} ∈ ℘(𝑋), (199)

and Ψ is called cofinite iff ΨL is everywhere finite. If (𝑋d, 𝑋dd, [[·, ·]]𝑋d×𝑋dd) is a dual pair and
𝑋 ⊆ 𝑋dd, then Ψ is called adequate [745] iff efd((𝜕Ψ)−1) = efd(𝜕ΨL) ̸= ∅ and (𝜕Ψ)−1(𝑦) = {*}
∀𝑦 ∈ efd((𝜕Ψ)−1). If 𝑋 is a Banach space, 𝑋d = 𝑋⋆, and Ψ is proper, convex, and lower semi-
continuous in norm topology on 𝑋, then int(efd(Ψ)) ⊆ efd(𝜕Ψ), and efd(𝜕Ψ) is dense in efd(Ψ).
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If 𝑋 is a vector space over K, 𝑡 ∈ R, and Ψ : 𝑋 → [−∞,+∞] is proper then the right Gâteaux
derivative of Ψ at 𝑥 ∈ 𝑋 in the direction ℎ ∈ 𝑋 reads

𝑋 ×𝑋 ∋ (𝑥, ℎ) ↦→ DG
+Ψ(𝑥;ℎ) := lim

𝑡→+0

Ψ(𝑥+ 𝑡ℎ) − Ψ(𝑥)

𝑡
∈ [0,+∞]. (200)

If 𝑥 is fixed and (200) exists for all ℎ ∈ 𝑋, then Ψ is called Gâteaux differentiable at 𝑥. If
Ψ : 𝑋 → ] −∞,+∞] is convex and Gâteaux differentiable at 𝑥, then DG

+Ψ(𝑥; ·) ∈ 𝜕Ψ(𝑥). If Ψ : 𝑋 →
] − ∞,+∞] is convex and continuous at 𝑥, then 𝜕Ψ(𝑥) = {*} iff Ψ is Gâteaux differentiable at 𝑥.
If Ψ : 𝑋 → ] −∞,+∞] is convex, lower semi-continuous, and Gâteaux differentiable at 𝑥, then it is
continuous at 𝑥. If 𝑋 is a Banach space and Ψ is convex and lower semi-continuous, then DG

+Ψ(𝑥; ·)
is convex on 𝑋, and continuous on int(efd(Ψ)), while DG

+Ψ(·, ·) is finite and upper semi-continuous on
int(efd(Ψ)) ×𝑋. If 𝑥 ∈ efd(Ψ) and DG

+Ψ(𝑥; ·) is continuous at some ℎ ∈ 𝑋, then 𝜕Ψ(𝑥) ̸= ∅. If 𝑋 is
a Banach space and Ψ is Gâteaux differentiable at 𝑥 ∈ 𝑋, then

DG
+Ψ(𝑥; 𝑦) =:

[︀[︀
𝑦,DG

𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ ∀𝑦 ∈ 𝑋 (201)

defines the Gâteaux derivative [271, 272, 273] (DGΨ)(𝑥) ≡ DG
𝑥 Ψ ∈ 𝑋⋆ of Ψ at 𝑥. A function

Ψ is called Gâteaux differentiable iff int(efd(Ψ)) ̸= ∅ and Ψ is Gâteaux differentiable for all
𝑥 ∈ int(efd(Ψ)). If 𝑋 is a Banach space, Ψ : 𝑋 → [−∞,+∞] is proper, convex, and lower semi-
continuous in norm topology, then: (i) if ΨL (with respect to Banach space duality) is strictly convex
at all elements of efd(ΨL), then Ψ is Gâteaux differentiable; (ii) if ΨL is Gâteaux differentiable at all
𝑥 ∈ 𝑋⋆, then Ψ is strictly convex at all elements of int(efd(Ψ)).

The above definitions of Gâteaux differentiablity can be provided alternatively for [−∞,+∞] re-
placed by some locally convex vector space 𝑌 and Ψ : 𝑋 → [−∞,+∞] replaced by 𝑓 : 𝑈 → 𝑌 , where
𝑈 is an open subset of a locally convex vector space 𝑋, but we are more concerned here with the way
in which the infinite values of Ψ are handled. If 𝑋 and 𝑌 are normed vector spaces, then the Fréchet
derivative [257, 259, 260] of a function 𝑓 : 𝑋 → 𝑌 at 𝑥 ∈ 𝑋 in the direction ℎ ∈ 𝑋 is defined as a
function DF𝑓 : 𝑋 ×𝑋 → 𝑌 such that DF𝑓(𝑥, ·) is linear and bounded and

lim
||ℎ||𝑋→0

⃒⃒⃒⃒
𝑓(𝑥+ ℎ) − 𝑓(𝑥) −DF𝑓(𝑥, ℎ)

⃒⃒⃒⃒
𝑌

||ℎ||𝑋
= 0. (202)

If such DF𝑓 exists, then it is unique and DF𝑓(𝑥, ·) ≡ DF
𝑥𝑓 . If 𝑋 is a vector space over K and 𝑌 = K,

then DF
𝑥𝑓 ∈ 𝑋⋆. If 𝑓 : 𝑋 → R above is replaced by Ψ : 𝑋 → [−∞,+∞] then the extension of

the Fréchet derivative to this case is done under the same conditions as for the Gâteaux derivative.
A function Ψ : 𝑋 → [−∞,+∞] on a normed space 𝑋 is called: Fréchet differentiable at 𝑥 iff
𝑥 ∈ efd(Ψ) and

∃𝑦 ∈ 𝑋⋆ ∀𝜖1 > 0 ∃𝜖2 > 0 ∀ℎ ∈ 𝑋 ||ℎ||𝑋 < 𝜖2 ⇒ |Ψ(𝑥+ ℎ) − Ψ(𝑥) − 𝑦(ℎ)| ≤ 𝜖1||ℎ||𝑋 ; (203)

Fréchet differentiable iff int(efd(Ψ)) ̸= ∅ and Ψ is Fréchet differentiable at all 𝑥 ∈ int(efd(Ψ)). If Ψ
is Fréchet differentiable, then it is also norm continuous and Gâteaux differentiable. For dim𝑋 < ∞
these two notions of derivative coincide.

A Banach space 𝑋 is called: strictly convex [258, 163] iff

∀𝑥, 𝑦 ∈ 𝑋 ||𝑥+ 𝑦|| = ||𝑥|| + ||𝑦||, 𝑥 ̸= 0 ̸= 𝑦 ⇒ ∃𝜆 > 0 𝑦 = 𝜆𝑥; (204)

Gâteaux differentiable [44, 492] iff ||·|| is Gâteaux differentiable at every 𝑥 ∈ 𝑋 ∖ {0}; uniformly
convex [163] iff

∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥|| = ||𝑦|| = 1, ||𝑥− 𝑦|| ≥ 𝜖1 ⇒
⃒⃒⃒⃒⃒⃒⃒⃒
𝑥+ 𝑦

2

⃒⃒⃒⃒⃒⃒⃒⃒
≤ 1 − 𝜖2; (205)

uniformly Fréchet differentiable [681] iff

∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥|| = 1, ||𝑦|| ≤ 𝜖2 ⇒ ||𝑥+ 𝑦|| + ||𝑥− 𝑦|| ≤ 2 + 𝜖1||𝑦||; (206)
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reflexive [302] iff the map 𝑗 : 𝑋 → 𝑋⋆⋆, defined by 𝑗(𝑥)(𝑦) := 𝑦(𝑥) ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋⋆ is an isometric
isomorphism. If 𝑋 (resp. 𝑋⋆) is Gâteaux differentiable, then 𝑋⋆ (resp. 𝑋) is strictly convex [680, 392].
A Banach space 𝑋 is uniformly convex (rep. uniformly Fréchet differentiable) iff 𝑋⋆ is uniformly
Fréchet differentiable (resp. uniformly convex) [205]. If 𝑋 is uniformly convex (resp. uniformly Fréchet
differentiable), then it is also strictly convex (resp. Gâteaux differentiable). If 𝑋 is uniformly convex or
uniformly Fréchet differentiable, then it is reflexive [496, 369, 563, 681]. If 𝑋 is Gâteaux differentiable,
then there exists a norm-to-weak-⋆ continous mapˆ: {𝑥 ∈ 𝑋 | ||𝑥||𝑋 = 1} → {𝑥 ∈ 𝑋⋆ | ||𝑥||𝑋⋆ = 1}
that is uniquely determined by a condition [[𝑥, �̂�]]𝑋×𝑋⋆ = 1 [680].

Let 𝑋 be a Banach space with a norm ||·||. In what follows, we will refer to Banach spaces assuming
implicitly that they are over R. For Banach spaces over C all definitions and results require to replace
[[·, ·]]𝑋×𝑋⋆ by re [[·, ·]]𝑋×𝑋⋆ . A function 𝑇 : 𝑋 → ℘(𝑋⋆) is called locally bounded at 𝑥 ∈ 𝑋 iff [684]

∃𝜖 > 0 sup {||𝑇 (𝑥+ 𝜖𝑦)|| | 𝑦 ∈ 𝑋, ||𝑦|| ≤ 1} < +∞. (207)

If Ψ : 𝑋 → ] −∞,+∞] is proper, then

(𝜕Ψ)−1(𝑦) = arg min
𝑥∈𝑋

{︀
Ψ(𝑥) − [[𝑥, 𝑦]]𝑋×𝑋⋆

}︀
. (208)

A function Ψ : 𝑋 → ] − ∞,+∞] is called coercive iff lim||𝑥||→+∞ Ψ(𝑥) = +∞. A Banach space 𝑋
is reflexive iff every proper, convex, coercive function that is lower semi-continuous in norm topology
attains its minimum on 𝑋. If Ψ : 𝑋 → [−∞,+∞] is proper, convex, lower semi-continuous and ΨL

denotes its Fenchel dual with respect to the Banach space duality of 𝑋 and 𝑋⋆, then Ψ is called
[629, 61, 112, 114]:

∙ essentially Gâteaux differentiable iff (𝜕Ψ is locally bounded on efd(𝜕Ψ) or int(efd(Ψ)) ̸= ∅)
and 𝜕Ψ(𝑥) = {*} ∀𝑥 ∈ efd(𝜕Ψ);

∙ essentially strictly convex iff (𝜕Ψ)−1 is locally bounded on efd((𝜕Ψ)−1) and Ψ is strictly
convex on every convex subset of efd(𝜕Ψ);

∙ Legendre iff Ψ is essentially Gâteaux differentiable and essentially strictly convex;

∙ essentially Fréchet differentiable iff it is essentially Gâteaux differentiable and Fréchet dif-
ferentiable for all 𝑥 ∈ int(efd(Ψ));

∙ Fréchet–Legendre iff Ψ and ΨL are essentially Fréchet differentiable.

If Ψ is continuous and is Gâteaux differentiable at all 𝑥 ∈ 𝑋 then it is essentially Gâteaux differentiable.
If Ψ is essentially Gâteaux differentiable then int(efd(Ψ)) ̸= ∅ and Ψ is Gâteaux differentiable on
int(efd(Ψ)) [61]. If 𝑋 is reflexive, then Ψ is essentially Gâteaux differentiable (resp. Legendre, Fréchet–
Legendre) iff ΨL is essentially strictly convex (resp. Legendre, Fréchet–Legendre). If 𝑋 is reflexive
and Ψ is Legendre, then

DGΨ : int(efd(Ψ)) → int(efd(ΨL)) (209)

is bijective, (DGΨ)−1 = DG(ΨL), and both DGΨ and DG(ΨL) are norm-to-weak continuous and
locally bounded on their respective domains [61]. If 𝑋 is an arbitrary Banach space, Ψ : 𝑋 →
] −∞,+∞] is proper and weakly lower semi-continuous, and efd((𝜕Ψ)−1) is open, then [745]

1) if Ψ is essentially Gâteaux differentiable, then Ψ is adequate,

2) if 𝑋 is reflexive, then ΨL is essentially Gâteaux differentiable iff Ψ is adequate.

Let 𝑋 be a Banach space, and let Ψ : 𝑋 → ]−∞,+∞] be proper. Then the Brègman functional̃︀𝐷Ψ : 𝑋 ×𝑋 → [0,+∞] can be defined in any of the following inequivalent ways (see also [130]):

(B1) for Ψ convex, with efd(Ψ) ̸= ∅ [389, 390, 391, 131, 133]:

̃︀𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
{︂

Ψ(𝑥) − Ψ(𝑦) −DG
+Ψ(𝑦;𝑥− 𝑦) : 𝑦 ∈ efd(Ψ)

+∞ : otherwise;
(210)

35



(B2) for Ψ convex and lower semi-continuous, with int(efd(Ψ)) ̸= ∅ [61]:

̃︀𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
{︂

Ψ(𝑥) − Ψ(𝑦) −DG
+Ψ(𝑦;𝑥− 𝑦) : 𝑦 ∈ int(efd(Ψ))

+∞ : otherwise;
(211)

(B3) for Ψ convex, lower semi-continuous, and Gâteaux differentiable on int(efd(Ψ)) ̸= ∅ [9]:

̃︀𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
{︂

Ψ(𝑥) − Ψ(𝑦) −
[︀[︀
𝑥− 𝑦,DG

𝑦 Ψ
]︀]︀
𝑋×𝑋⋆ : 𝑦 ∈ int(efd(Ψ))

+∞ : otherwise;
(212)

(B4) for Ψ convex, lower semi-continuous, and Fréchet differentiable on int(efd(Ψ)) ̸= ∅ [265, 264]24:

̃︀𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
{︂

Ψ(𝑥) − Ψ(𝑦) −
[︀[︀
𝑥− 𝑦,DF

𝑦Ψ
]︀]︀
𝑋×𝑋⋆ : 𝑦 ∈ int(efd(Ψ))

+∞ : otherwise;
(213)

(B5) for MeFun(𝒳 ,f(𝒳 );R+) denoting the space of f(𝒳 )-measurable functions ℎ : 𝒳 → R+, �̃� de-
noting a countably additive finite measure on f(𝒳 ), Ψ̌ : R → ]−∞,+∞] proper, strictly convex,
and differentiable on ]0,+∞[ with Ψ̌(0) = lim𝑡→+0 Ψ̌(𝑡) and 𝑡 < 0 ⇒ Ψ̌(𝑡) = +∞, 𝑋 given
by a suitable Banach space of some elements of MeFun(𝒳 ,f(𝒳 );R+), Ψ(𝑥) :=

∫︀
�̃�(x )Ψ̌(𝑥(x ))

[366, 182, 183, 184, 190]:

̃︀𝐷Ψ : 𝑋 ×𝑋 → [0,+∞], (214)̃︀𝐷Ψ : (𝑥, 𝑦) ↦→
∫︁
𝒳
�̃�(x )

(︀
Ψ̌(𝑥(x )) − Ψ̌(𝑦(x )) −

(︀
(gradΨ̌)(𝑦(x ))

)︀
(𝑥(x ) − 𝑦(x ))

)︀
; (215)

(B6) for (𝒳 ,f(𝒳 ), �̃�) as above, 𝑛 ∈ N, 𝑋 given by a suitable Banach space in MeFun(𝒳 ,f(𝒳 );R𝑛)∩
ℒ0(𝒳 ,f(𝒳 ), �̃�;R𝑛), Ψ̌ : R𝑛 → ] − ∞,+∞] proper, convex, closed, and Ψ(𝑥) :=

∫︀
�̃�(x )Ψ̌(𝑥(x ))

[191]: ̃︀𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
∫︁
𝒳
�̃�(x )�̌�Ψ̌(𝑥(x ), 𝑦(x )) ∈ [0,+∞], (216)

where

�̌�Ψ̌(𝜆1, 𝜆2) :=

⎧⎨⎩
Ψ̌(𝜆1) − Ψ̌(𝜆2) − sup𝜆3∈𝜕Ψ̌(𝜆2)

{[[𝜆1 − 𝜆2, 𝜆3]]R𝑛×R𝑛} : 𝜆1 ∈ efd(Ψ̌), 𝜆2 ∈ efd(Ψ̌) ∩ efd(𝜕Ψ̌)

0 : 𝜆2 = 𝜆1 ∈ efd(Ψ̌), 𝜆2 ̸∈ efd(𝜕Ψ̌)
+∞ : otherwise.

(217)

Some of these definitions are special cases of others, which can be written symbolically as:

(B1) ⊇ (B2) ⊇ (B3) ⊇ (B4) ⊇ (B5) ⊆ (B6). (218)

The definitions (B1), (B2) and (B6) are intended to deal with nondifferentiable functions Ψ. The
definition (B6) (and (B5), if equipped with some additional condition) can be also considered as a
definition of the Brègman distance (see next section). In all cases, (B1)-(B6), the convexity of Ψ
implies ̃︀𝐷Ψ(𝑥, 𝑦) ≥ 0. If Ψ is strictly convex, (B1) is used, and any of the following inequivalent
conditions holds,

DG
+Ψ(𝑦;𝑥− 𝑦) = sup

𝑧∈𝜕Ψ(𝑦)
{[[𝑥− 𝑦, 𝑧]]𝑋×𝑋⋆}, (219)

DG
+Ψ(𝑦;𝑥− 𝑦) = − sup

𝑧∈𝜕Ψ(𝑦)
{[[𝑦 − 𝑥, 𝑧]]𝑋×𝑋⋆}, (220)

24Here we generalise the definition given in cited papers.
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then [389] ̃︀𝐷Ψ(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ efd(Ψ). (221)

The equation (221) holds also for (B2)-(B4) under the same conditions as above, if ∀𝑥, 𝑦 ∈ efd(Ψ) is
replaced by ∀𝑥, 𝑦 ∈

∫︀
(efd(Ψ). If Ψ is strictly convex and (B6) is used, then [191]

̃︀𝐷Ψ(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 =�̃� 𝑦 ∀𝑥, 𝑦 ∈ efd(Ψ). (222)

For (B3) the strict convexity of Ψ on efd(Ψ) implies that 𝐷Ψ(·, 𝑦) is strictly convex on efd(Ψ) [9]. If
𝑋 is reflexive and (B2) is used, then for (𝑥, 𝑦) ∈ int(efd(Ψ)) [61]:

1) ̃︀𝐷Ψ(·, 𝑦) is proper, convex, lower semi-continuous, with efd( ̃︀𝐷Ψ(·, 𝑦)) = efd(Ψ);

2) ̃︀𝐷Ψ(𝑥, 𝑦) = Ψ(𝑥) − Ψ(𝑦) + max𝑧∈𝜕Ψ(𝑦)

{︀
[[𝑦 − 𝑥, 𝑧]]𝑋×𝑋⋆

}︀
;

3) ̃︀𝐷Ψ(𝑥, 𝑦) = Ψ(𝑥) + ΨL(𝑧) − [[𝑥, 𝑧]]𝑋×𝑋⋆ for all 𝑧 ∈ 𝜕Ψ(𝑦) such that

[[𝑦 − 𝑥, 𝑧]]𝑋×𝑋⋆ = max
�̂�∈𝜕Ψ(𝑦)

{︀
[[𝑦 − 𝑥, �̂�]]𝑋×𝑋⋆

}︀
; (223)

4) if Ψ is Gâteaux differentiable at 𝑦, then

̃︀𝐷Ψ(𝑥, 𝑦) = Ψ(𝑥) − Ψ(𝑦) −
[︀[︀
𝑥− 𝑦,DG

𝑦 Ψ
]︀]︀
𝑋×𝑋⋆ = Ψ(𝑥) + ΨL(DG

𝑦 Ψ) −
[︀[︀
𝑥,DG

𝑦 Ψ
]︀]︀
𝑋×𝑋⋆ ; (224)

5) if Ψ is essentially strictly convex, then

̃︀𝐷Ψ(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦; (225)

6) if Ψ is Gâteaux differentiable at int(efd(Ψ)) and essentially strictly convex, then

̃︀𝐷Ψ(𝑥, 𝑦) = ̃︀𝐷ΨL(DG
𝑦 Ψ,DG

𝑥 Ψ) ∀𝑥 ∈ int(efd(Ψ)). (226)

We can conclude that the Brègman functional can be considered a distance if (Ψ is strictly convex,
one of the conditions (223) holds, and (B1) is used) or (Ψ is essentially strictly convex, 𝑋 is reflexive,
and (B2) is used) or (Ψ is strictly convex and (B6) is used).

If 𝑋 is a Banach space and Ψ : 𝑋 → ] − ∞,+∞] is proper, then an Alber functional on 𝑋 is
defined as [6, 7, 8]

𝑊Ψ : 𝑋 ×𝑋⋆ ∋ (𝑥, 𝑦) ↦→ Ψ(𝑥) + ΨL(𝑦) − [[𝑥, 𝑦]]𝑋×𝑋⋆ ∈ [0,+∞]. (227)

The condition (Ψ is Gâteaux differentiable at 𝑥 and 𝑦 = DG
𝑥 Ψ) is equivalent to 𝑊Ψ(𝑥, 𝑦) = 0. If Ψ is

also convex, lower semi-continuous, and Gâteaux differentiable on int(efd(Ψ)) ̸= ∅, and 𝑋 is reflexive,
then the Young–Fenchel inequality gives

Ψ(𝑥) + ΨL(DG
𝑥 Ψ) −

[︀[︀
𝑥,DG

𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ = 0 ∀𝑥 ∈ int(efd(Ψ)) (228)

and

𝑊Ψ(𝑥,DG
𝑦 Ψ) = Ψ(𝑥) + ΨL(DG

𝑦 Ψ) −
[︀[︀
𝑥,DG

𝑦 Ψ
]︀]︀
𝑋×𝑋⋆

= Ψ(𝑥) − Ψ(𝑦) −
[︀[︀
𝑥− 𝑦,DG

𝑦 Ψ
]︀]︀
𝑋×𝑋⋆

= ̃︀𝐷Ψ(𝑥, 𝑦) (229)

for all 𝑥, 𝑦 ∈ int(efd(Ψ)), with ̃︀𝐷Ψ given by (B3). These equations are special cases of (224).
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If 𝑋 is a Banach space and (B3) is used, then for every 𝑥, 𝑦 ∈ 𝑋 and 𝑧, 𝑤 ∈ int(efd(Ψ)) [146, 64, 62]

̃︀𝐷Ψ(𝑧, 𝑤) + ̃︀𝐷Ψ(𝑤, 𝑧) =
[︀[︀
𝑧 − 𝑤,DG

𝑧 Ψ −DG
𝑤Ψ
]︀]︀
𝑋×𝑋⋆ , (230)̃︀𝐷Ψ(𝑥,𝑤) + ̃︀𝐷Ψ(𝑤, 𝑧) = ̃︀𝐷Ψ(𝑥, 𝑧) +

[︀[︀
𝑥− 𝑤,DG

𝑧 Ψ −DG
𝑤Ψ
]︀]︀
𝑋×𝑋⋆ , (231)̃︀𝐷Ψ(𝑥,𝑤) + ̃︀𝐷Ψ(𝑦, 𝑧) − ̃︀𝐷Ψ(𝑥, 𝑧) − ̃︀𝐷Ψ(𝑦, 𝑤) =

[︀[︀
𝑥− 𝑦,DG

𝑧 Ψ −DG
𝑤Ψ
]︀]︀
𝑋×𝑋⋆ . (232)

The equation (231) is an instance of a generalised cosine equation, while the equation (232) is an
instance of a quadrilateral equation.

A Brègman functional projection [144, 59, 61, 62] from a set 𝐶1 ⊆ 𝑋 onto a set 𝐶2 ⊆ 𝑋 is the
function

̃︀PΨ
𝐶2|𝐶1

: 𝐶1 ∋ 𝑦 ↦→
{︂
𝑥 ∈ 𝐶2 ∩ efd(Ψ) | ̃︀𝐷Ψ(𝑥, 𝑦) = inf

𝑧∈𝐶2

{︁ ̃︀𝐷Ψ(𝑧, 𝑦)
}︁
< +∞

}︂
∈ ℘(𝐶2). (233)

For 𝐶1 = 𝑋 we denote ̃︀PΨ
𝐶2

:= ̃︀PΨ
𝐶2|𝑋 . If ̃︀PΨ

𝐶(𝑦) = {𝑥}, then we will use the notation ̃︀PΨ
𝐶(𝑦) = 𝑥.

The main problems considered in the context of Brègman functional projections are their existence,
uniqueness, characterisation, and stability (which means the behaviour of sequences converging to
the unique solution of the minimisation problem). Various results, depending on different sets of
assumptions, are present in the literature. Here we will present the main existence, uniqueness and
characterisation results obtained for the Banach space setting and the measure theoretic setting (which
generalise earlier results of [144, 207, 145, 711, 240, 59], obtained for R𝑛).

(P1) [9, 8]. If (B3) is used, Ψ is strictly convex on efd(Ψ), 𝐶 ⊆ 𝑋 is convex, and 𝐶 ∩ efd(Ψ) ̸= ∅,
then ̃︀PΨ

𝐶(𝑦) contains at most one element. If, in addition, 𝑋 is reflexive and 𝐶 is nonempty and
weakly closed25, then ̃︀PΨ

𝐶(𝑦) = {*} ∀𝑦 ∈ int(efd(Ψ)) whenever (𝐶 ∩ efd(Ψ) is norm bounded or
lim||𝑥||→+∞

Ψ(𝑥)
||𝑥|| → +∞ ∀𝑥 ∈ 𝐶 ∩ efd(Ψ)). Moreover, if 𝑋 is an arbitrary Banach space, (B3) is

used, Ψ is strictly convex, 𝐶 ⊆ 𝑋 is nonempty and convex, 𝑦 ∈ 𝑋, 𝑥 ∈ 𝐶, then equivalent are:

̃︀𝐷Ψ(𝑧, 𝑥) + ̃︀𝐷Ψ(𝑥, 𝑦) ≤ ̃︀𝐷Ψ(𝑧, 𝑦) ∀𝑧 ∈ 𝐶, (234)[︀[︀
𝑧 − 𝑥,DG

𝑦 Ψ −DG
𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ ≤ 0 ∀𝑧 ∈ 𝐶, (235)

𝑥 = ̃︀PΨ
𝐶(𝑦). (236)

If 𝑋 and Ψ are as above, 𝐾 is a vector subspace of 𝑋, 𝐶 ⊆ 𝐾 is a nonempty closed convex set,
then ̃︀𝐷Ψ(𝑥, 𝑦) = ̃︀𝐷Ψ(𝑥, ̃︀PΨ

𝐾(𝑥)) + ̃︀𝐷Ψ(̃︀PΨ
𝐾(𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 ×𝑋. (237)

(P2) [61, 62, 63]. If (B2) is used, Ψ is Legendre (or if Ψ is strictly convex, essentially strictly convex,
and Gâteaux differentiable at 𝑦), 𝑦 ∈ int(efd(Ψ)), 𝑋 is reflexive, and 𝐶 ⊆ 𝑋 is nonempty convex
closed, 𝐶 ∩ int(efd(Ψ)) ̸= ∅, then ̃︀PΨ

𝐶(𝑦) = {*} and

𝑥 = ̃︀PΨ
𝐶(𝑦) ⇐⇒

(︁
𝑥 ∈ 𝐶 and 𝐶 ⊆

{︁
𝑧 ∈ 𝑋 |

[︀[︀
𝑧 − 𝑥,DG

𝑦 Ψ −DG
𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ ≤ 0

}︁)︁
(238)

∀𝑥, 𝑦 ∈ int(efd(Ψ)), which is equivalent to characterisation of ̃︀PΨ
𝐶(𝑦) as a unique 𝑥 ∈ 𝐶 ∩

int(efd(Ψ)) that satisfies

̃︀𝐷Ψ(𝑧, 𝑥) + ̃︀𝐷Ψ(𝑥, 𝑦) ≤ ̃︀𝐷Ψ(𝑧, 𝑦) ∀𝑧 ∈ 𝐶. (239)

(P3) [132, 615, 134, 8]. A function Ψ : 𝑋 → ] −∞,+∞] is called totally convex [131] at 𝑦 ∈ efd(Ψ)
iff

inf{ ̃︀𝐷Ψ(𝑥, 𝑦) | 𝑥 ∈ efd(Ψ), ||𝑥− 𝑦|| = 𝑡} > 0 ∀𝑡 > 0, (240)
25Note that, by the Hahn–Banach theorem, each norm closed convex set in a reflexive Banach space is weakly closed.

38



where (B1) is used. For 𝐶 ⊆ 𝑋 and 𝑦 ∈ 𝑋⋆ its Alber projection reads

P̂Ψ
𝐶(𝑦) := arg inf

𝑥∈𝐶
{𝑊Ψ(𝑥, 𝑦)} . (241)

If 𝑋 is reflexive, Ψ is strictly convex and lower semi-continuous on efd(Ψ), 𝑦 ∈ efd(ΨL), 𝐶 ⊆
efd(Ψ) is nonempty, convex, and closed, and the set {𝑧 ∈ efd(Ψ) | 𝑊Ψ(𝑧, 𝑦) ≤ 𝜆} is bounded
for any 𝜆 ∈ R+ (which holds if lim||𝑥||→+∞

Ψ(𝑥)
||𝑥|| = +∞, or if (𝑦 ∈ efc(𝜕Ψ) and Ψ is totally

convex at each 𝑥 ∈ efd(Ψ))), then P̂Ψ
𝐶(𝑦) = {*}. If, in addition, Ψ is Gâteaux differentiable on

int(efd(Ψ)) ̸= ∅, then P̂Ψ
𝐶(𝑦) is characterised as such 𝑥 ∈ 𝐶 that is a unique solution in 𝐶 of[︀[︀

𝑥− 𝑧, 𝑦 −DG
𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ ≤ 0 ∀𝑧 ∈ 𝐶, (242)

or, equivalently, of
𝑊Ψ(𝑥, 𝑦) +𝑊Ψ(𝑧,DG

𝑥 Ψ) ≤𝑊Ψ(𝑧, 𝑦) ∀𝑧 ∈ 𝐶. (243)

From DG
𝑥 Ψ ∈ int(efd(ΨL)) ∀𝑥 ∈ int(efd(Ψ)) it follows that

̃︀PΨ
𝐶(𝑥) = P̂Ψ

𝐶(DG
𝑥 Ψ) =

(︁
P̂Ψ
𝐶 ∘DGΨ

)︁
(𝑥). (244)

This implies existence and uniqueness of the Brègman functional projection for (B3) under the
above conditions, with 𝑥 = ̃︀PΨ

𝐶(𝑦) for 𝑦 ∈ int(efd(Ψ)) characterised as a unique solution in 𝐶 of[︀[︀
𝑥− 𝑧,DG

𝑦 Ψ −DG
𝑥 Ψ
]︀]︀
𝑋×𝑋⋆ ≥ 0 ∀𝑧 ∈ 𝐶, (245)

or, equivalently, of ̃︀𝐷Ψ(𝑧, 𝑥) + ̃︀𝐷Ψ(𝑥, 𝑦) ≤ ̃︀𝐷Ψ(𝑧, 𝑦) ∀𝑧 ∈ 𝐶. (246)

(P4) [745]. If (B3) is used, 𝐶 ⊆ 𝑋, 𝐶 ∩ efd(Ψ) ̸= ∅, DGΨ(int(efd(Ψ))) = 𝑋⋆, and 𝑦 ∈ int(efd(Ψ)),
then

(̃︀PΨ
𝐶(𝑦) = {*}) ⇐⇒ (Ψ + ı𝐶 is adequate) (247)

(P1
4)⇐⇒ (Ψ + ı𝐶 is essentially strictly convex) (248)

(P2
4)⇐⇒ (𝐶 is convex), (249)

where

ı𝐶 : 𝑋 ∋ 𝑥 ↦→
{︂

0 : 𝑥 ∈ 𝐶
+∞ : 𝑥 ̸∈ 𝐶

(250)

is called an indicator function, (P1
4) denotes an additional assumption that 𝑋 is reflexive,

while (P2
4) denotes an additional assumption that 𝑋 reflexive, Ψ is Legendre and cofinite, and

𝐶 is weakly closed set with 𝐶 ⊆ int(efd(Ψ)).

Equation (237) is an instance of a generalised pythagorean equation. In [210, 58] an instance of
(237) has been established for ̃︀PΨ

𝐶(𝑦) with ̃︀𝐷Ψ defined by (B2), 𝑋 = R𝑛, Ψ Legendre but not necessarily
lower semi-continuous, and (P2) with 𝐶 = 𝐾 + 𝑥0, where 𝐾 ⊆ 𝑋 is a closed vector subspace and
𝑥0 ∈ int(efd(Ψ)). Another instance of a generalised pythagorean equation, independent of (237), was
established in a measure theoretic setting of (B5) in [190].

The Brègman functional projection from 𝑋 onto 𝐶1 ⊆ 𝑋 is called zone consistent iff it is a
singleton and it can be subjected to another Brègman functional projection with the same Ψ, with
𝑋 replaced by 𝐶1, and with 𝐶1 replaced by 𝐶2, which is of the same type as 𝐶1 [144, 145, 59].26

26More precisely, and in a strict agreement with the definition at the beginning of the Section 3, a family of Brègman
functional projections {̃︀PΨ

𝐶𝑖|𝐶𝑗
| (𝑖, 𝑗) ∈ 𝐼 × 𝐽}, for some sets 𝐼 and 𝐽 , is called zone consistent iff ̃︀PΨ

𝐶𝑖|𝐶𝑗
(𝜓) = {*}

∀(𝑖, 𝑗) ∈ 𝐼×𝐽 ∀𝜓 ∈ 𝐶𝑗 and ̃︀PΨ
𝐶𝑖|𝐶𝑗

(𝜓) = ̃︀PΨ
𝐶𝑖|𝐶𝑘

∘ ̃︀PΨ
𝐶𝑘|𝐶𝑗

(𝜓) ∀𝜓 ∈ 𝐶𝑗 ∀𝑘 ∈ 𝐼∩𝐽 . In the given case, the zone consistency
is obtained by requiring Ψ to be a Legendre function on a reflexive Banach space 𝑋, together with the condition (P2),
which imposes the restriction of all 𝐶𝑖 to nonempty convex closed subsets of int(efd(Ψ)) as well as the restriction of all
𝐶𝑗 to nonempty subsets of int(efd(Ψ)).

39



According to [61], if the conditions (P2) for ̃︀PΨ
𝐶(𝑦) = {*} are used with Ψ Legendre, then ̃︀PΨ

𝐶(𝑦) is
zone consistent (meaning: ̃︀PΨ

𝐶(𝑦) ∈ int(efd(Ψ))) and ̃︀PΨ
𝐶(̃︀PΨ

𝐶(𝑦)) = ̃︀PΨ
𝐶(𝑦). According to [8], if the

conditions (P1) are used, then ̃︀PΨ
𝐶(𝑦) = ̃︀PΨ

𝐶(̃︀PΨ
𝐾(𝑥)) = ̃︀PΨ

𝐾(̃︀PΨ
𝐶(𝑥)) for 𝐶 as in (P3) and K a vector

subspace of 𝑋 with 𝐶 ⊆ 𝐾.
The Brègman functional (B5) has been characterised in [366] by means of a generalised pythagorean

equation. The Brègman functional (B3) has been characterised in finite dimensional case of 𝑋 = R𝑛
(for which it coincides with (B4)) in [182] by a set of conditions which have geometric character, and
in [50] by the condition that

arg inf
𝑦∈𝑋

{︂∫︁
𝒳
�̃�(x ) ̃︀𝐷Ψ(𝑥(x ), 𝑦)

}︂
=

∫︁
𝒳
�̃�(x )𝑥(x ) (251)

for some measure space (𝒳 ,f(𝒳 ), �̃�) and �̃�-integrable function 𝑥 : 𝒳 → 𝑋. Generalisation of equation
(251) (but not of the associated characterisation) to (B4) in arbitrary dimension, under some additional
conditions, was provided in [264, 253]. The equality (251) was proved for the family of Liese–Vajda
𝛾-distances (283) in [792].

3.3 Brègman distances

Our main objects of interest are not Brègman functionals, but Brègman distances, considered over
information models. While most of research deals only with Brègman functionals on vector spaces as
presented in the previous section, we will follow here the idea represented in [23, 784, 360, 20, 19, 403],
according to which Brègman distances shall be defined in terms of Brègman functionals on vector spaces
composed with (nonlinear) embeddings of statistical or quantum models. Apart from requirement
𝐷Ψ(𝜓, 𝜑) = 0 ⇐⇒ 𝜑 = 𝜓, this approach stresses that a Brègman distance is an information distance
defined by means of some choice of representation of information model in a linear space, which forms
a domain for corresponding Brègman functional. This formulation amounts to expose the dualistic
properties of Brègman distance that are responsible for generalised pythagorean theorem. The novel
aspect of our work is a systematic treatment of an extension of this approach to infinite dimensional
case. The main idea is to introduce a generalisation of a Brègman functional using the Young–Fenchel
inequality (194), and to subsequently define a Brègman distance over an arbitrary set 𝑍, using this
functional together with a pair of (not necessarily linear) embeddings (ℓ, ℓ@) : 𝑍 × 𝑍 → 𝑋 ×𝑋d into
a dual pair of vector spaces. Finally, we define quantum Brègman distance as a dualistic Brègman
distance with 𝑍 = 𝒩+

⋆ .
The current stage of development of this approach does not lead to any strong theorems. Nev-

ertheless, it introduces a valuable structural clarification, and we consider it an important tool that
might help unify various results in the theory of Brègman distances. In particular, we will use it in
Section 3.4 to analyse the properties of a family of quantum 𝛾-distances (299).

Given a dual pair (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d) over K ∈ {R,C} and a convex proper Ψ : 𝑋 → R ∪ {+∞},
let us define a generalised Alber functional as a map

𝑋 ×𝑋d ∋ (𝑥, 𝑦) ↦→𝑊Ψ(𝑥, 𝑦) := Ψ(𝑥) + ΨL(𝑦) − re [[𝑥, 𝑦]]𝑋×𝑋d ∈ [0,∞]. (252)

By definition and (194),

i) 𝑊Ψ(𝑥, 𝑦) is convex in each variable separately,

ii) 𝑊Ψ(𝑥, 𝑦) ≥ 0 ∀(𝑥, 𝑦) ∈ 𝑋 ×𝑋d,

iii) 𝑊Ψ(𝑥, 𝑦) = 0 ⇐⇒ (𝑦 ∈ 𝜕Ψ(𝑥) and 𝑥 ∈ efd(𝜕Ψ)).

If 𝑋 is a Banach space and 𝑋d = 𝑋⋆ with duality given by Banach space duality, then a generalised
Alber functional (252) coincides with an Alber functional (227).27

27We have proposed the definition (252) in [403], while being unaware of Alber’s work (which is summarised in Section
3.2).
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For a given dual pair (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d) a dual coordinate system on a set 𝑍 is defined as a
map

(ℓ, ℓ@) : 𝑍 × 𝑍 ∋ (𝜔, 𝜑) ↦→ (ℓ(𝜔), ℓ@(𝜑)) ∈ 𝑋 ×𝑋d. (253)

If 𝑊Ψ : 𝑋 ×𝑋d → [0,∞] is a generalised Alber functional and (ℓΨ, ℓ
@
Ψ) : 𝑍 × 𝑍 → 𝑋 ×𝑋d is a dual

coordinate system such that {︂
𝜕Ψ(𝑥) ̸= ∅ ∀𝑥 ∈ efd(𝜕Ψ) ∩ cod(ℓΨ)
ℓ@Ψ(𝜔) ∈ 𝜕Ψ(ℓΨ(𝜔)) ∀𝜔 ∈ 𝑍,

(254)

then a Brègman pre-distance is defined as a function

𝐷Ψ : 𝑍 × 𝑍 ∋ (𝜔, 𝜑) ↦→ 𝐷Ψ(𝜔, 𝜑) := 𝑊Ψ(ℓΨ(𝜔), ℓ@Ψ(𝜑)) ∈ [0,∞]. (255)

The conditions (254) can be understood either as constraints on allowed dual coordinate systems if Ψ
is given, or as constraints on Ψ if (ℓΨ, ℓ

@
Ψ) is given. By definition, 𝐷Ψ(𝜔, 𝜑) is convex in each variable

separately, 𝐷Ψ(𝜔, 𝜑) ≥ 0 ∀𝜔, 𝜑 ∈ 𝑍, and 𝜔 = 𝜑 ⇒ 𝐷Ψ(𝜔, 𝜑) = 0 ∀𝜔 ∈ 𝑍. This weakening of the
usual property of distance (𝜔 = 𝜑 ⇐⇒ 𝐷(𝜔, 𝜑) = 0) is caused by restriction of domain of 𝑊Ψ to
cod(ℓΨ) × cod(ℓ@Ψ). In order to impose an implication in the opposite direction, one would have to
impose additional conditions that are not natural at this level of generality (they will be discussed
below).

Definition (255) exposes the dualistic and variational structures underlying Brègman distances.
However, the standard definition of Brègman distance uses only a single coordinate system instead
of a dual pair, exposing geometric properties of Brègman distance and imposing 𝐷Ψ(𝑥, 𝑦) = 0 ⇐⇒
𝑥 = 𝑦 at the price of nontrivial restrictions on the domain of duality and convexity. Usually these
restrictions are introduced in order to adapt to presupposed topological and differential framework
(e.g. of a reflexive Banach space), which imposes some specific restrictions on Brègman distance (as
exemplified by various definitions of Brègman functional in previous section), and requires one to
prove that such Brègman distance encodes the Legendre case of the Fenchel duality with the dual
variable 𝑦 ∈ 𝑋d given by some suitably defined notion of derivative (e.g. Fréchet, Gâteaux, right
Gâteaux), see e.g. [144, 59, 134, 113] for standard examples in commutative case, [576] for an example
in the finite dimensional noncommutative case, and [360] for an example in the infinite dimensional
noncommutative case.

Our approach is different, because we do not assume any fixed framework for continuity or smooth-
ness, so we can consider general properties of the relationship between explicitly dualistic Brègman
distance and its standard (hence, restricted) version, which has both arguments represented on the
same space. The transition between these two formulations in the real finite dimensional case is pro-
vided by means of bijective Legendre transformation LΨ : Θ → Ξ, which acts between suitable
open subsets Θ ⊂ R𝑛 and Ξ ⊂ R𝑛, and is given by the gradient,

LΨ : Θ ∋ 𝜃 ↦→ 𝜂 := gradΨ(𝜃) ∈ Ξ. (256)

In the coordinate-dependent form this reads

𝜂𝑖 = (LΨ(𝜃))𝑖 :=
𝜕Ψ(𝜃)

𝜕𝜃𝑖
, (257)

𝜃𝑖 = (L−1
Ψ (𝜂))𝑖 :=

𝜕ΨL(𝜂)

𝜕𝜂𝑖
, (258)

whenever the duality pairing is given by

[[·, ·]]R𝑛×R𝑛 : R𝑛 × R𝑛 ∋ (𝜃, 𝜂) ↦→ 𝜃 · 𝜂⊤ :=

𝑛∑︁
𝑖=1

𝜃𝑖𝜂𝑖 ∈ R. (259)

We will now construct a general framework for conversion between these two forms of the Brègman
distance, which is independent of any particular assumptions about continuity or differentiability. The
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key element in this setting is the (generally, nonlinear) dualiser function. It will provide also an infinite
dimensional generalisation of the bijective transformation between the dual coordinate systems that
strengthens (254).

The relationship between dual coordinate systems is in the infinite dimensional case is more com-
plicated than just replacing gradient by the Gâteaux derivative. It involves characterisation in terms
of subdifferential, and depends on the function Ψ and on the specific structure of the dual pair
(𝑋,𝑋d, [[·, ·]]𝑋×𝑋d) of vector spaces. In [403] we have proposed the following generalisation of the Leg-
endre transformation to the case of arbitrary dual pair of vector spaces of arbitrary dimension, which
preserves its bijective character without any fixed choice of topological background. The generalisation
of (256) is provided by the dualiser, defined as a map LΨ : 𝑋 → 𝑋d associated with a convex proper
function Ψ : 𝑋 → R ∪ {+∞} such that there exists a nonempty set ΘΨ ⊆ efd(Ψ) satisfying:

(i) LΨ is a bijection on ΘΨ,

(ii) ΨL(LΨ(𝑦)) − Ψ(𝑦) = re [[𝑦,LΨ(𝑦)]]𝑋×𝑋d ∀𝑦 ∈ ΘΨ,

(iii) LΨ(𝑦) ∈ 𝜕Ψ(𝑥) ⇐⇒ 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ efd(𝜕Ψ).

If such LΨ exists, then ΘΨ will be called an admissible domain of LΨ and denoted add(LΨ), while
adc(LΨ) ≡ ΞΨ := LΨ(ΘΨ) will be called its admissible codomain. The function Ψ will be called
dualisable with respect to (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d) iff there exists at least one dualiser LΨ. Each triple
(ΘΨ,ΞΨ,LΨ) will be called a generalised Legendre transformation. A bijection

LΨ : 𝑋 ⊇ ΘΨ ↦→ ΞΨ ⊆ 𝑋d, (260)

is a generalisation of (256). A change of domain 𝑋 or a change of duality structure [[·, ·]]𝑋×𝑋d on 𝑋
changes the available dualisers. Also, there might be several different dualisers for a given quadruple
((𝑋,𝑋d, [[·, ·]]𝑋×𝑋d),Ψ). The existence of different dualisers is equivalent to 𝜕Ψ being a nonsingleton,
nonempty, set-valued function.

Given a generalised Legendre transformation (ΘΨ,ΞΨ,LΨ), we can define the Brègman func-
tional �̄�Ψ : 𝑋 ×𝑋 → [0,+∞] associated to a generalised Alber functional 𝑊Ψ [403],

�̄�Ψ(𝑥, 𝑦) :=

{︂
𝑊Ψ(𝑥,LΨ(𝑦)) = Ψ(𝑥) − Ψ(𝑦) − re [[𝑥− 𝑦,LΨ(𝑥)]]𝑋×𝑋d : 𝑦 ∈ ΘΨ

+∞ : otherwise. (261)

The equality above follows from the property (ii) of LΨ. The bounded version of this functional is
given by restriction of the domain of (261) to �̄�Ψ : efd(Ψ) × ΘΨ → [0,∞[. From the property (iii) of
LΨ it follows that �̄�Ψ satisfies

�̄�Ψ(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦 ∀(𝑥, 𝑦) ∈ 𝑋 ×𝑋, (262)

or for all (𝑥, 𝑦) ∈ efd(Ψ) × ΘΨ whenever �̄�Ψ is bounded. The equivalence appears here at the price
of loss of convexity of �̄�Ψ in the second variable (it is a common problem in standard treatments,
see e.g. [60]). This is because using the inverse of a dualiser LΨ may not preserve the convexity
properties. From Θ ⊆ efd(Ψ) is follows that the definition (261) is a generalisation of (B3). We will
call this definition (B�̄�), and consider it as an alternative to (B2), aimed at preservation of convex
and dualistic properties without reducing them to the setting of topological differentiability. From
the results discussed in the previous section it follows that (B2) with reflexive 𝑋 and Legendre Ψ is a
special case of (B�̄�). More precisely, if 𝑋 is a reflexive Banach space, 𝑋d = 𝑋⋆, Ψ is convex, proper,
lower semi-continuous, and Legendre, then (ΘΨ,ΞΨ,LΨ) is given by (int(efd(Ψ)), int(efd(ΨL)),DG)
due to (209), and in such case (261) reduces to (212). Properties (261) and (262) follow then from
(229), and property 5) in Section 3.2, respectively.

Let (𝑋,𝑋, [[·, ·]]𝑋×𝑋d) be a dual pair, let Ψ : 𝑋 → R ∪ {+∞} be a convex proper function, let
(ΘΨ,ΞΨ,LΨ) be a generalised Legendre transformation, let 𝑍 be a set, and let (ℓΨ, ℓ

@
Ψ) : 𝑍 × 𝑍 →

42



𝑋×𝑋d be a dual coordinate system such that cod(ℓ@Ψ) ⊆ ΞΨ. Then we define the dualistic Brègman
distance on 𝑍 as a function 𝐷Ψ : 𝑍 × 𝑍 → [0,∞] such that

𝐷Ψ(𝜔, 𝜑) := 𝑊Ψ(ℓΨ(𝜔), ℓ@Ψ(𝜑))

= �̄�Ψ(ℓΨ(𝜔),L−1
Ψ ∘ ℓ@Ψ(𝜑))

= Ψ(ℓΨ(𝜔)) − Ψ(L−1
Ψ ∘ ℓ@Ψ(𝜑)) − re

[︁[︁
ℓΨ(𝜔) − L−1

Ψ ∘ ℓ@Ψ(𝜑), ℓ@Ψ(𝜑)
]︁]︁
𝑋×𝑋d

. (263)

Note that it is possible to weaken the above definition by weakening the condition (iii) of definition
of LΨ by replacing efd(𝜕Ψ) and LΨ(𝑦) by efd(𝜕Ψ) ∩ cod(ℓΨ) and LΨ(𝑦) ∩ cod(ℓ@Ψ) respectively. Both
definitions imply

𝐷Ψ(𝜔, 𝜑) = 0 ⇐⇒ 𝜔 = 𝜑 ∀𝜔, 𝜑 ∈ 𝑍. (264)

It follows that a single Brègman pre-distance (255) may have several different representations in terms
of dualistic Brègman distances, depending on the choice of the dualiser LΨ (263), corresponding to the
choice of the generalised Legendre transformation (ΘΨ,ΞΨ,LΨ). If �̄�Ψ,L1 and �̄�Ψ,L2 are two Brègman
functionals defined from a single generalised Alber functional 𝑊Ψ by two dualisers L1 and L2 of Ψ,
then they are equal to each other on 𝑉 ⊆ add(L1)∩add(L2) iff there exists a dualiser L3 of Ψ such that
add(L3) = 𝑉 . Every choice of a triple (ΘΨ,ΞΨ,LΨ) that turns Brègman pre-distance to a dualistic
Brègman distance can be considered as a localisation of the former.

Especially interesting case of the dualistic Brègman distance (263) is when the equality

ℓ@Ψ = LΨ ∘ ℓΨ (265)

holds for all elements of 𝑍. Relation (265) is a special case of (254) and allows to rewrite (263) as

𝐷Ψ(𝜔, 𝜑) = �̄�Ψ(ℓΨ(𝜔), ℓΨ(𝜑)) = Ψ(ℓΨ(𝜔))−Ψ(ℓΨ(𝜑))− re [[ℓΨ(𝜔) − ℓΨ(𝜑),LΨ ∘ ℓΨ(𝜑)]]𝑋×𝑋d , (266)

which does not depend on ℓ@Ψ. Functional of the form (266) will be called a standard Brègman
distance. In particular, if 𝑋 = 𝑋d = R𝑛 with duality given by (259), Ψ : R𝑛 → R ∪ {+∞} is convex
and proper, LΨ is given by the Legendre transformation (256), �̄�Ψ is given by a functional introduced
originally by Brègman in [118],

�̄�Ψ(𝑥, 𝑦) = Ψ(𝑥) − Ψ(𝑦) − [[𝑥− 𝑦, gradΨ(𝑦)]]R𝑛×R𝑛 , (267)

𝑍 = ℳ(𝒜) ⊆ 𝐿1(𝒜)+ for some mcb-algebra 𝒜 or 𝑍 = ℳ(𝒩 ) ⊆ 𝐿1(𝒩 )+ for some 𝑊 *-algebra 𝒩 ,
dim𝑍 =: 𝑛 <∞, while (ℓΨ, ℓ

@
Ψ) satisfies (265) by means of

ℓ@Ψ = gradΨ(ℓΨ(·)), (268)

so the generalised Legendre transformation is determined by such (ΘΨ,ΞΨ) that cod(ℓΨ) ⊆ ΞΨ, then
the associated standard Brègman distance reads

𝐷Ψ(𝜔, 𝜑) = Ψ(ℓΨ(𝜔)) − Ψ(ℓΨ(𝜑)) −
𝑛∑︁
𝑖=1

(ℓΨ(𝜔) − ℓΨ(𝜑))𝑖 (gradΨ(ℓΨ(𝜑)))𝑖 . (269)

If 𝒜 is represented in terms of a measureable space (𝒳 ,f(𝒳 ),f0(𝒳 )) and if 𝜑1 and 𝜑2 and densities
in MeFun(𝒳 ,f(𝒳 );R𝑛) with respect to a fixed measure �̃� on (𝒳 ,f(𝒳 )) such that f�̃�(𝒳 ) = f0(𝒳 ),
so that they can be identified with the elements of 𝐿1(𝒳 ,f(𝒳 ), �̃�;R𝑛), and if

Ψ(ℓΨ(𝜑𝑖)) =

∫︁
𝒳
�̃�(x )Ψ̌(𝜑𝑖(x )), (270)

then (269) takes the form (B5), with domain of Ψ̌ generalised from R+ to (R+)𝑛. If 𝒩 = B(ℋ) with
dimℋ <∞, and 𝜑1, 𝜑2 ∈ G1(ℋ)+0 , then a condition analogous to (270) reads (cf. [313, 211])

Ψ(ℓΨ(𝜑𝑖)) = tr(Ψ̌(𝜑𝑖)), (271)
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where Ψ̌ : R → ] −∞,+∞] is proper, operator strictly convex function, differentiable on ]0,+∞[ with
Ψ̌(0) = lim𝑡→+0 Ψ̌(𝑡) and 𝑡 < 0 ⇒ Ψ̌(𝑡) = +∞, and it is applied to density operator 𝜑𝑖 in terms of
functional calculus on its spectrum.

Note that the relations (268), (265), and (254) quite specifically correspond to three sectors of the
information geometry theory: finite dimensional, infinite dimensional with good duality properties,
and generally infinite dimensional.

From the definitions (255) and (252) it follows that every dualistic Brègman distance 𝐷Ψ with its
corresponding dual coordinate system (ℓΨ, ℓ

@
Ψ) satisfies the quadrilateral equation

𝐷Ψ(𝑧1, 𝑧2) +𝐷Ψ(𝑧4, 𝑧3) −𝐷Ψ(𝑧1, 𝑧3) −𝐷Ψ(𝑧4, 𝑧2) = re
[︁[︁
ℓΨ(𝑧1) − ℓΨ(𝑧4), ℓ

@
Ψ(𝑧3) − ℓ@Ψ(𝑧2)

]︁]︁
𝑋×𝑋d

,

(272)
and the generalised cosine equation

𝐷Ψ(𝑧1, 𝑧2) +𝐷Ψ(𝑧2, 𝑧3) −𝐷Ψ(𝑧1, 𝑧3) = re
[︁[︁
ℓΨ(𝑧1) − ℓΨ(𝑧2), ℓ

@
Ψ(𝑧3) − ℓ@Ψ(𝑧2)

]︁]︁
𝑋×𝑋d

, (273)

for all 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝑍 (cf. [785]). From the definition (261) of bounded Brègman functional �̄�Ψ it
follows that �̄�Ψ satisfies the generalised cosine equation that generalises (231),

�̄�Ψ(𝑥1, 𝑥2) + �̄�Ψ(𝑥2, 𝑥3) − �̄�Ψ(𝑥1, 𝑥3) = re [[𝑥1 − 𝑥2,LΨ(𝑥3) − LΨ(𝑥2)]]𝑋×𝑋d (274)

∀𝑥1, 𝑥2, 𝑥3 ∈ add(LΨ)∩efd(Ψ), and it also satisfies the corresponding generalisation of the quadrilateral
relation (232). From (274) it follows that for any given 𝑥, 𝑦, 𝑦 ∈ add(LΨ) ∩ efd(Ψ), the generalised
orthogonal decomposition

�̄�Ψ(𝑥, 𝑦) + �̄�Ψ(𝑦, 𝑦) = �̄�Ψ(𝑥, 𝑦) ∀𝑥 ∈ add(LΨ) ∩ efd(Ψ) (275)

is equivalent with the orthogonality condition,

re [[𝑥− 𝑦,LΨ(𝑦) − LΨ(𝑦)]]𝑋×𝑋d = 0. (276)

Moreover, the equivalence holds also if = is replaced by ≥ in (275) and = is replaced by ≤ in (276).
The generalised orthogonal decomposition (518) is a special case of (275). As we will see below, under
suitable assumptions that guarantee the existence and uniqueness of solution of the corresponding
variational problem, the generalised orthogonal decomposition can be turned into a theorem stating
the existence and uniqueness of generalised additive decomposition of information distance under
projection onto subspace (submodel), known as generalised pythagorean theorem (or equation).

Let 𝑦 ∈ add(LΨ)∩ efd(Ψ), let 𝐶 ⊆ add(LΨ)∩ efd(Ψ) be nonempty, convex, and containing at least
one element 𝑧 such that �̄�Ψ(𝑧, 𝑦) < ∞, let 𝑥 ∈ 𝐶. In such case the Brègman functional projection
(233) of 𝑦 using �̄�Ψ will be denoted

𝑦 ∈ P̄Ψ
𝐶(𝑦) = arg inf

𝑥∈𝐶

{︀
�̄�Ψ(𝑥, 𝑦)

}︀
. (277)

The main problem with this definition is that in general case P̄Ψ
𝐶(𝑦) might not exist or might be

nonunique. The existence and uniqueness can follow from various assumptions. In particular, if 𝑋
is a locally convex space, 𝐶 is weakly compact, and �̄�Ψ is weakly lower semi-continuous, then the
existence can be guaranteed by means of Bauer’s theorem [56]. On the other hand, if 𝑋 is a reflexive
Banach space, 𝐶 is closed, �̄�Ψ is lower semi-continuous, strictly convex, and Gâteaux differentiable
at 𝑦, with int(efd(�̄�Ψ)) ̸= ∅, 𝐶 ∩ efd(�̄�Ψ) ̸= ∅ and 𝑦 ∈ int(efd(�̄�Ψ)), then P̄Ψ

𝐶(𝑦) is at most a
singleton [113]. The conjunction of these two conditions is sufficient to guarantee the existence and
uniqueness of P̄Ψ

𝐶(𝑦). Unfortunately, we know neither the sufficient conditions for existence that would
not require lower semi-continuity, nor the sufficient conditions for uniqueness that would not require
Gâteaux differentiability.

If there exists a unique Brègman functional projection 𝑦 = P̄Ψ
𝐶(𝑦) for 𝑦 ∈ add(LΨ) ∩ efd(Ψ), such

that (𝑦, 𝑦) satisfies the orthogonality condition (276), then 𝑦 = P̄Ψ
𝐶(𝑦) is called orthogonal. Property
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(275) generalises in such case the additive decompositions of norm under linear projections on closed
convex subsets in the Hilbert space to the class of nonlinear P̄Ψ

𝐶 projections onto convex subsets 𝐶
in the linear space 𝑋. Note that the ‘orthogonality’ of projection is understood in the sense of the
bilinear duality pairing [[·, ·]]𝑋×𝑋d , while the nonlinearity of projection P̄Ψ

𝐶 corresponds to the nonlinear
dualiser LΨ. In particular, if �̄�Ψ is given by (B3), then condition (276) turns to equality in (245), so
the orthogonality condition (276) satisfied by 𝑦 = P̄Ψ

𝐶(𝑦) turns to generalised pythagorean equation
(237).

Given a dualistic Brègman distance 𝐷Ψ on 𝑍 and 𝐾1,𝐾2 ⊆ 𝑍, we define a dualistic Brègman
projection as a map

P𝐷Ψ

𝐾2|𝐾1
: 𝐾1 ∋ 𝜑 ↦→ arg inf

𝜔∈𝐾2

{𝐷Ψ(𝜔, 𝜑)} ⊆ ℘(𝐾2), (278)

with P𝐷Ψ
𝐾2

:= P𝐷Ψ

𝐾2|𝑍 . If ℓΨ × ℓ@Ψ is bijective on 𝐾2 × 𝐾1, then the existence (resp., uniqueness) of

P𝐷Ψ

𝐾2|𝐾1
(𝜑) follows from the existence(resp., uniqueness) of P̄𝐷Ψ

ℓΨ(𝐾2)|L−1
Ψ ∘ℓ@Ψ(𝐾1)

(︀
ℓ@Ψ(𝜑)

)︀
. The generalised

cosine equation (274) and the above discussion leads us to call a dualistic Brègman projection P𝐷Ψ
𝐾 (𝜓)

orthogonal iff it is a singleton and satisfies

re
[︁[︁
ℓΨ(𝜑) − ℓΨ(P𝐷Ψ

𝐾 (𝜓)), ℓ@Ψ(𝜓) − ℓ@Ψ(P𝐷Ψ
𝐾 (𝜓))

]︁]︁
𝑋×𝑋d

= 0 ∀𝜑 ∈ 𝐾, (279)

which is equivalent the generalised pythagorean equation

𝐷Ψ(𝜑,P𝐷Ψ
𝐾 (𝜓)) +𝐷Ψ(P𝐷Ψ

𝐾 (𝜓), 𝜓) = 𝐷Ψ(𝜑, 𝜓) ∀𝜑 ∈ 𝐾. (280)

The problem of characterisation of orthogonal P𝐷Ψ
𝐾 for a given 𝐷Ψ and 𝐾 remains open.

Let us summarise the insights gained in last two sections. There are few different candidates for
the general notion of a Brègman distance on a general Banach space:

(BD1) the Brègman functional ̃︀𝐷Ψ defined by (B1) under additional assumptions that Ψ is strictly
convex on efd(Ψ) and that one of the equations (220) holds;

(BD2) the Brègman functional �̄�Ψ defined by (B�̄�), with duality given by Banach space duality;

(BD3) the dualistic Brègman distance (263), which is defined as a special case of (B�̄�), but its domain
is shifted to the space 𝑍, which in turn can be an arbitrary subset of a Banach space;

(BD4) the Brègman functional ̃︀𝐷Ψ defined by (B2) for reflexive 𝑋 and Ψ essentially strictly convex on
int(efd(Ψ)) ̸= ∅;

(BD5) defined as (BD4), but with an additional assumption of essential Gâteaux differentiability on
int(efd(Ψ)). This is a special case of both (BD1) and (BD2).

In principle, there are three main properties that one would expect from a general notion of the
Brègman distance:

∙ it should be a distance;

∙ it should possess well defined existence and uniqueness properties for the Brègman projections
onto a well defined class of subsets;

∙ it should allow for generalised pythagorean and cosine theorems;

∙ it should be zone consistent.

All above candidates satisfy the first condition. The second and fourth conditions can be guaranteed
at the level of (BD5). The third condition requires either to strenghten (B2) in (BD5) to (B3), in
order to use (P1), or to use (BD3) with an additional orthogonality condition (279). However, the
condition (279) is abstract and we do not know what are necessary and sufficient conditions for it to
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hold. On the other hand, using (BD5) as a Brègman distance restricts the underlying Banach space
to be reflexive. This is unacceptable restriction, because our main objective is to consider distances
on subsets ℳ(𝒩 ) ⊆ 𝒩+

⋆ of nonreflexive noncommutative 𝐿1(𝒩 ) ∼= 𝒩+
⋆ spaces. This problem can be

solved in a twofold way: either by using definition (BD1) with 𝑋 = 𝒩⋆ and proving suitable existence,
uniqueness, cosine, pythagorean, and zone consistency theorems by imposing additional conditions in a
case-by-case mode, or by using definition (BD3) with 𝑍 = 𝒩+

⋆ and embeddings (ℓΨ, ℓ
@
Ψ) : 𝒩+

⋆ ×𝒩+
⋆ →

𝑋×𝑋⋆ into a suitable Banach dual pair of reflexive Banach spaces, for which the existence, uniqueness,
and pythagorean theorems based on (BD5), with (B3) instead of (B2) inside, can be applied. These two
distances will be called, respectively, weak quantum Brègman distance and dualistic quantum
Brègman distance. For 𝒩 = 𝐿∞(𝒜) an adjective ‘quantum’ will be replaced by ‘statistical’. Some
properties of (B1) applied to 𝑋 = G1(ℋ) = B(ℋ)⋆ for dimℋ <∞ were analysed by Petz in [576] (see
also [211]).

Note that ideally we would like to define quantum Brègman distance as such distance 𝐷Ψ : 𝒩+
⋆ ×

𝒩+
⋆ → [0,∞] that depends explicitly on Ψ and satisfies

(i) ∃𝐾1 ⊆ 𝒩+
⋆ ∀𝐶 ⊆ 𝒩+

⋆ ∀(𝜑, 𝜓) ∈ 𝐶 ×𝐾1

P𝐷Ψ

𝐶|𝐾1
(𝜓) = {*} ⇒ 𝐷Ψ(𝜑, 𝜓) = 𝐷Ψ(𝜑,P𝐷Ψ

𝐶|𝐾1
(𝜓)) +𝐷Ψ(P𝐷Ψ

𝐶|𝐾1
(𝜓), 𝜓); (281)

(ii) ∃𝐾2 ⊆ 𝒩+
⋆ ∀𝐶1, 𝐶2, 𝐶3 ⊆ 𝐾2(︁

P𝐷Ψ

𝐶2|𝐶1
(𝜓) = {*} ∀𝜓 ∈ 𝐶1, P𝐷Ψ

𝐶3|𝐶2
(𝜑) = {*} ∀𝜑 ∈ 𝐶2

)︁
⇒ P𝐷Ψ

𝐶3|𝐶1
(𝜓) = {*} ∀𝜓 ∈ 𝐶1. (282)

However, as indicated by the gap between the weak and dualistic definitions above, it is still unclear
how to maintain these two properties in a general nonreflexive setting of 𝒩+

⋆ while: (1) keeping the
explicit dependence on Ψ, (2) keeping the explicit dependence on Banach dual spaces, (3) allowing
Araki distance 𝐷1 (see next section) to be a special case of this definition (it can be defined in terms
of (BD1) by right Gâteaux derivative, but not in terms of (BD3) by duality based on reflexive Banach
spaces).

3.4 𝛾-distances

By imposing the condition of monotonicity under coarse graining on the dualistic Brègman distances
(or on the corresponding standard Brègman distances), one obtains a strong restriction on the allowed
forms of the ‘generating’ function Ψ and the corresponding dual coordinate systems (ℓΨ, ℓ

@
Ψ). Such

families of information distances are of special interest, because they satisfy two main information the-
oretic constraints: existence of orthogonal decomposition under nonlinear projection ‘onto submodel’
and nonincreasing under ‘information loss’.

Given 𝛾 ∈ [0, 1] and an mcb-algebra 𝒜, consider a family of the Liese–Vajda 𝛾-distances
[453, 790, 791, 792] on 𝐿1(𝒜)+,

𝐷𝛾(𝜔, 𝜑) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︀

1
𝛾(1−𝛾)

(︁
𝛾𝜇𝜔 + (1 − 𝛾)𝜈𝜑 − 𝜈𝜑

(︁
𝜇𝜔
𝜈𝜑

)︁𝛾)︁
: 𝛾 ∈ ]0, 1[, 𝜇𝜔 ≪ 𝜈𝜑∫︀

lim𝛾→±𝛾
1

𝛾(1−𝛾)

(︂
𝛾𝜇𝜔 + (1 − 𝛾)𝜈𝜑 − 𝜈𝜑

(︁
𝜇𝜔
𝜈𝜑

)︁𝛾)︂
: 𝛾 ∈ {0, 1}, 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise,

(283)

where the right limit, 𝛾 →+ 𝛾, is considered for 𝛾 = 0, while the left limit, 𝛾 →− 𝛾, is considered
for 𝛾 = 1. Here 𝜇𝜔 and 𝜈𝜑 are finite positive measures corresponding to the positive integrals 𝜔 and
𝜑, while (𝜇𝜔𝜈𝜑 )𝛾 denotes the 𝛾-th power of the Radon–Nikodým quotient 𝜇𝜔

𝜈𝜑
, see Section 2.1. The

boundary cases take the form

𝐷1(𝜔, 𝜑) =

{︃ ∫︀ (︁
𝜈𝜑 − 𝜇𝜔 + 𝜇𝜔 log 𝜇𝜔

𝜈𝜑

)︁
: 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise,
(284)
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and

𝐷0(𝜔, 𝜑) =

{︃ ∫︀ (︁
𝜇𝜔 − 𝜈𝜑 − 𝜈𝜑 log 𝜇𝜔

𝜈𝜑

)︁
: 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise.
(285)

It follows directly that 𝐷𝛾 satisfies

i) 𝜈 ≪ 𝜇≪ 𝜈 ⇒ 𝐷𝛾(𝜇, 𝜈) = 𝐷1−𝛾(𝜇, 𝜈) ∀𝛾 ∈ [0, 1],

ii) 𝐷𝛾(𝜆𝜇, 𝜆𝜈) = 𝜆𝐷𝛾(𝜇, 𝜈) ∀𝜆 ∈ ]0,∞[.

A direct calculation shows that 𝐷𝛾 is a Csiszár–Morimoto f-distance with

f𝛾(𝑡) =

⎧⎨⎩
1
𝛾 + 1

1−𝛾 𝑡−
1

𝛾(1−𝛾) 𝑡
𝛾 : 𝛾 ∈ ]0, 1[

𝑡 log 𝑡− (𝑡− 1) : 𝛾 = 1
− log 𝑡+ (𝑡− 1) : 𝛾 = 0,

(286)

which corresponds to

fc𝛾(𝑡) =

⎧⎨⎩
1

𝛾(1−𝛾)(1 − 𝑡1−𝛾) + 1
𝛾 (𝑡− 1) : 𝛾 ∈ ]0, 1[

𝑡 log 𝑡− (𝑡− 1) : 𝛾 = 0
− log 𝑡+ (𝑡− 1) : 𝛾 = 1.

(287)

These functions satisfy

f0(𝑡) = lim
𝛾→+0

f𝛾(𝑡) = fc1(𝑡), (288)

f1(𝑡) = lim
𝛾→−1

f𝛾(𝑡) = fc0(𝑡). (289)

Under restriction to 𝐿1(𝒜)+1 , 𝐷1(𝜔, 𝜑) becomes the Wald–Good–Kullback–Leibler distance [755,
284, 418, 416] (cf. [285, 51])

𝐷1|𝐿1(𝒜)+1
(𝜔, 𝜑) =

{︃ ∫︀
𝜇𝜔 log 𝜇𝜔

𝜈𝜑
: 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise,
(290)

which is a Csiszár–Morimoto f-distance with f(𝜆) = 𝜆 log(𝜆). More generally, (287) turns at 𝐿1(𝒜)+1
to

fc𝛾 |𝐿1(𝒜)+1
(𝑡) =

⎧⎨⎩
1

𝛾(1−𝛾)(1 − 𝑡1−𝛾) : 𝛾 ∈ ]0, 1[

𝑡 log 𝑡 : 𝛾 = 0
− log 𝑡 : 𝛾 = 1.

(291)

All above properties hold for the domain of 𝛾 extended from [0, 1] to R with the conditions satisfied
for 𝛾 ∈ ]0, 1[ extending to 𝛾 ∈ R ∖ {0, 1}. Nevertheless, we will consider this extension separately.

The Liese–Vajda 𝛾-distances are generalised Brègman distances for 𝛾 ∈ ]0, 1[ (see below), while for
𝛾 ∈ {0, 1} and dim(𝐿1(𝒜)) =: 𝑛 < ∞ they are standard Brègman distances in the sense of (B5) and
(269) with 𝑋 = R𝑛 and Ψ𝛾=1(𝑥) =

∑︀𝑛
𝑖=1(𝑥𝑖 log(𝑥𝑖) − 𝑥𝑖 + 1).

Amari [19] has shown that the Liese–Vajda 𝛾-distances with 𝛾 ∈ R can be characterised in the
finite dimensional case as a unique class of standard Brègman distances that are monotone under
coarse grainings.28 Csiszár [182] (see also [557, 308]) has shown that under restriction to 𝐿1(𝒜)+1 the
uniqueness result is stronger, characterising the pair {𝐷1|𝐿1(𝒜)+1

, 𝐷0|𝐿1(𝒜)+1
}. So far no corresponding

characterisation results for the noncommutative case are known.29

28The assumption of decomposability used in Amari’s proof is a discrete version of (270), so, together with (268), it
amounts to a choice of a specific dual coordinate system.

29However, one should note Donald’s [229] characterisation of Donald’s distance, which coincides with 𝐷1|𝒩+
⋆1

at least
for injective 𝑊 *-algebras, as well as Petz’s [574] characterisation of 𝐷1|𝒩+

⋆1
(discussed below), which holds for injective

𝑊 *-algebras too. See also [571, 550] for other related results.

47



Consider the 𝛾-embedding functions on 𝒩+
⋆ valued in 𝐿1/𝛾(𝒩 )+ spaces:

ℓ𝛾 : 𝒩+
⋆ ∋ 𝜔 ↦→ ℓ𝛾(𝜔) :=

𝜔𝛾

𝛾
∈ 𝐿1/𝛾(𝒩 ), (292)

with 𝛾 ∈ ]0, 1]. These functions arise as restrictions of

ℓ̃𝛾 : 𝒩⋆ ∋ 𝜔 ↦→ ℓ̃𝛾(𝜔) :=
𝑢|𝜔|𝛾

𝛾
∈ 𝐿1/𝛾(𝒩 ), (293)

which are bijections due to uniqueness of the polar decomposition 𝜔 = |𝜔|( ·𝑢). In particular, ℓ̃1/2
maps bijectively 𝒩⋆ onto Hilbert space 𝐿2(𝒩 ). The special case of the function (292) was introduced
by Nagaoka and Amari [519, 524] in commutative finite dimensional setting,

ℓ𝛾 : ℳ(𝒳 ,f(𝒳 ), �̃�) ∋ 𝑝(x ) ↦→ ℓ𝛾(𝑝(x )) :=

{︂ 1
𝛾 𝑝(x )𝛾 : 𝛾 ∈ ]0, 1]

log 𝑝(x ) : 𝛾 = 0
∈ 𝐿1/𝛾(𝒳 ,f(𝒳 ), �̃�)+. (294)

Since then it became a standard tool of information geometry theory. However, the Nagaoka–Amari
formulation (294), as well as its noncommutative generalisations [313, 23],

ℓ𝛾 : G1(ℋ)+ ∼= B(ℋ)+⋆ ∋ 𝜌 ↦→ ℓ𝛾(𝜌) :=

{︂ 1
𝛾𝜌

𝛾 : 𝛾 ̸= 0

log 𝜌 : 𝛾 = 0
∈ 𝐿1/𝛾(B(ℋ), tr)+ = G1/𝛾(ℋ)+, (295)

and [360]

ℓ𝜓𝛾 : 𝒩+
⋆ ∋ 𝜔 ↦→ ℓ𝜓𝛾 (𝜔) :=

∆𝛾
𝜔,𝜓

𝛾
∈ 𝐿1/𝛾(𝒩 , 𝜓) for 𝛾 ∈ ]0, 1[, (296)

use 𝛾-powers of densities (Radon–Nikodým quotients) with respect to a fixed reference measure �̃�, trace
tr, or weight 𝜓 ∈ 𝒲0(𝒩 ), respectively. This restricts the generality of formulation. An important
attempt to solve this problem in the commutative case was made by Zhu [788, 792], who considered the
spaces of measures constructed through an equivalence relation based on 𝛾-powers of Radon–Nikodým
quotients, but without fixing any particular reference measure (hence, without passing to densities).
However, his work remained unfinished and widely unknown, and it covered only the commutative
case. The embeddings (292) solve these problems in the noncommutative case, while our construction
of canonical 𝐿𝑝(𝒜) spaces over mcb-algebras 𝒜, provided in Section 2.1, solves this problem in the
commutative case (our definition of (283) already incorporates this solution).

The most general quantum distance that that has been known so far to be a standard Brègman
distance that is monotone under coarse grainings is the Jenčová–Ojima 𝛾-distance [357, 360, 551]

𝐷𝛾(𝜔, 𝜑) :=

{︃
𝛾𝜔(I)+(1−𝛾)𝜑(I)−[[Δ𝛾𝜔,𝜓 ,Δ

1−𝛾
𝜑,𝜓 ]]

𝜓

𝛾(1−𝛾) : 𝜔 ≪ 𝜑

+∞ : otherwise,
(297)

where 𝛾 ∈ ]0, 1[, 𝜓 ∈ 𝒲0(𝒩 ) is an arbitrary reference functional, [[·, ·]]𝜓 is the Banach space duality
pairing between the Araki–Masuda noncommutative 𝐿1/𝛾(𝒩 , 𝜓) and 𝐿1/(1−𝛾)(𝒩 , 𝜓) spaces (see [42]
or [404]). However, the Jenčová–Ojima distance is not a canonical noncommutative generalisation of
the Liese–Vajda distance. The construction of the former is dependent on the choice of fixed reference
weight 𝜓, while the latter does not depend on any additional measure. (Nevertheless, the values
taken by the Jenčová–Ojima distance are independent of the choice of 𝜓.) Using the Falcone–Takesaki
theory (see Section 2.2) we can make the reference-independent approach valid in all cases, including
the infinite dimensional noncommutative one [402, 403].

Definition 3.1. Given 𝛾 ∈ [0, 1], a quantum 𝛾-distance is a map

𝐷𝛾 : 𝒩+
⋆ ×𝒩+

⋆ ∋ (𝜔, 𝜑) ↦→ 𝐷𝛾(𝜔, 𝜑) ∈ [0,∞] (298)
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such that

𝐷𝛾(𝜔, 𝜑) :=

⎧⎪⎨⎪⎩
∫︀

1
𝛾(1−𝛾)

(︀
𝛾𝜔 + (1 − 𝛾)𝜑− 𝜔𝛾𝜑1−𝛾

)︀
: 𝛾 ∈ ]0, 1[, 𝜔 ≪ 𝜑∫︀

lim𝛾→±𝛾
1

𝛾(1−𝛾)
(︀
𝛾𝜔 + (1 − 𝛾)𝜑− 𝜔𝛾𝜑1−𝛾

)︀
: 𝛾 ∈ {0, 1}, 𝜔 ≪ 𝜑

+∞ : otherwise,
(299)

where the right limit, 𝛾 →+ 𝛾, is considered for 𝛾 = 0, and the left limit, 𝛾 →− 𝛾, is considered for
𝛾 = 1.

Remark 3.2. The mathematical form of quantum 𝛾-distance (299) exhibits strong formal similarity
with its commutative special case (283) due to the canonical character of the Falcone–Takesaki con-
struction, as well as the canonical character of the construction of 𝐿𝑝(𝒜) spaces provided in Section
2.1. Whenever required, the family (299) can be extended to the range 𝛾 ∈ R with the condition
𝛾 ∈ ]0, 1[ replaced by 𝛾 ∈ R∖{0, 1}, using the fact that (133) is well defined for any 𝛾 > 0, and defining
𝐷𝛾(𝜑, 𝜔) for 𝛾 < 0 as 𝐷1−𝛾(𝜔, 𝜑).

Proposition 3.3. A quantum 𝛾-distance (299) for 𝛾 ∈ [0, 1] is a Kosaki–Petz f-distance on 𝒩+
⋆ with

f given by (286).

Proof. Applying (286) for 𝛾 ∈ ]0, 1[ to (185) for 𝜔 ≪ 𝜑 and using identity (133), we obtain

𝐷f𝛾 (𝜔, 𝜑) =

⟨
𝜉𝜋(𝜑),

(︂
1

𝛾
+

1

1 − 𝛾
∆𝜔,𝜑 −

1

𝛾(1 − 𝛾)
∆𝛾
𝜔,𝜑

)︂
𝜉𝜋(𝜑)

⟩
ℋ

=
1

𝛾
𝜑(I) +

1

1 − 𝛾
𝜔(I) − 1

𝛾(1 − 𝛾)

∫︁
𝜔𝛾𝜑1−𝛾

= 𝐷𝛾(𝜔, 𝜑). (300)

We have also used the identity ∆
1/2
𝜔,𝜑𝜉𝜋(𝜑) = supp(𝜑)𝜉𝜋(𝜑), which holds for any 𝜑, 𝜔 ∈ 𝒩+

⋆ . Using
(288)-(289), we obtain 𝐷f𝛾 (𝜔, 𝜑) = 𝐷𝛾(𝜔, 𝜑) also for 𝛾 ∈ {0, 1}.

Corollary 3.4. From the above proof it follows that, for 𝛾 ∈ {0, 1}, (299) can be written explicitly as

𝐷0(𝜔, 𝜑) = ⟨𝜉𝜋(𝜑), (− log(∆𝜔,𝜑) + ∆𝜔,𝜑 − I)⟩ℋ
= (𝜔 − 𝜑)(I) − ⟨𝜉𝜋(𝜑), log(∆𝜔,𝜑)𝜉𝜋(𝜑)⟩ℋ (301)

and

𝐷1(𝜔, 𝜑) = ⟨𝜉𝜋(𝜑), (∆𝜔,𝜑 log(∆𝜔,𝜑) − ∆𝜔,𝜑 + I) 𝜉𝜋(𝜑)⟩ℋ
= (𝜑− 𝜔)(I) + ⟨𝜉𝜋(𝜑), (∆𝜔,𝜑 log(∆𝜔,𝜑)) 𝜉𝜋(𝜑)⟩ℋ
= (𝜑− 𝜔)(I) + ⟨𝜉𝜋(𝜔), log(∆𝜔,𝜑)𝜉𝜋(𝜔)⟩ℋ . (302)

Hence,

𝜑≪ 𝜔 ≪ 𝜑 ⇒ 𝐷𝛾(𝜔, 𝜑) = 𝐷1−𝛾(𝜑, 𝜔) ∀𝛾 ∈ [0, 1], (303)

𝐷𝛾(𝜔, 𝜑) = 𝐷𝛾(𝜑, 𝜔) ⇐⇒ 𝛾 =
1

2
. (304)

Remark 3.5. The special cases of the distance (299) are:

∙ the Jenčová–Ojima 𝛾-distance (297) for 𝛾 ∈ ]0, 1[, and for any choice of a reference weight 𝜓 ∈
𝒲0(𝒩 ), which determines the representation of the Falcone–Takesaki 𝐿𝑝(𝒩 ) space for every
𝑝 ∈ [1,∞] provided by means of an isometric isomorphism with the Araki–Masuda 𝐿𝑝(𝒩 , 𝜓)
space.
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∙ the Hasegawa 𝛾-distance [313]30

𝐷𝛾 |𝒩+
⋆1

(𝜔, 𝜑) =
𝜏(𝜌𝜔 − 𝜌𝛾𝜔𝜌

1−𝛾
𝜑 )

𝛾(1 − 𝛾)
=
𝜏(𝜌𝜔 − ∆𝛾

𝜔,𝜑𝜌𝜑)

𝛾(1 − 𝛾)
=

1

𝛾(1 − 𝛾)
− 𝜏(ℓ𝛾(𝜌𝜔)ℓ1−𝛾(𝜌𝜑)), (305)

for 𝛾 ∈ ]0, 1[, 𝜔 ≪ 𝜑, semi-finite 𝒩 , and 𝜌𝜑, 𝜌𝜔 ∈ 𝐿1(𝒩 , 𝜏)+ defined as the Dye–Segal densities
(101) of 𝜔, 𝜑 ∈ 𝒩+

⋆1 with respect to a faithful normal semi-finite trace 𝜏 on 𝒩 , i.e. 𝜑(·) = 𝜏(𝜌𝜑 ·)
and 𝜔(·) = 𝜏(𝜌𝜔 ·). The map ℓ𝛾 : 𝐿1(𝒩 , 𝜏)+ ∋ 𝜑 ↦→ 𝛾−1𝜌𝛾𝜑 ∈ 𝐿1/𝛾(𝒩 , 𝜏) is a straightforward
generalisation of (295) and a special case of (292). If 𝒩 is a type I factor, then the standard
representation of 𝒩 on ℋ is isomorphic to B(ℋ) as a von Neumann algebra and 𝜏(·) = tr(·),
where tr is a standard normalised (𝜏(I) = 1) trace on B(ℋ).

∙ the Araki distance [36, 39, 40]

𝐷1|𝒩+
⋆1

(𝜔, 𝜑) =

{︂
−⟨𝜉𝜋(𝜔), log(∆𝜑,𝜔)𝜉𝜋(𝜔)⟩ℋ : 𝜔 ≪ 𝜑
+∞ : otherwise, (306)

which is a Kosaki–Petz f-distance with an operator convex function f(𝜆) = − log 𝜆. The alter-
native definitions generalising WGKL distance to 𝒩+

⋆1, given by Uhlmann [726] and by Pusz
and Woronowicz [598], were shown to be equal to (306) in [329] and [229], respectively. If
𝐷1|𝒩+

⋆1
(𝜔, 𝜑) <∞, then (306) takes the form [564, 566]

𝐷1|𝒩+
⋆1

(𝜔, 𝜑) =

{︂
i lim𝑡→+0

𝜔
𝑡 ([𝜑 : 𝜔]𝑡 − I) : 𝜔 ≪ 𝜑

+∞ : otherwise. (307)

For a semi-finite 𝒩 , normal faithful semi-finite trace 𝜏 on 𝒩 and 𝜌𝜑 and 𝜌𝜔 defined as in (305),
the Araki distance (306) turns to the Umegaki distance [735, 736] (cf. also [36, 37])

𝐷1|𝒩+
⋆1

(𝜔, 𝜑) = 𝜏(𝜌𝜔(log 𝜌𝜔 − log 𝜌𝜑)) = 𝜏
(︁
𝜌1/2𝜔 (log ∆𝜔,𝜑)𝜌1/2𝜔

)︁
=

∫︁ 1

0
d𝜆𝜏

(︂
𝜌𝜔

1

𝜌𝜑 + 𝜆I
(𝜌𝜔 − 𝜌𝜑)

1

𝜌𝜔 + 𝜆I

)︂
(308)

if 𝜔 ≪ 𝜑, and 𝐷1|𝒩+
⋆1

(𝜔, 𝜑) = +∞ otherwise.

∙ the Liese–Vajda 𝛾-distance (283) for 𝛾 ∈ [0, 1], and commutative 𝒩 , such that 𝒩 = 𝐿∞(𝒜).31

∙ the Amari–Cressie–Read 𝛾-distance32 [16, 174, 17, 453, 606]

𝐷𝛾 |𝐿1(𝒜)+1
(𝜔, 𝜑) =

{︃
1

𝛾(1−𝛾)
∫︀ (︁

𝜇𝜔 − 𝜈𝜑

(︁
𝜇𝜔
𝜈𝜑

)︁𝛾)︁
: 𝜇𝜔 ≪ 𝜈𝜑

+∞ : otherwise
(310)

for 𝛾 ∈ ]0, 1[, commutative 𝒩 , and normalised measures 𝜈𝜑 and 𝜇𝜔 (
∫︀
𝜇𝜔 = 1 =

∫︀
𝜈𝜑) on the

mcb-algebra 𝒜 associated with 𝒩 by means of 𝐿∞(𝒜) = 𝒩 . Consider the Kakutani–Hellinger
30Here we have generalised the original definition given by Hasegawa in a way analogous to Umegaki’s definition of

𝐷1|𝒩+
⋆1

given in [735] and (308).
31Under extension of the domain of 𝛾 to R, the 𝐷𝛾=2 distance is a Csiszár–Morimoto f-distance with f(𝜆) = 1

2
(𝜆−1)2,

and coincides, up to multiplication by 2, with the χ2 distance (see Section 3.1),

𝐷𝛾=2(𝜔, 𝜑) = 2χ2(𝜔, 𝜑). (309)

32The family (310) can be considered for 𝛾 ∈ ]0, 1[ replaced by 𝛾 ∈ R ∖ {0, 1}. This family corresponds bijectively,
but is not equal, to the 𝛾-distance families of Chernoff [156], Kraft [407], Rényi [612, 613], Pérez [561], Havrda–Chárvat
[320], Linhard–Nielsen [461], and Tsallis [722] (for a review with calculations, see e.g. [175]). One should note that,
in particular, the Bhattacharyya, Chernoff, and Rényi distances do not belong to the class of the Csiszár–Morimoto
f-distances [453].
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distance [372, 321, 490, 491]33, defined as a square root of the Csiszár–Morimoto f-distance with
f(𝜆) = (1 −

√
𝜆)2,

𝐷KH(𝜔, 𝜑) :=

√︃∫︁ (︀√
𝜈𝜑 −

√
𝜇𝜔
)︀2
. (311)

The case 𝛾 = 1/2 satisfies

𝐷KH|𝐿1(𝒜)+1
(𝜔, 𝜑) =

√︂
1

4
𝐷1/2|𝐿1(𝒜)+1

(𝜔, 𝜑) (312)

and allows to define the Bhattacharyya distance [74, 73, 75, 76]

𝐷B|𝐿1(𝒜)+1
(𝜔, 𝜑) := 4 − 4𝐷1/2|𝐿1(𝒜)+1

(𝜔, 𝜑). (313)

If a representation of 𝒜 in terms of some (𝒳 ,f(𝒳 ), 𝜐) is given, with �̃�𝜔 ≪ 𝜐 and 𝜈𝜑 ≪ 𝜐 such
that 𝑝𝜔 := �̃�𝜔/𝜐 and 𝑞𝜔 := 𝜈𝜔/𝜐, then (312) and (313) imply

𝐷𝐾𝐻 |𝐿1(𝒜)+1
(𝜔, 𝜑) =

√︃
1

2

∫︁
𝜐(
√
𝑝𝜔 −√

𝑞𝜑)2 =

√︃
1 −

∫︁
𝜐
√
𝑝𝜔𝑞𝜑

=
1√
2

⃒⃒⃒⃒√
𝑝𝜔 −√

𝑞𝜑
⃒⃒⃒⃒
𝐿2(𝒳 ,f(𝒳 ),𝜐)

=
√︁

1 −𝐷𝐵|𝐿1(𝒜)+1
(𝜔, 𝜑). (314)

∙ the WGKL distance (290), for commutative 𝒩 = 𝐿∞(𝒜), and
∫︀
𝜇𝜔 = 1 =

∫︀
𝜈𝜑. (For an explicit

derivation of the WGKL distance from the Araki distance for 𝒩 = 𝐿∞(𝒳 ,f(𝒳 ), 𝜐) see [329].)

Proposition 3.6. If 𝛾 ∈ ]0, 1[, then quantum 𝛾-distance (299) is both a dualistic Brègman distance
(263) and a standard Brègman distance (266) on 𝒩+

⋆ , with a dual coordinate system (ℓ𝛾 , ℓ1−𝛾) given
by (292), with convex proper function

Ψ𝛾 : 𝐿1/𝛾(𝒩 ) ∋ 𝑥 ↦→ Ψ𝛾(𝑥) :=
1

1 − 𝛾

∫︁
(𝛾𝑥)1/𝛾 =

1

1 − 𝛾
||𝛾𝑥||1/𝛾1/𝛾 ∈ [0,+∞[, (315)

with a dualiser

LΨ𝛾 := ℓ̃1−𝛾 ∘ ℓ̃−1
𝛾 : 𝐿1/𝛾(𝒩 ) ∋ 1

𝛾
𝑢|𝜑|𝛾 ↦→ 1

1 − 𝛾
𝑢|𝜑|1−𝛾 ∈ 𝐿1/(1−𝛾)(𝒩 ) (316)

and with a Brègman functional, in the sense of (B�̄�) and (B4),

𝐿1/𝛾(𝒩 )×𝐿1/𝛾(𝒩 ) ∋ (𝑥, 𝑦) ↦→ �̄�Ψ𝛾 (𝑥, 𝑦) = Ψ𝛾(𝑥)+Ψ1−𝛾(LΨ𝛾 (𝑦))−re
[︀[︀
𝑥,LΨ𝛾 (𝑦)

]︀]︀
𝐿1/𝛾(𝒩 )×𝐿1/(1−𝛾)(𝒩 )

.

(317)

Proof. Our method of proof will be based on the approach of [360] (which in turn used some of the
ideas introduced in [276]).

The embeddings ℓ𝛾 defined by (292) allow to construct the real valued functional on 𝒩+
⋆ using the

duality (119),

𝒩+
⋆ ×𝒩+

⋆ ∋ (𝜔, 𝜑) ↦→
∫︁
ℓ𝛾(𝜔)ℓ1−𝛾(𝜑) = [[ℓ𝛾(𝜔), ℓ1−𝛾(𝜑)]]𝐿1/𝛾(𝒩 )×𝐿1/(1−𝛾)

∈ R. (318)

In these terms, 𝐷𝛾 defined in (299) for 𝛾 ∈ ]0, 1[ is equal to

𝐷𝛾(𝜔, 𝜑) =

∫︁ (︂
𝜔

1 − 𝛾
+
𝜑

𝛾
− ℓ𝛾(𝜔)ℓ1−𝛾(𝜑)

)︂
=

𝜔(I)
1 − 𝛾

+
𝜑(I)
𝛾

− [[ℓ𝛾(𝜔), ℓ1−𝛾(𝜑)]]𝛾 , (319)

33As pointed in [438], the reference to [321] is traditional, but quite irrelevant. The referenced paper contains only
the integrals of the form

∫︀
�̃�1�̃�2
𝜐

for �̃�1 ≪ 𝜐 and �̃�2 ≪ 𝜐.
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where we have simplified the notation by [[·, ·]]𝛾 := [[·, ·]]𝐿1/𝛾(𝒩 )×𝐿1/(1−𝛾)(𝒩 ).
We begin by proving that that a function LΨ𝛾 is a homeomorphisms in the corresponding norm

topologies. Its bijectivity follows from the bijectivity of ℓ̃𝛾 . For 𝜑 ∈ 𝒩⋆ denote its unique polar
decomposition as |𝜑|( ·𝑢). From (118) it follows that

||𝑢|𝜑|𝛾 ||1/𝛾 = (|𝜑|(I))𝛾 , (320)

so

||𝛾𝑥||1/𝛾1/𝛾 :=
⃒⃒⃒⃒
(1 − 𝛾)LΨ𝛾 (𝑥)

⃒⃒⃒⃒ 1/(1−𝛾)
1/(1−𝛾) =

∫︁
|𝜑|I =

∫︁
|𝜑|𝛾 |𝜑|1−𝛾supp(𝜑)

=

∫︁
𝑢|𝜑|𝛾 |𝜑|1−𝛾𝑢* =

∫︁
𝑢|𝜑|𝛾

(︁
𝑢|𝜑|1−𝛾

)︁*
= 𝛾(1 − 𝛾)

[︀[︀
𝑥, (LΨ𝛾 (𝑥))*

]︀]︀
𝛾
. (321)

For a Banach space 𝑋 let 𝑣𝑥/||𝑥|| denote a unique point on a unit sphere in 𝑋⋆ such that[︀[︀
𝑥, 𝑣𝑥/||𝑥||

]︀]︀
𝑋×𝑋⋆ = ||𝑥||𝑋⋆ . (322)

According to [195], if 𝑋 is uniformly convex and ||·||𝑋 is Fréchet differentiable, then a map

𝐹𝑣 :

{︂
𝑋 ∖ {0} ∋ 𝑥 ↦→ ||𝑥||𝑋𝑣𝑥/||𝑥|| ∈ 𝑋⋆ ∖ {0}

𝑋 ∋ 0 ↦→ 0 ∈ 𝑋⋆ (323)

is a homeomorphism in the norm topologies of 𝑋 and 𝑋⋆. The function

𝑣𝛾(𝑥) := ||𝛾𝑥||1−1/𝛾
1/𝛾 (1 − 𝛾)(LΨ𝛾 (𝑥))* (324)

satisfies

[[𝑥, 𝑣𝛾(𝑥)]]𝛾 = ||𝛾𝑥||1−1/𝛾
1/𝛾 (1 − 𝛾)

[︀[︀
𝑥, (LΨ𝛾 (𝑥))*

]︀]︀
𝛾

= ||𝛾𝑥||1−1/𝛾
1/𝛾 (1 − 𝛾)||𝛾𝑥||1/𝛾1/𝛾𝛾

−1(1 − 𝛾)−1

= ||𝑥||1/𝛾 , (325)

hence 𝑣𝛾(𝑥) = 𝑣𝑥/||𝑥|| for 𝑋 = 𝐿1/𝛾(𝒩 ). From (321) it follows that LΨ𝛾 (𝑥) is continuous at 0. From
uniform convexity and uniform Fréchet differentiability of 𝐿1/𝛾(𝒩 ) for 𝛾 ∈ ]0, 1[ it follows that for
𝑥 ∈ 𝐿1/𝛾(𝒩 ) ∖ {0} the function 𝐹𝑣𝛾 reads

𝐹𝑣𝛾 (𝑥) = ||𝑥||1/𝛾𝑣𝛾(𝑥) = (1 − 𝛾)𝛾1−1/𝛾 ||𝑥||2−1/𝛾
1/𝛾 (LΨ𝛾 (𝑥))*, (326)

which implies that LΨ𝛾 is also a homeomorphism.
Next, we will prove that Ψ𝛾 is Fréchet differentiable, with

(DF
𝑥Ψ𝛾)(𝑦) = re

[︀[︀
𝑦,LΨ𝛾 (𝑥)

]︀]︀
𝛾

∀𝑥 ∈ 𝐿1/𝛾(𝒩 ) (327)

and
Ψ𝛾(𝑥) + Ψ1−𝛾(LΨ𝛾 (𝑥)) − re

[︀[︀
𝑥,LΨ𝛾 (𝑥)

]︀]︀
𝛾

= 0 ∀𝑥 ∈ 𝐿1/𝛾(𝒩 ). (328)

If a Banach space 𝑋 is Gâteaux differentiable except 0 ∈ 𝑋, then[︀[︀
𝑦,DG

𝑥 ||·||
]︀]︀
𝑋×𝑋⋆ = re

[︀[︀
𝑦, 𝑣𝑥/||𝑥||

]︀]︀
𝑋×𝑋⋆ . (329)

From the uniform Fréchet differentiability of 𝐿1/𝛾(𝒩 ) it follows that ||·||1/𝛾 is Fréchet differentiable at
any 𝑥 ∈ 𝐿1/𝛾(𝒩 ) ∖ {0}, and

(DF
𝑥 ||·||1/𝛾)(𝑦) = re [[𝑦, 𝑣𝛾 ]]𝛾 ∀𝑦 ∈ 𝐿1/𝛾(𝒩 ), (330)

52



so

(DF
𝑥Ψ𝛾)(𝑦) =

(︂
DF

(︂
1

1 − 𝛾
||𝛾𝑥||1/𝛾1/𝛾

)︂)︂
(𝑦) =

(︂
1

1 − 𝛾
||𝛾𝑥||1/𝛾−1

1/𝛾 DF||𝑥||1/𝛾
)︂

(𝑦)

= re

[︂[︂
𝑦,

1

1 − 𝛾
||𝛾𝑥||1/𝛾−1

1/𝛾 ||𝛾𝑥||1−1/𝛾
1/𝛾 (1 − 𝛾)(LΨ𝛾 (𝑥))*

]︂]︂
𝛾

= re
[︀[︀
𝑦,LΨ𝛾 (𝑥)

]︀]︀
𝛾
. (331)

The function ||𝛾𝑥||1/𝛾1/𝛾 is also Fréchet differentiable at 𝑥 = 0, which implies

(DF
0 Ψ𝛾)(𝑦) = 0 = re

[︀[︀
𝑦,LΨ𝛾 (0)

]︀]︀
𝛾
. (332)

This gives (327). The equation (328) follows as straightforward calculation. Note that (328) is
just �̄�Ψ𝛾 (𝑥, 𝑥) = 0 for �̄�Ψ𝛾 given by (317). From the fact that (317) satisfies (B4), it follows that
�̄�Ψ𝛾 (𝑥, 𝑦) ≥ 0. Moreover, from Fréchet differentiability and continuity of Ψ1−𝛾 on all 𝐿1/(1−𝛾)(𝒩 )
and reflexivity of 𝐿1/𝛾(𝒩 ) spaces it follows that Ψ𝛾 is essentially strictly convex, hence, due to (225),
�̄�Ψ𝛾 (𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦. This implies that the equation (328) is a unique solution of the variational
problem

Ψ1−𝛾(LΨ𝛾 (𝑥)) = sup
𝑦∈𝐿1/𝛾(𝒩 )

{︁
re
[︀[︀
𝑦,LΨ𝛾 (𝑥)

]︀]︀
𝛾
− Ψ𝛾(𝑦)

}︁
, (333)

because

𝑦 ̸= 𝑥 ⇒ Ψ𝛾(𝑦) + Ψ1−𝛾(LΨ𝛾 (𝑥)) − re
[︀[︀
𝑦,LΨ𝛾 (𝑥)

]︀]︀
𝛾
> 0, (334)

Ψ1−𝛾(LΨ𝛾 (𝑥)) > re
[︀[︀
𝑦,LΨ𝛾 (𝑥)

]︀]︀
𝛾
− Ψ𝛾(𝑦). (335)

Comparing (333) with (193), we see that

Ψ1−𝛾 = ΨL
𝛾 , (336)

with respect to the duality [[·, ·]]𝛾 .
If 𝑋 is a Banach space and 𝑓 : 𝑋 → R is norm continuous and convex function, then 𝑓 is Gâteaux

differentiable iff 𝜕𝑓(𝑥) = {*} ∀𝑥 ∈ 𝑋. The norm continuity and Fréchet differentiability of Ψ𝛾 on
𝐿1/𝛾(𝒩 ) implies that

𝜕Ψ𝛾(𝑥) = {*} = DF
𝑥Ψ𝛾 , (337)

so
LΨ𝛾 (𝑦) ∈ 𝜕Ψ𝛾(𝑥) ⇐⇒ 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ efd(𝜕Ψ𝛾). (338)

Hence, (𝐿1/𝛾(𝒩 ), 𝐿1/(1−𝛾)(𝒩 ),LΨ𝛾 ) is a generalised Legendre transform, and 𝐷𝛾(𝜔, 𝜑) is a dualistic
Brègman distance of the form

𝐷Ψ𝛾 (𝜔, 𝜑) = Ψ𝛾(ℓ𝛾(𝜔)) + Ψ1−𝛾(ℓ1−𝛾(𝜑)) − [[ℓ𝛾(𝜔), ℓ1−𝛾(𝜑)]]𝐿1/𝛾(𝒩 )×𝐿1/(1−𝛾)(𝒩 )
(339)

with Ψ𝛾(ℓ𝛾(𝜔)) = 1
1−𝛾 (I).

Proposition 3.7. If 𝛾 ∈ ]0, 1[, then 𝐷𝛾(𝜔, 𝜑) satisfies the generalised cosine equation

𝐷𝛾(𝜔, 𝜑) +𝐷𝛾(𝜑, 𝜓) = 𝐷𝛾(𝜔, 𝜓) +

∫︁
(ℓ𝛾(𝜔) − ℓ𝛾(𝜑)) (ℓ1−𝛾(𝜓) − ℓ1−𝛾(𝜑)) . (340)

In finite dimensional setting (340) holds also for 𝛾 ∈ {0, 1}, with ℓ𝛾 given by (295).

Proof. Straightforward calculation based on equations (319) and (273).
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Corollary 3.8. The equation (340) is an instance of the ‘standard’ generalised cosine equation (274)
applied to �̄�Ψ𝛾 given by (317), while the equation (303) follows from the ‘representation-index duality’
equation34

�̄�Ψ𝛾 (𝑥, 𝑦) = �̄�Ψ1−𝛾 (LΨ𝛾 (𝑦),LΨ𝛾 (𝑥)), (341)

where 𝑥, 𝑦 ∈ 𝐿1/𝛾(𝒩 ). For 𝛾 = 1/2 the 𝐿1/𝛾(𝒩 ) space becomes a Hilbert space ℋ (see Section 2.2),
the generalised Brègman functional �̄�Ψ𝛾 becomes the norm distance on it,

�̄�Ψ1/2
(𝑥, 𝑦) =

1

2
||𝑥− 𝑦||2ℋ, (342)

so the generalised cosine equation for �̄�Ψ𝛾 turns to the cosine equation in Hilbert space ℋ,

||𝑥− 𝑦||2ℋ + ||𝑦 − 𝑧||2ℋ = ||𝑥− 𝑧||2ℋ + 2 ⟨𝑥− 𝑦, 𝑧 − 𝑦⟩ℋ . (343)

Remark 3.9. From the fact that (299) is a Kosaki–Petz f-distance it follows that it has the following
properties [397, 565, 550, 360]:

1) 𝐷𝛾(𝜔, 𝜑) ≥ 𝐷𝛾(𝑇⋆(𝜔), 𝑇⋆(𝜑)),

2) 𝐷𝛾 is jointly convex on 𝒩+
⋆ ×𝒩+

⋆ ,

3) for 𝛾 ∈ [0, 1], 𝐷𝛾 is lower semi-continuous on 𝒩+
⋆ × 𝒩+

⋆0 endowed with the product of norm
topologies, while for 𝛾 ∈ {0, 1} it is also lower semi-continuous on 𝒩+

⋆ ×𝒩+
⋆ endowed with the

product of weak-⋆ topologies.

The joint convexity of the Umegaki distance 𝐷1|𝒩+
⋆1

was proved by Lindblad [456] (it can be
derived from Lieb’s theorem [450], cf. [72], and the converse is also true [721], see also [29]), while the
generalisation of this proof to the Araki distance 𝐷1|𝒩+

⋆1
over preduals of arbitrary 𝑊 *-algebras was

provided in [40, 598, 397]. For 𝐷1|𝒩+
⋆1

, the markovian monotonicity (property 1) was shown for type
I factors by Lindblad [456, 457] (using the subadditivity of 𝐷1|𝒩+

⋆1
, proved in [451]), was extended

to some other 𝑊 *-algebras by Araki [40] and was proved in general case by Uhlmann [726] (see also
[598]), while the weak-⋆ lower semi-continuity (property 3) was proved for type I factors by Wehrl
[758], for some other 𝑊 *-algebras by Araki [40], and the complete proof was given independently by
Kosaki [400] and Donald [229]. Moreover, 𝐷1|𝒩+

⋆1
(𝜔, 𝜑) satisfies also

(i) 𝜆1, 𝜆2 > 0 ⇒ 𝐷1|𝒩+
⋆1

(𝜆1𝜔, 𝜆2𝜑) = 𝜆1𝐷1|𝒩+
⋆1

(𝜔, 𝜑) + 𝜆1𝜔(I)(log 𝜆1 − log 𝜆2) ∀𝜆1, 𝜆2 > 0, [40]

(ii) 𝐷1|𝒩+
⋆1

(𝜔, 𝜑) ≥ 𝜔(I)(log𝜔(I) − log 𝜑(I)) [598],

(iii) 𝜑1 ≤ 𝜑2 ⇒ 𝐷1|𝒩+
⋆1

(𝜔, 𝜑1) ≥ 𝐷1|𝒩+
⋆1

(𝜔, 𝜑2) [40],

(iv) supp(𝜔1)supp(𝜔2) = 0 ⇒ 𝐷1|𝒩+
⋆1

(𝜔1, 𝜑) +𝐷1|𝒩+
⋆1

(𝜔2, 𝜑) = 𝐷1|𝒩+
⋆1

(𝜔1 + 𝜔2, 𝜑), [40]

(v) 𝜔 =
∑︀𝑛

𝑖=1 𝜔𝑖 ⇒ 𝐷1|𝒩+
⋆1

(𝜔, 𝜑) +
∑︀𝑛

𝑖=1𝐷1|𝒩+
⋆1

(𝜔𝑖, 𝜔) =
∑︀𝑛

𝑖=1𝐷1|𝒩+
⋆1

(𝜔𝑖, 𝜑) ∀𝜑, 𝜔1, . . . , 𝜔𝑛 ∈ 𝒩+
⋆ ,

[231, 41, 232, 570]

(vi) if ℰ : 𝒩 → 𝒩0 ⊆ 𝒩 is a conditional expectation of norm 1 that is 𝜔-stable35, then [328, 566, 570]

𝐷1|𝒩+
⋆1

(𝜔, 𝜑) = 𝐷1|𝒩+
⋆1

(𝜔|𝒩0 , 𝜑|𝒩0) +𝐷1|𝒩+
⋆1

(𝜑 ∘ ℰ , 𝜑), (344)

34The finite dimensional commutative version of the equation (341), with a dualiser given by gradient, was discussed
in [784].

35A conditional expectation ℰ : 𝒩 → 𝒩0 ⊆ 𝒩 is called 𝜔-stable for 𝜔 ∈ 𝒩+
⋆ iff 𝜔|𝒩0 ∘ ℰ = 𝜔.
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(vii) if 𝒩 = 𝒩1 ⊕𝒩2 and if ∃𝜆 ∈ ]0, 1[ such that for all 𝑥 ∈ 𝒩1 and 𝑦 ∈ 𝒩2

𝜑(𝑥⊕ 𝑦) = 𝜆𝜑1(𝑥) + (1 − 𝜆)𝜑2(𝑦), (345)
𝜔(𝑥⊕ 𝑦) = 𝜆𝜔1(𝑥) + (1 − 𝜆)𝜔2(𝑦), (346)

then
𝐷1|𝒩+

⋆1
(𝜔, 𝜑) = 𝜆𝐷1|𝒩+

⋆1
(𝜔1, 𝜑1) + (1 − 𝜆)𝐷1|𝒩+

⋆1
(𝜔2, 𝜑2). (347)

(viii) 𝐷1|𝒩+
⋆1

is strictly convex in first variable if it is finite, [568, 231, 232]

(ix) 4
(︀
𝑑𝐿1(𝒩 )(𝜔, 𝜑)

)︀2
= ||𝜔 − 𝜑||2𝒩⋆ ≤ 2𝐷1|𝒩+

⋆1
(𝜔, 𝜑). [328]36

Petz [574] characterised 𝐷1|𝒩+
⋆1

as a unique distance on 𝒩+
⋆1 for injective37 𝑊 *-algebras 𝒩 that satisfies

the conditions 1), 3), (vi) and (vii).

Remark 3.10. The family (299) of quantum 𝛾-distances provides a canonical infinite dimensional non-
commutative generalisation of the family (283) of Liese–Vajda 𝛾-distances, and generalises the family
(297) of Jenčová–Ojima 𝛾-distances in terms of canonical noncommutative 𝐿1/𝛾(𝒩 ) spaces. These
canonical properties, considered together with Propositions 3.3 and 3.6 suggest a quantum analogue
of Amari’s [19] characterisation of the Liese–Vajda 𝛾-distances. Note that Amari’s characterisation
holds for 𝛾 ∈ R. On the other hand hand, Proposition 5.1 strongly suggests that in quantum case the
restriction to 𝛾 ∈ [−1, 2] is necessary. This leads us to:

Conjecture 3.11. The family 𝐷𝛾(𝜔, 𝜑) of quantum 𝛾-distances defined by (299) for 𝛾 ∈ [−1, 2] is the
unique family of quantum distances 𝐷(𝜔, 𝜑) on 𝒩+

⋆ that satisfies the conditions:

1) 𝐷(𝜔, 𝜑) ≥ 𝐷(𝑇⋆(𝜔), 𝑇⋆(𝜑)) ∀𝜔, 𝜑 ∈ 𝒩+
⋆ ∀𝑇⋆ ∈ Mark⋆(𝒩+

⋆ ),

2) ∃𝐶 ⊆ 𝒩+
⋆ ∀𝐾 ⊆ 𝒩+

⋆ ∀(𝜑, 𝜓) ∈ 𝐾 × 𝐶

P𝐷
𝐾(𝜓) = {*} ⇒ 𝐷(𝜑, 𝜓) = 𝐷(𝜑,P𝐷

𝐾(𝜓)) +𝐷(P𝐷
𝐾(𝜓), 𝜓), (348)

where P𝐷
𝐾(𝜓) := arg inf𝜑∈𝐾 {𝐷(𝜑, 𝜓)}. Moreover, under restriction from 𝒩+

⋆ to 𝒩+
⋆1, the above con-

ditions are satisfied only by 𝐷𝛾(𝜔, 𝜑) for 𝛾 ∈ {0, 1}.

Now let us turn to discussion of the selected results on existence, uniqueness, and properties of the
projections P

𝐷𝛾
𝐶 (𝜓), defined as minimisers of quantum 𝛾-distances for 𝛾 ∈ [0, 1].

The following results on entropic projections based on 𝐷1|𝒩+
⋆1

were obtained by Donald [232] (cf.
also [230, 41, 233]). If 𝜑, 𝜔 ∈ 𝒩+

⋆1, ℎ ∈ 𝒩 ext,38then the function

𝑐(𝜔, ℎ) := inf
𝜑∈𝒩+

⋆1

{︁
𝐷1|𝒩+

⋆1
(𝜑, 𝜔) + 𝜑(ℎ)

}︁
(355)

36For commutative 𝒩 this inequality was established in [587, 177], and in this case it can be sharpened using higher
orders of 𝐷1, see [737, 720, 718] and [607] for a review and further improvements.

37The injective 𝑊 *-algebras were introduced in [466] and were shown in [167] to be equal to approximately finite
dimensional 𝑊 *-algebras whenever they have a separable predual (for the remaining case there are no counterexamples
known).

38Given a 𝑊 *-algebra 𝒩 , the extended positive cone 𝒩 ext is defined as set of maps 𝑚 : 𝒩+
⋆ → [0,∞] such that for

all 𝜑, 𝜓 ∈ 𝒩+
⋆ [299]

1) 𝑚(𝜆𝜑) = 𝜆𝑚(𝜑) ∀𝜆 ≥ 0,
2) 𝑚(𝜑+ 𝜓) = 𝑚(𝜑) +𝑚(𝜓),
3) 𝑚 is weakly lower semi-continuous, that is,

sup
𝜄
{𝜔𝜄(𝑥)} = 𝜔(𝑥) ⇒ 𝑚(𝜔) ≤ lim inf

𝜄
{𝑚(𝜔𝜄)} ∀𝜔, 𝜔𝜄 ∈ 𝒩+

⋆ , (349)

or, equivalently,
the sets {𝜔 ∈ 𝒩+

⋆ | 𝑚(𝜔) > 𝜆} are weakly open ∀𝜆 ∈ R. (350)

The set 𝒩 ext can be considered as the ‘set of normal weights on 𝒩⋆’. It contains 𝒩+, and is closed under addition,
multiplication by nonnegative scalars, and increasing limits of nets. For all 𝑚1,𝑚2 ∈ 𝒩 ext, 𝑥 ∈ 𝒩 , 𝜑 ∈ 𝒩+

⋆ and 𝜆 ∈ R+
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is called a relative free energy. We use here the simplified notation 𝜑(ℎ) := ℎ(𝜑), with

𝜑(𝑃ℎ𝑃 ) :=

{︃
0 : 𝜑(𝑃 ) = 0

ℎ
(︁
𝜑(𝑃 ·𝑃 )
𝜑(𝑃 )

)︁
: otherwise (356)

for any 𝑃 ∈ Proj(𝒩 ). If 𝑐(𝜔, ℎ) <∞, then

∃! 𝜔ℎ := arg inf
𝜑∈𝒩+

⋆1

{︁
𝐷1|𝒩+

⋆1
(𝜑, 𝜔) + 𝜑(ℎ)

}︁
, (357)

and it satisfies

𝜔ℎ ≪ 𝜔 (with 𝜔(ℎ) <∞ ⇒ supp(𝜔ℎ) = supp(𝜔)), (358)

𝜔ℎ = 𝜔ℎ+𝜆 = 𝜔𝑃ℎ𝑃 ∀𝜆 ∈ R ∀𝑃 ∈ Proj(𝒩 ) such that 𝑃 ≥ supp(𝜔), (359)

𝑐(𝜔, ℎ) = 𝐷1|𝒩+
⋆1

(𝜔ℎ, 𝜔) + 𝜔ℎ(ℎ), (360)

𝐷1|𝒩+
⋆1

(𝜑, 𝜔) + 𝜑(ℎ) ≥ 𝑐(𝜔, ℎ) +𝐷1|𝒩+
⋆1

(𝜑, 𝜔ℎ) ∀𝜑 ∈ 𝒩+
⋆1, (361)

(∃𝜆 ∈ R 𝜑 ≤ 𝜆𝜔ℎ) ⇒ 𝐷1|𝒩+
⋆1

(𝜔, 𝜑) + 𝜑(ℎ) = 𝑐(𝜔, ℎ) +𝐷1|𝒩+
⋆1

(𝜑, 𝜔ℎ) ∀𝜑 ∈ 𝒩+
⋆1, (362)

𝜔(ℎ) <∞ ⇒ 𝐷1|𝒩+
⋆1

(𝜑, 𝜔ℎ) +𝐷1|𝒩+
⋆1

(𝜔ℎ, 𝜔) = 𝐷1|𝒩+
⋆1

(𝜑, 𝜔) + (𝜔ℎ − 𝜑)(ℎ) ∀𝜑 ∈ 𝒩+
⋆1. (363)

Moreover, if 𝑘 ∈ 𝒩 sa, then

(𝜔𝑘)ℎ = 𝜔𝑘+ℎ, (364)

𝜔(ℎ) <∞ ⇒ 𝑐(𝜔, 𝑘 + ℎ) = 𝑐(𝜔, 𝑘) + 𝑐(𝜔𝑘, ℎ). (365)

From 𝑐(𝜔, ℎ) ≤ 𝜔(ℎ) it follows that 𝜔(ℎ) <∞ ⇒ ∃! 𝜔ℎ. From the generalised cosine equation (363) it
follows that 𝐷1|𝒩+

⋆1
satisfies the generalised pythagorean equation

𝐷1|𝒩+
⋆1

(𝜑, 𝜔ℎ) +𝐷1|𝒩+
⋆1

(𝜔ℎ, 𝜔) = 𝐷1|𝒩+
⋆1

(𝜑, 𝜔) (366)

under the conditions 𝜔 ∈ 𝒩+
⋆1, ℎ ∈ 𝒩 ext, 𝜔(ℎ) <∞, and the orthogonality condition

𝜔ℎ(ℎ) = 𝜑(ℎ). (367)

The special case of equation (362), for 𝜔 ∈ 𝒩+
⋆01 and ℎ ∈ 𝒩 sa (which removes the need for an

assumption ∃𝜆 ∈ R 𝜑 ≤ 𝜆𝜔ℎ), was obtained by Araki in [40], while the special cases of (364)-(365),
for 𝜔 ∈ 𝒩+

⋆01 and ℎ ∈ 𝒩 sa, were obtained by him in [33]. Donald [232] showed also that if 𝜔, 𝜓 ∈ 𝒩+
⋆1

and ∃𝜆 ∈ R 𝜓 ≤ 𝜆𝜔, then there exists ℎ ∈ 𝒩 ext such that

𝜓 = 𝜔ℎ, (368)
𝐷1|𝒩+

⋆1
(𝜑, 𝜔) + 𝜑(ℎ) = 𝐷1|𝒩+

⋆1
(𝜑, 𝜓) ∀𝜑 ∈ 𝒩+

⋆1, (369)

ℎ ≥ −(log 𝜆)I, (370)
𝜓, 𝜔 ∈ 𝒩+

⋆01 ⇒ ℎ ∈ 𝒩 sa. (371)

one defines

(𝜆𝑚)(𝜑) := 𝜆𝑚(𝜑), (351)
(𝑚1 +𝑚2)(𝜑) := 𝑚1(𝜑) +𝑚2(𝜑), (352)

(𝑥*𝑚𝑥)(𝜑) := 𝑚(𝜑(𝑥 · 𝑥*)). (353)

Every 𝑚 ∈ 𝒩 ext has a unique spectral decomposition

𝑚(𝜑) =

∫︁ ∞

0

𝜑(𝑃𝑚(𝜆)) +∞ · 𝜑(𝑃𝑚) ∀𝜑 ∈ 𝒩+
⋆ , (354)

where {𝑃𝑚(𝜆) ∈ Proj(𝒩 ) | 𝜆 ∈ R+} is an increasing family which is strongly-⋆ continuous from the right, and 𝑃𝑚 =
I− lim𝜆→∞ 𝑃𝑚(𝜆). If 𝒩 is commutative and 𝒩 ∼= 𝐿∞(𝒳 ,f(𝒳 ), �̃�) then 𝒩 ext ∼= 𝐿0(𝒳 ,f(𝒳 ), �̃�; [0,+∞]).
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In [33] a special case of this result was given, under an additional assumption that ∃𝜆2 ∈ R 𝜔 ≤ 𝜆2𝜓,
which implies that ℎ ∈ 𝒩 sa, and (368)-(370), as well as (log 𝜆2)I ≥ 𝑘, hold. Donald’s relative entropic
projections 𝜔ℎ of normalised quantum states 𝜔 by means of ℎ ∈ 𝒩 ext provide a direct generalisation
of Araki’s [33, 38, 40] perturbations of faithful normalised quantum states by means of ℎ ∈ 𝒩 sa. This
means that, for (𝜔, ℎ) ∈ 𝒩+

⋆01 ×𝒩 sa, (357) can be always determined perturbatively by [232][︁
𝜑ℎ : 𝜑

]︁
𝑡

= ∆i𝑡
𝜑ℎ,𝜑∆−i𝑡

𝜑 = ei𝑡𝑐(𝜑,ℎ)ei𝑡(logΔ𝜑−ℎ)∆−i𝑡
𝜑

= ei𝑡𝑐(𝜑,ℎ)
∞∑︁
𝑛=0

(−i)𝑛
∫︁ 𝑡

0
d𝑡1

∫︁ 𝑡1

0
d𝑡2 · · ·

∫︁ 𝑡𝑛−1

0
d𝑡𝑛𝜎

𝜑
𝑡𝑛(ℎ) · · ·𝜎𝜑𝑡1(ℎ), (372)

𝜉𝜋(𝜑ℎ) = exp

(︂
1

2
(log ∆𝜑 − supp(𝜑)ℎ supp(𝜑) + 𝑐(𝜑, ℎ))

)︂
𝜉𝜋(𝜑). (373)

For unnormalised perturbed state ̃︁𝜑ℎ := e−𝑐(𝜑,−ℎ)𝜑−ℎ this perturbation gives [33]

𝜉𝜋

(︁̃︁𝜑ℎ)︁ =

∞∑︁
𝑛=0

(−1)𝑛
∫︁ 1/2

0
d𝑡1

∫︁ 𝑡1

0
d𝑡 · · ·

∫︁ 𝑡𝑛−1

0
d𝑡𝑛

(︁
∆𝑡𝑛
𝜑 ℎ∆−𝑡𝑛

𝜑

)︁
· · ·
(︁

∆𝑡1
𝜑 ℎ∆−𝑡1

𝜑

)︁
𝜉𝜋(𝜑), (374)

with
−𝑐(𝜔,−ℎ) = log

(︁̃︁𝜑ℎ(I)
)︁

= log
⃒⃒⃒⃒⃒⃒
𝜉𝜋

(︁̃︁𝜑ℎ)︁⃒⃒⃒⃒⃒⃒ 2
ℋ𝜋

, (375)

which corresponds to [361]

̃︁𝜑ℎ(I) = sup
𝜔∈𝒩+

⋆

{︁
−𝐷1|𝒩+

⋆1
(𝜔, 𝜑) + 𝜔(ℎ) + 𝜔(I)

}︁
. (376)

Petz [569] showed that for ℎ ∈ 𝒩 sa the equation (357) has a corresponding Fenchel dual

𝐷1|𝒩+
⋆1

(𝜑, 𝜔) = inf
ℎ∈𝒩 sa

{𝑐(𝜔, ℎ) + 𝜑(ℎ)} . (377)

This duality extends to the Banach dual pair of Banach spaces (𝒩 sa, (𝒩 ⋆)sa), if 𝒩+
⋆1 in (355) and (377)

is replaced by 𝒩+
⋆ . See [572, 550] for some further discussion of the Fenchel duality in this context.

According to the Donald–Petz theorem [231, 570], if 𝜓 ∈ 𝒩+
⋆1 and 𝐶 ⊆ 𝒩+

⋆1 is nonempty, convex,
and weakly-⋆ closed with int(𝐶) ̸= ∅ and inf𝜑∈𝐶

{︁
𝐷1|𝒩+

⋆1
(𝜑, 𝜓)

}︁
<∞, then

arg inf
𝜑∈𝐶

{︁
𝐷1|𝒩+

⋆1
(𝜑, 𝜓)

}︁
= {*}. (378)

In [572] the same result was provided for 𝐷1|𝒩+
⋆1

(𝜑, 𝜓) replaced by 𝐷1|𝒩+
⋆1

(𝜑, 𝜓) + 𝐹 (𝜑), with 𝐹 :

𝐶 → R ∪ {+∞} lower semi-continuous, convex, proper. A special case of (378), with 𝜆1, . . . , 𝜆𝑛 ∈ R,
ℎ1, . . . , ℎ𝑛 ∈ 𝒩 sa, 𝑛 ∈ N, and

𝐶 = {𝜑 ∈ 𝒩+
⋆1 | 𝜑(ℎ𝑖) = 𝜆𝑖 ∀𝑖 ∈ {1, . . . , 𝑛}} (379)

was investigated, under some additional assumptions, in [642, 600, 532].
Now let us consider the entropic projections of 𝐷𝛾 given by (299) for 𝛾 ∈ ]0, 1[. The following

results were obtained first by Jenčová [360] for the Jenčová–Ojima 𝛾-distance and its corresponding
dualistic Brègman functional.

Proposition 3.12. 1) if 𝑦 ∈ 𝐿1/𝛾(𝒩 ) and 𝐾 ⊆ 𝐿1/𝛾(𝒩 ) is nonempty, weakly closed, convex, then:

i) P̄
Ψ𝛾
𝐾 (𝑦) := arg inf𝑥∈𝐾

{︀
�̄�Ψ𝛾 (𝑥, 𝑦)

}︀
= {*},
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iii)
�̄�Ψ𝛾 (𝑥, 𝑦) ≥ �̄�Ψ𝛾 (𝑥, P̄

Ψ𝛾
𝐾 (𝑦)) + �̄�Ψ𝛾 (P̄

Ψ𝛾
𝐾 (𝑦), 𝑦) ∀𝑥 ∈ 𝐾, (380)

and, equivalently,

re
[︁[︁
𝑥− P̄

Ψ𝛾
𝐾 (𝑦),LΨ𝛾 (𝑦) − LΨ𝛾 (P̄

Ψ𝛾
𝐾 (𝑦))

]︁]︁
𝐿1/𝛾(𝒩 )×𝐿1/(1−𝛾)(𝒩 )

≤ 0 ∀𝑥 ∈ 𝐾. (381)

iv) the equality in (380) and (381) holds if 𝐾 is additionally a vector subspace of 𝐿1/𝛾(𝒩 ),

2) if 𝜓 ∈ 𝒩+
⋆ and 𝐶 ⊆ 𝒩+

⋆ is nonempty, ℓ𝛾(𝐶) ⊆ 𝐿1/𝛾(𝒩 ) is convex, and 𝐶 is closed in the topology
induced by ℓ̃−1

𝛾 from the weak topology of 𝐿1/𝛾(𝒩 ), then

i) P
𝐷𝛾
𝐶 (𝜓) := arg inf𝜑∈𝐶 {𝐷𝛾(𝜑, 𝜓)} = {*},

iii) if ℓ𝛾(𝐶) is a vector subspace of 𝐿1/𝛾(𝒩 ), then the generalised pythagorean equation

𝐷𝛾(𝜔, 𝜓) = 𝐷𝛾(𝜔,P
𝐷𝛾
𝐶 (𝜓)) +𝐷𝛾(P

𝐷𝛾
𝐶 (𝜓), 𝜓) ∀𝜔 ∈ 𝐶 (382)

holds.

Proof. Because �̄�Ψ𝛾 given by (317) is a Brègman functional in the sense of (B4), the theorems (P1)
on existence, uniqueness and properties of Brègman projections for definitions (B3) and (B4) provided
in Section 3.2 apply also in this case. The corresponding results for dualistic Brègman distance 𝐷𝛾

can be obtained by an extension of 𝐷𝛾 to �̂�𝛾 , defined on the whole space 𝒩⋆ by replacing the term
[[ℓ𝛾(𝜔), ℓ1−𝛾(𝜑)]]𝛾 in (319) by re

[︁[︁
ℓ̃𝛾(𝜔), ℓ̃1−𝛾(𝜑)

]︁]︁
𝛾
. Because ℓ̃𝛾 are homeomorphisms (hence, bijec-

tions) between Banach spaces 𝒩⋆ and 𝐿1/𝛾(𝒩 ), the theorems on existence, uniquenes, and pythagorean
theorem for projections for �̄�Ψ𝛾 on 𝐿1/𝛾(𝒩 ) can be translated in terms of topology induced by ̃︀ℓ−1

𝛾 on
𝒩⋆, turning them into the corresponding theorems on projections for �̂�𝛾 . The results for 𝐷𝛾 follow
then by the restriction of domain of �̂�𝛾 to 𝒩+

⋆ .
Most of the conditions for (P1) were already verified: 𝐿1/𝛾(𝒩 ) is reflexive, Ψ𝛾 is lower semi-

continuous, Gâteaux differentiable, essentially Gâteaux differentiable and essentially strictly convex
on efd(Ψ𝛾) = 𝐿1/𝛾(𝒩 ). The strict convexity of Ψ𝛾 follows from Gâteaux differentiability of Ψ1−𝛾 .
Finally,

lim
||𝑥||1/𝛾→+∞

Ψ𝛾(𝑥)

||𝑥||1/𝛾
=
𝛾1−𝛾

1 − 𝛾
lim

||𝑥||1/𝛾→+∞
||𝑥||−𝛾1/𝛾 = +∞ ∀𝑥 ∈ 𝐾. (383)

Remark 3.13. Jenčová [360] proved also that, under the same assumptions as in 1) and 2) above,
respectively:

1.ii) 𝑦 ↦→ P̄
Ψ𝛾
𝐾 (𝑦) is a continuous function from 𝐿1/𝛾(𝒩 ) with its norm topology to 𝐾 with the relative

weak topology,

2.ii) 𝜓 ↦→ P
𝐷𝛾
𝐶 (𝜓) is a continuous function from 𝒩+

⋆ with the topology induced by ℓ̃−1
𝛾 from the norm

topology of 𝐿1/𝛾(𝒩 ) to 𝐶 with the relative topology induced by ℓ̃−1
𝛾 from the weak topology of

𝐿1/𝛾(𝒩 ).

4 Smooth geometries

A function 𝑓 : 𝑋 ⊇ 𝑈 → 𝑉 ⊆ 𝑌 between open subsets 𝑈, 𝑉 of Banach spaces 𝑋,𝑌 is called smooth
iff it is continuous and Fréchet differentiable on 𝑈 , its Fréchet derivative is also continuous and Fréchet
differentiable on 𝑈 , and the same holds for all its higher order Fréchet derivatives DF(. . . (DF𝑓) . . .).
See [216, 141] for a discussion of higher order differentiability in Banach spaces, and [411] for a general
treatment of smoothness in infinite dimensional vector spaces. A smooth atlas on an arbitrary set 𝑍
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is defined as a set of pairs {(𝑈𝑖, 𝑤𝑝) | 𝑖 ∈ 𝐼}, where 𝐼 is a set, 𝑈𝑖 ⊆ 𝑍,
⋃︀
𝑖∈𝐼 𝑈𝑖 = 𝑍, {𝑌𝑖 | 𝑖 ∈ 𝐼} is a

set of Banach spaces, 𝑤𝑖 : 𝑈𝑖 → 𝑤𝑖(𝑈𝑖) ⊆ 𝑌𝑖 are bijections, 𝑤𝑖(𝑈𝑖) are open in 𝑌𝑖, 𝑊𝑖(𝑈𝑖 ∩𝑈𝑗) is open
in 𝑌𝑖 for all 𝑖, 𝑗 ∈ 𝐼, and the map

𝑤𝑗 ∘ 𝑤−1
𝑖 : 𝑤𝑖(𝑈𝑖 ∩ 𝑈𝑗) → 𝑤𝑗(𝑈𝑖 ∩ 𝑈𝑗) (384)

is a smooth homeomorphism for all 𝑖, 𝑗 ∈ 𝐼. Each pair (𝑈𝑖, 𝑤𝑖) in a smooth atlas is called a chart.
Two smooth atlases on 𝑍 are called equivalent iff their union is a smooth atlas on 𝑍. The set 𝑍
equipped with an equivalence class of smooth atlases equivalent to a given atlas {(𝑈𝑖, 𝑤𝑖) | 𝑖 ∈ 𝐼} is
called a smooth manifold modelled on Banach spaces {𝑌𝑖 | 𝑖 ∈ 𝐼}.. A subset 𝑋 of a smooth manifold
(𝑍, {(𝑈𝑖, 𝑤𝑖) | 𝑖 ∈ 𝐼}) is called a submanifold iff for all 𝑥 ∈ 𝑋 there exists a chart (𝑈𝑗 , 𝑤𝑗) such that
𝑥 ∈ 𝑈𝑗 and there exists a closed vector subspace 𝑊𝑗 of 𝑌𝑗 such that

1) there exists a closed vector subspace 𝑉𝑗 of 𝑌𝑗 such that 𝑌𝑗 = 𝑊𝑗 ⊕ 𝑉𝑗 and 𝑊𝑗 ∩ 𝑉𝑗 = {0},

2) 𝑤𝑗(𝑋 ∩ 𝑈𝑗) = 𝑊𝑗 ∩ 𝑤𝑗(𝑈𝑗).

A collection {(𝑈𝑗 , 𝑤𝑗) | 𝑗 ∈ 𝐽 ⊆ 𝐼} of all such charts defined a smooth atlas on 𝑋. As a result,
(𝑋, {(𝑋 ∩ 𝑈𝑗 , 𝑤𝑗 |𝑋∩𝑈𝑗 ) | 𝑗 ∈ 𝐽 ⊆ 𝐼}) is a smooth manifold. If (𝑍, {(𝑈𝑖, 𝑤𝑖) | 𝑖 ∈ 𝐼}) is a smooth
manifold, then a tangent vector at 𝑥 ∈ 𝑈𝑗 ⊂ 𝑍, 𝑗 ∈ 𝐼, is defined as a pair (𝑥, 𝑦), where 𝑦 ∈ 𝑌𝑗 =
𝑤𝑗(𝑈𝑗). A tangent space of 𝑍 at 𝑥, denoted T𝑥𝑍, is defined as a space of all tangent vectors at 𝑥, so
it is equal to 𝑌𝑗 , and, equivalently, to any 𝑌𝑖 such that 𝑥 ∈ 𝑤−1

𝑖 (𝑌𝑖). Given the union
⋃︀
𝑖∈𝐼 𝑈𝑖×𝑌𝑖×{𝑖},

the quotient set of an equivalence relation

(𝑥, 𝑣, 𝑖) ∼ (𝑦, 𝑢, 𝑗) ⇐⇒ 𝑥 = 𝑦 and (DF
𝑤𝑗(𝑥)

𝑤𝑖 ∘ 𝑤−1
𝑗 )(𝑤) = 𝑣 (385)

is called a tangent bundle of 𝑍 and denoted T𝑍. Its elements will be denoted [𝑥, 𝑣, 𝑖]𝑍 . Given

Π𝑍 : T𝑍 ∋ [𝑥, 𝑣, 𝑖]𝑍 ↦→ 𝑥 ∈ 𝑍, (386)

T : 𝑈𝑖 ↦→
⋃︁
𝑥∈𝑈𝑖

Π−1
𝑍 (𝑥), (387)

T𝑤𝑖 : T𝑈𝑖 ∋ [𝑥, 𝑣, 𝑖]𝑍 ↦→ (𝑤𝑖(𝑥), 𝑣) ∈ 𝑤𝑖(𝑈𝑖) × 𝑌𝑖, (388)

the pairs (T𝑈𝑖,T𝑤𝑖) are charts of a smooth atlas of T𝑍, with

T𝑤𝑖 ∘ (𝑇𝑤𝑗)
−1 : 𝑤𝑗(𝑈𝑖∩𝑈𝑗)×𝑌𝑗 ∋ (𝑥, 𝑣) ↦→ (𝑤𝑖 ∘𝑤−1

𝑗 (𝑥), (DF
𝑥𝑤𝑖 ∘𝑤−1

𝑗 )(𝑣)) ∈ 𝑤𝑖(𝑈𝑖∩𝑈𝑗)×𝑌𝑖. (389)

The map Π𝑍 is smooth, and Π−1
𝑍 (𝑦) ∼= T𝑦𝑍 ∀𝑦 ∈ 𝑍. According to the Lindenstrauss–Tzafriri theorem

[459], if a Banach space 𝑌 has a property that for every closed vector subspace 𝑉 there exists a closed
vector subspace 𝑊 such that 𝑉 ⊕ 𝑊 = 𝑌 , then 𝑌 is isometrically isomorphic to a Hilbert space.
Hence, if one requires that all closed vector subspaces of tangent spaces of a smooth manifold ℳ are
tangent spaces of some submanifolds of ℳ, then the tangent bundle of ℳ has to consist of Hilbert
spaces.

If (𝑋, {(𝑈𝑖, 𝑢𝑖) | 𝑖 ∈ 𝐼}) and (𝑍, {(̃︀𝑈𝑗 , ̃︀𝑢𝑗) | 𝑗 ∈ 𝐽}) are smooth manifolds, 𝑓 : 𝑋 → 𝑍 is smooth,
then, for charts (𝑈𝑖, 𝑢𝑖) and (̃︀𝑈𝑗 , ̃︀𝑢𝑗) such that 𝑓(𝑈𝑖) ⊆ ̃︀𝑈𝑗 and for 𝑣𝑖 ∈ 𝑌𝑖 defined as a representative
of 𝑣 ∈ T𝑥𝑋 with 𝑥 ∈ 𝑈𝑖, the map T𝑓 : T𝑥𝑋 → T𝑓(𝑥)𝑍, defined by

[𝑓(𝑥),T𝑥𝑓(𝑣), 𝑗]𝑍 =
(︀
DF
𝑥(̃︀𝑢𝑗 ∘ 𝑓 ∘ 𝑢−1

𝑖 )
)︀

(𝑣) (390)

is linear and unique.
In what follows, we will assume that ℳ is a smooth manifold, not necessarily finite dimensional.

The coordinate-dependent representations of the smooth geometric structures will be provided under
an (implicit) assumption of dimℳ < ∞, or ℳ modelled on Hilbert spaces, or ℳ modelled on a
Banach space possesing a Schauder basis39.

39A Schauder basis [653] in a Banach space 𝑋 over C is a sequence {𝑥𝑖} ⊆ 𝑋 such that ∀𝑥 ∈ 𝑋 ∃!{𝜆𝑖} ⊆ C
𝑥 =

∑︀
𝑖=1 𝜆𝑖𝑥𝑖, where the convergence holds for the norm topology of 𝑋.
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4.1 Riemannian and affine geometries

Every smooth manifold ℳ is canonically equipped with a tangent space T𝑞ℳ at each 𝑞 ∈ ℳ.
A tangent bundle Tℳ of ℳ is defined as Tℳ :=

⋃︀
𝑞∈ℳT𝑞ℳ. A cotangent space T~

𝑞 ℳ at
each 𝑞 ∈ ℳ is defined as a Banach dual T~

𝑞 ℳ := (T𝑞ℳ)⋆. A cotangent bundle T~ℳ of ℳ
is defined as T~ℳ :=

⋃︀
𝑞∈ℳT~

𝑞 ℳ. If 𝑛,𝑚 ∈ N, then an (𝑛,𝑚)-tensor bundle is defined as⋃︀
𝑞∈ℳ

(︁⨂︀𝑛T𝑞ℳ
)︁
⊗
(︁⨂︀𝑚T~

𝑞 ℳ
)︁
, where ⊗ denotes the tensor product considered in an algebraic

sense (that is, without taking topological completion). A riemannian metric [619] is defined as a
smooth function g : Tℳ×Tℳ → R+ that acts pointwisely on fibers of Tℳ by

ℳ ∋ 𝑞 ↦→ g𝑞 : T𝑞ℳ×T𝑞ℳ → R (391)

and such that for any 𝑣, 𝑢, 𝑤 ∈ T𝑞ℳ, any 𝑞 ∈ ℳ, and any 𝜆1, 𝜆2 ∈ R it satisfies

(i) g𝑞(𝑢, 𝑣) = g𝑞(𝑣, 𝑢),

(ii) 𝑣 ̸= 0 ⇒ g𝑞(𝑣, 𝑣) > 0,

(iii) g𝑞(𝜆1𝑢+ 𝜆2𝑣, 𝑤) = 𝜆1g𝑞(𝑢,𝑤) + 𝜆2g𝑞(𝑣, 𝑤).

Hence, g can be equivalently defined as a smooth section of the (0, 2)-tensor bundle satisfying the
conditions (i)-(iii). These conditions imply linearity in second argument and g𝑞(𝑥, 𝑥) = 0 ⇐⇒ 𝑥 = 0.
A pair (ℳ,g) is called a riemannian manifold or a riemannian geometry.

A riemannian manifold (ℳ,g) will be called: weak iff no additional conditions are assumed;
semi-weak iff it uniquely determines a riemannian metric g~ on T~ℳ such that, for each 𝑥 ∈ T~ℳ,
g~(𝑥, ·) is an injective bundle map [686, 687]; self-dual iff T𝑥ℳ ∼= (T𝑥ℳ)⋆ ∀𝑥 ∈ ℳ; semi-strong
iff g(𝑣, 𝑣) = ||𝑣||2T𝑥ℳ ∀T𝑥ℳ ∀𝑥 ∈ ℳ; strong iff T𝑥ℳ is a Hilbert space for each 𝑥 ∈ ℳ [428, 393];
complete iff 𝑋 is complete as a topological space in the topology induced by the metrical distance 𝑑g.
The following implications hold in general: strong ⇒ semi-strong ⇒ self-dual ⇒ semi-weak. Moreover,
strong ̸⇒ complete. If dimℳ <∞, then every weak riemannian manifold satisfies all above properties.
Various results of finite dimensional theory of riemannian geometry require different assumptions on
the riemannian manifold when their generalisation to infinite dimensions is considered. In particular,
the formula for a gradient of a function requires semi-weak structure, while Koszul formula for the
Levi-Civita connection requires strong structure [428, 687]. In the remaining part of Section 4 we will
avoid discussion of the necessary conditions required for the infinite dimensional riemannian manifold
to support the given propositions. However, we will return to this problem in Section 5.1.

A length of a vector 𝑣 ∈ T𝑞ℳ at 𝑞 ∈ ℳ is defined as
√︀
g𝑞(𝑣, 𝑣). A curve in ℳ is defined

as a smooth map 𝑐 : R ∋ 𝑡 ↦→ 𝑐(𝑡) ∈ ℳ. A finite curve in ℳ is defined as a smooth map
𝑐 : [0, 1] ∋ 𝑡 ↦→ 𝑐(𝑡) ∈ ℳ. Every curve 𝑐 induces a vector field �̇�(𝑡) := d

d𝑡𝑐(𝑡) ∈ T𝑐(𝑡)ℳ. A length of a
finite curve 𝑐 : [0, 1] ∋ 𝑡 ↦→ 𝑐(𝑡) ∈ ℳ connecting points 𝑝 := 𝑐(1) and 𝑞 := 𝑐(0) is defined as

𝑑𝑐(𝑝, 𝑞) :=

∫︁ 1

0
d𝑡
√︁
g𝑐(𝑡)(�̇�(𝑡), �̇�(𝑡)). (392)

A riemannian distance between 𝑝 ∈ ℳ and 𝑞 ∈ ℳ (with respect to a riemannian metric g), defined
as the length of locally shortest curve among all finite curves connecting 𝑝 and 𝑞,

𝑑g(𝑝, 𝑞) := inf
𝑐
{𝑑𝑐(𝑝, 𝑞) | 𝑐(0) = 𝑞, 𝑐(1) = 𝑝}, (393)

is a metrical (Fréchet) distance.
An affine connection [447, 325, 761, 760] is defined as a map ∇ : Tℳ×Tℳ → Tℳ that acts

pointwise on fibers of Tℳ by

ℳ ∋ 𝑞 ↦→ ∇𝑞 : T𝑞ℳ×T𝑞ℳ → T𝑞ℳ (394)

and satisfies
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1. ∇(𝑢, 𝜆1𝑣 + 𝜆2𝑤) = 𝜆1∇(𝑢, 𝑣) + 𝜆2∇(𝑢,𝑤),

2. ∇(𝑢, 𝑓𝑤) = 𝑢(𝑓)𝑤 + 𝑓∇(𝑢,𝑤),

3. ∇(𝑓𝑢+ ℎ𝑣,𝑤) = 𝑓∇(𝑢,𝑤) + ℎ∇(𝑣, 𝑤),

for any 𝜆1, 𝜆2 ∈ R, 𝑓, ℎ : ℳ → R, 𝑢, 𝑣, 𝑤 ∈ Tℳ. We will use the common notation ∇(𝑢, 𝑣) ≡ ∇𝑢𝑣
for 𝑢, 𝑣 ∈ Tℳ as well as ∇𝑞(𝑢, 𝑣) ≡ (∇𝑞)𝑢𝑣 for 𝑢, 𝑣 ∈ T𝑞ℳ. Let 𝑢(𝑡) ∈ T𝑐(𝑡)ℳ be a vector field
defined on every point of a curve 𝑐(𝑡). If ∇�̇�𝑢(𝑡) = 0, then t∇𝑐 𝑢 ≡ t∇𝑐(0),𝑐(1) := 𝑢(𝑡1) ∈ T𝑐(𝑡1)ℳ is
called a parallel transport of 𝑢 = 𝑢(𝑡0) ∈ T𝑐(𝑡0)ℳ with respect to ∇. The covariant derivative
[616, 617] of 𝑢 along 𝑣 is defined as ∇𝑣𝑢. If �̂� ∈ T~ℳ and 𝑣 ∈ Tℳ, then the covariant derivative
∇𝑣�̂� is defined by

(∇𝑣�̂�)(𝑢) = ∇𝑣(�̂�(𝑢)) − �̂�(∇𝑣𝑢) ∀𝑢 ∈ Tℳ. (395)

A curve 𝑐(𝑡) is called a ∇-geodesic iff
∇�̇�(𝑡)�̇�(𝑡) = 0. (396)

The Riemann–Christoffel curvature tensor [620, 158, 462] of the affine connection ∇ is defined
by

R∇ : Tℳ×Tℳ×Tℳ → Tℳ,
R∇(𝑢, 𝑣, 𝑤) ≡ R∇(𝑢, 𝑣)𝑤 := ∇𝑢∇𝑣𝑤 −∇𝑣∇𝑢𝑤 −∇{𝑢,𝑣}𝑤,

(397)

where {𝑢, 𝑣}(𝑓) := (DF
𝑓 𝑢)(𝑣) − (DF

𝑓 𝑣)(𝑢) is a Lie bracket on T𝑞ℳ for any 𝑞 ∈ ℳ. The torsion
tensor of the connection ∇ is defined by [139, 140]

T∇ : Tℳ×Tℳ → Tℳ,
T∇(𝑢, 𝑣) := ∇𝑢𝑣 −∇𝑣𝑢− {𝑢, 𝑣}. (398)

The affine connection ∇ is called torsion-free or symmetric iff T∇(𝑢, 𝑣) = 0 ∀𝑢, 𝑣 ∈ Tℳ. An
affine connection ∇ is called flat iff R∇(𝑢, 𝑣, 𝑤) = 0 ∀𝑢, 𝑣, 𝑤 ∈ Tℳ. If ∇ is flat, then the ∇-parallel
transport t∇𝑐 does not depend on 𝑐. If ∇ is flat and torsion-free, then (ℳ,∇) is called an affine
manifold or an affine geometry.

A triple (ℳ,g,∇), where g is a riemannian metric and ∇ is an affine connection is called a
metric–affine geometry. An affine connection ∇̂ that satisfies any of the equivalent conditions

g(∇̂𝑢𝑣, 𝑤) + g(𝑣, ∇̂𝑢𝑤) = 𝑢(g(𝑣, 𝑤)) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ, (399)

g(t∇̂𝑐 𝑢, t
∇̂
𝑐 𝑣) = g(𝑢, 𝑣) ∀𝑢, 𝑣 ∈ Tℳ ∀ curves 𝑐 : R → ℳ, (400)

∇̂𝑢g(𝑣, 𝑤) = 0 ∀𝑢, 𝑣, 𝑤 ∈ Tℳ, (401)

is called metric-compatible [325]. For every riemannian manifold (ℳ,g) there exists a unique affine
connection, which is torsion-free and metric-compatible [447]. It is denoted by ∇̄ and called the
Levi-Civita connection. So, each riemannian geometry (ℳ,g) determines a metric–affine geometry
(ℳ,g, ∇̄).

If some atlas of coordinate systems (𝜃𝑖) on ℳ is chosen, and if (𝜕𝑖) ≡ ( 𝜕
𝜕𝜃𝑖

) denotes the cor-
responding choice of the basis in T𝑞ℳ, then the metric tensor of a riemannian metric g reads

g𝑖𝑗(𝜃) ≡ g𝑖𝑗(𝑞) := g𝜃(𝑞)(𝜕𝑖, 𝜕𝑗), (402)

the Christoffel symbols of an affine connection ∇ are [158]

Γ∇
𝑖𝑗𝑘(𝑞) := g𝜃(𝑞)(∇𝜕𝑖𝜕𝑗 , 𝜕𝑘), (403)

while the Ricci curvature scalar of ∇ and g is [618]

𝜅∇(𝑞) :=
∑︁
𝑖,𝑗,𝑘,𝑙

R∇
𝑖𝑗𝑘𝑙(𝑞)g

𝑖𝑙(𝑞)g𝑗𝑘(𝑞). (404)
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If ∇ is symmetric, then Γ∇
𝑖𝑗𝑘 = Γ∇

𝑗𝑖𝑘. If ∇ is flat, then for every 𝑞 ∈ ℳ there exists a coordinate system
(𝜁𝑖) on an open neighbourhood 𝑈 ⊆ ℳ of 𝑞 such that

R∇
𝑖𝑗𝑘𝑙(𝑞) = 0, (405)

(∇𝑞) 𝜕

𝜕𝜁𝑖

𝜕

𝜕𝜁𝑗
= 0, (406)

Γ∇
𝑖𝑗𝑘(𝑞) = 0, (407)

𝜅∇(𝑞) = 0. (408)

Such coordinate system (𝜁𝑖) is called ∇-affine, because every other coordinate system (𝜁𝑖) for which
(406) also holds can be transformed to (𝜁𝑖) by an affine transformation 𝜁𝑖 =

∑︀𝑛
𝑗=1 M𝑖

𝑗𝜁
𝑗 + 𝜆𝑖, where

M is a constant 𝑛× 𝑛 matrix, 𝜆𝑖 ∈ R, and 𝑛 := dimℳ. A coordinate system which satisfies

g𝜃(𝑞)(𝜕𝑖, 𝜕𝑗) = 𝛿𝑖𝑗 ∀𝑞 ∈ ℳ (409)

is called cartesian with respect to g. If dimℳ < ∞ then the Levi-Civita connection ∇̄ of g is flat
iff there exists a cartesian coordinate system with respect to g, and in such case it is also ∇̄-affine.

In terms of arbitrary system (𝜁𝑖) of coordinates on ℳ, the condition (396) reads

𝜁𝑘(𝑐(𝑡)) +
∑︁
𝑖,𝑗

𝜁𝑖(𝑐(𝑡))𝜁𝑗(𝑐(𝑡))Γ∇𝑘
𝑖𝑗(𝜁(𝑐(𝑡))) = 0. (410)

For every 𝑢𝑞 ∈ T𝑞ℳ the Picard–Lindelöf theorem [585, 458] guarantees local existence and uniqueness
of the solution of the differential equation (410) of a ∇-geodesic, which implies an existence of a unique
geodesic curve 𝑐∇𝑢𝑞 such that 𝑐∇𝑢𝑞(0) = 𝑞 and �̇�∇𝑢𝑞(𝑞) = 𝑢𝑞. In consequence, the exponential map
exp∇

𝑞 : T𝑞ℳ → ℳ defined by exp∇
𝑞 (𝑢𝑞) := 𝑐∇𝑢𝑞 := 𝑐∇𝑢𝑞(1) satisfies

exp∇
𝑞 (𝑡𝑢𝑞) = 𝑐∇𝑢𝑞(𝑡). (411)

There always exists an open neighbourhood 𝑈 of 0 ∈ T𝑞ℳ and an open neighbourhood 𝑉 of 𝑞 ∈ ℳ
such that exp∇

𝑞 |𝑈 is a diffeomorphism 𝑈 → 𝑉 [82].

4.2 Norden–Sen and Eguchi geometries

A pair (∇,∇†) of two affine connections over a smooth manifold ℳ is called Norden–Sen dual with
respect to a riemannian metric g on ℳ, iff [541, 665, 666, 542, 667, 543, 668, 669, 544, 545, 670, 546, 664]

g(∇𝑢𝑣, 𝑤) + g(𝑣,∇†
𝑢𝑤) = 𝑢(g(𝑣, 𝑤)) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ, (412)

which is equivalent to
g(t∇𝑐 𝑢, t

∇†
𝑐 𝑣) = g(𝑢, 𝑣) (413)

for all 𝑢, 𝑣 ∈ Tℳ and for all curves 𝑐 : R → ℳ. Condition (412) is a generalisation of (399) (and,
equivalently (413) is a generalisation of (400)). The quadruple (ℳ,g,∇,∇†) is called a Norden–Sen
manifold or Norden–Sen geometry. From the duality condition (412) it follows that

R∇(𝑢, 𝑣, 𝑤) = R∇†
(𝑢, 𝑣, 𝑤) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ. (414)

See [743, 524, 17, 430, 218, 540, 539] for later studies of this geometry.
Eguchi [243, 244, 245] showed that for any smooth manifold ℳ and any smooth40 distance 𝐷 on

ℳ that satisfies
DF
𝑣 |𝑝DF

𝑣 |𝑝𝐷(𝑝, 𝑞)|𝑞=𝑝 ∈ ]0,∞[ ∀𝑝 ∈ ℳ ∀𝑣 ∈ T𝑝ℳ∖ {0}, (415)
40For the purpose of the equation (416) only, it is sufficient to assume twice differentiability (and this is the case, for

example, in [446]). Yet, consideration of g in (416) as riemannian metric requires to assume smoothness.

62



the distance 𝐷 determines a riemannian metric g and a pair of affine connections (∇,∇†) on ℳ, given
by the Eguchi equations

g𝜑(𝑢, 𝑣) := −DF
𝑢 |𝜑DF

𝑣 |𝜔𝐷(𝜑, 𝜔)|𝜔=𝜑, (416)

g𝜑((∇𝑢)𝜑𝑣, 𝑤) := −DF
𝑢 |𝜑DF

𝑣 |𝜑DF
𝑤|𝜔𝐷(𝜑, 𝜔)|𝜔=𝜑, (417)

g𝜑(𝑣, (∇†
𝑢)𝜑𝑤) := −DF

𝑢 |𝜔DF
𝑤|𝜔DF

𝑣 |𝜑𝐷(𝜑, 𝜔)|𝜔=𝜑. (418)

Every quadruple (ℳ,g,∇,∇†) determined in this way is a Norden–Sen geometry such that both ∇ and
∇† are torsion-free. Conversely, Matumoto [488] has shown that, for dimℳ < ∞, every torsion-free
Norden–Sen geometry (ℳ,g,∇,∇†) is determined by a smooth distance functional 𝐷 that is defined
globally on ℳ and satisfies (415). However, this distance is determined uniquely by the quadruple
(ℳ,g,∇,∇†) only up to the third order term of its Taylor expansion. A torsion-free Norden–Sen
geometry will be called an Eguchi manifold or Eguchi geometry, while every pair (ℳ, 𝐷) such
that 𝐷 is smooth, and (415) holds, will be called an Eguchi system.

While in riemannian geometry the affine connection is determined by riemannian metric, in the
Eguchi geometry the triple of riemannian metric and two Norden–Sen dual affine connections are
determined by distance. Moreover, the Levi-Civita connection ∇̄ of an associated riemannian geometry
(ℳ,g) satisfies ∇̄ = (∇ + ∇†)/2. In this sense, the Eguchi geometry provides a generalisation of a
riemannian geometry. This way the Eguchi geometry (based on the nonsymmetric distance) provides a
generalisation of all main notions of cartesian geometry: distance, length, parallelity and orthogonality.
Generalisation of the cartesian distance is provided by the distance 𝐷, the induced riemannian metric
g provides the generalisation of orthogonality and length, while the induced torsion-free Norden–Sen
dual connections (∇,∇†) provide a generalisation of parallelity.41 The invariance of length under
parallel transport that characterises riemannian geometry is weakened to covariance in the sense of
(413).

Every Eguchi geometry (ℳ,g,∇,∇†) allows one to define the family of affine 𝜗-connections,̃︀∇𝜗 := (1 − 𝜗)∇ + 𝜗∇† ∀𝜗 ∈ R, (419)

as well as a completely symmetric skewness tensor,

𝐶𝑖𝑗𝑘(𝑞) := 𝜕𝑘g𝑖𝑗(𝑞) = Γ∇†
𝑘𝑖𝑗(𝑞) − Γ∇

𝑘𝑗𝑖(𝑞). (420)

The pairs (̃︀∇𝜗, ̃︀∇1−𝜗) are torsion-free and Norden–Sen dual with respect to g [524, 430, 431]. Moreover,

̃︀∇1/2 =
1

2
(̃︀∇𝜗 + ̃︀∇1−𝜗) = ∇̄, (421)

that is, (𝜗 = 1
2)-connection is a Levi-Civita connection with respect to g. As shown by Lauritzen [431],

the Eguchi geometries (ℳ,g, ̃︀∇𝜗, ̃︀∇1−𝜗) can be characterised by means of the following theorem: for
every triple (ℳ,g, 𝐶), where 𝐶 : Tℳ × Tℳ × Tℳ → R is any completely symmetric third-rank
tensor on ℳ, there exists a unique affine connection ̃︀∇𝜗, which is torsion-free and satisfies̃︀∇𝜗

𝑢g(𝑣, 𝑤) = (1 − 2𝜗)𝐶(𝑢, 𝑣, 𝑤). (422)

The triples (ℳ,g, 𝐶) will be called Lauritzen manifolds. For 𝜗 = 0 this theorem sets up a bijection
between the Eguchi geometries and the Lauritzen manifolds. The Christoffel symbols of ̃︀∇𝜗 read

̃︀Γ𝜗𝑖𝑗𝑘(𝑞) = Γ̄𝑖𝑗𝑘(𝑞) +

(︂
𝜗− 1

2

)︂
𝐶𝑖𝑗𝑘(𝑞). (423)

In coordinate independent terms this corresponds to

̃︀∇𝜗
𝑢𝑣 = ∇̄𝑢𝑣 +

(︂
𝜗− 1

2

)︂
𝐶(𝑢, 𝑣) ∀𝑢, 𝑣 ∈ Tℳ, (424)

41The idea that 𝐷 should be considered as generalisation of the cartesian distance, while the connection ∇ associated
to a projection by means of 𝐷 should be considered as a proper generalisation of parallelity (at least in the setting of
statistical manifolds) is due to Chencov [147, 150].
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where 𝐶(𝑢, 𝑣) is defined by

𝐶(𝑢, 𝑣, 𝑤) = g(𝐶(𝑢, 𝑣), 𝑤) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ. (425)

Only the distances along (𝜗 = 1
2)-geodesics are riemannian distances. Other 𝜗-geodesics are not the

curves of locally minimal length. Hence, the length of a curve can serve as an affine parameter of this
curve only for (𝜗 = 1

2)-geodesics. Note also that g𝑖𝑗(𝑞) in general depends on 𝑞, even in a 𝜗-affine
coordinate system, due to (422). In consequence, the 𝜗-parallel transport generally changes the length
of vectors.

In a local coordinate basis (𝜕𝑖) at point 𝑞, the corresponding 𝜗-torsion tensor, 𝜗-curvature tensor,
and 𝜗-curvature scalar read, respectively, [777, 709, 241, 14, 15, 17, 786]

̃︀T𝜗𝑖𝑗𝑘(𝑞) = g𝑞(̃︀T𝜗(𝜕𝑖, 𝜕𝑗), 𝜕𝑘) = ̃︀Γ𝜗𝑖𝑗𝑘(𝑞) − ̃︀Γ𝜗𝑗𝑖𝑘(𝑞), (426)̃︀R𝜗
𝑖𝑗𝑘𝑚(𝑞) = g𝑞(̃︀R𝜗(𝜕𝑖, 𝜕𝑗 , 𝜕𝑘), 𝜕𝑚) = 𝜕𝑖̃︀Γ𝜗𝑗𝑘𝑚(𝑞) − 𝜕𝑗̃︀Γ𝜗𝑖𝑘𝑚(𝑞) +

∑︁
𝑟

̃︀Γ𝜗𝑖𝑟𝑚(𝑞)̃︀Γ𝜗𝑟𝑗𝑘(𝑞) −∑︁
𝑟

̃︀Γ𝜗𝑗𝑟𝑚(𝑞)̃︀Γ𝜗𝑟𝑖𝑘(𝑞),
(427)̃︀𝜅𝜗(𝑞) =

∑︁
𝑖,𝑗,𝑘,𝑚

̃︀R𝜗
𝑖𝑗𝑘𝑚(𝑞)g𝑖𝑚(𝑞)g𝑗𝑘(𝑞)

= ̃︀𝜅1/2(𝑞) + 𝜗(1 − 𝜗)
∑︁
𝑖,𝑗

g𝑖𝑗(𝑞)

⎛⎝∑︁
𝑘,𝑚

𝐶𝑚𝑖𝑘(𝑞)𝐶
𝑘
𝑗𝑚(𝑞) −

∑︁
𝑘,𝑚

𝐶𝑚𝑖𝑗(𝑞)𝐶
𝑘
𝑘𝑚(𝑞)

⎞⎠ . (428)

From the Norden–Sen duality between ̃︀∇𝜗 and ̃︀∇1−𝜗 it follows that

̃︀R𝜗(𝑢, 𝑣, 𝑤) = ̃︀R1−𝜗(𝑢, 𝑣, 𝑤), (429)

hence [431] ̃︀R𝜗
𝑖𝑗𝑘𝑙(𝑞) = −̃︀R1−𝜗

𝑖𝑗𝑙𝑘 (𝑞). (430)

So, ̃︀∇𝜗 is flat iff ̃︀∇1−𝜗 is flat. If ̃︀T𝜗 = ̃︀T1−𝜗 = 0 and ̃︀R𝜗 = ̃︀R1−𝜗 = 0, then the quadruple
(ℳ,g, ̃︀∇𝜗, ̃︀∇1−𝜗) is called a 𝜗-hessian manifold [679, 784]. Note that the Levi-Civita connection
(421) on the (𝜗 ̸= 1

2)-hessian manifold may possess nonzero riemannian (𝜗 = 1
2)-curvature.

4.3 Hessian manifolds

If T∇ = T∇†
= 0 and R∇ = R∇†

= 0, then the Norden–Sen geometry (ℳ,g,∇,∇†) is called a dually
flat manifold [524, 17, 23]. In such case there exists a pair (ℓ, ℓ†) of coordinate systems on ℳ, called
dually flat coordinates, such that ℓ is a ∇-affine coordinate system, while ℓ† is a ∇†-affine coordinate
system. Note that the flatness of ∇ and ∇† does not imply the flatness of ∇̄. The dual flatness of a
pair (𝜃, 𝜂) of coordinate systems is equivalent to the orthogonality of their tangent vectors at 𝑞 with
respect to the riemannian metric g at 𝑞,

g𝑞

(︂
(T𝑞𝜃)

−1

(︂
𝜕

𝜕𝜃𝑖

)︂
, (T𝑞𝜂)−1

(︂
𝜕

𝜕𝜂𝑗

)︂)︂
= 𝛿𝑗𝑖 ∀𝑞 ∈ ℳ. (431)

A triple (ℳ,g,∇) with a riemannian metric g and a torsion-free affine connection ∇ is called a
Codazzi structure iff it satisfies

(∇𝑢g)(𝑣, 𝑤) = (∇𝑣g)(𝑢,𝑤) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ. (432)

A riemannian metric g on an affine manifold (ℳ,∇) with flat ∇ is said to be hessian, and denoted
gΦ, iff there exists a smooth function Φ : ℳ → R such that [675, 676, 155]

g(𝑢, 𝑣) = (∇𝑢dΦ)(𝑣) ∀𝑢, 𝑣 ∈ Tℳ. (433)
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Such triple (ℳ,g,∇) is called a hessian manifold or a hessian structure [678] (see also [405, 744,
515, 236]). If (𝜉𝑖) is a ∇-affine coordinate system on ℳ, then (433) is locally equivalent to

g𝑖𝑗(𝑞) =
𝜕2Φ

𝜕𝜉𝑖𝜕𝜉𝑗
d𝜉𝑖 ⊗ d𝜉𝑗 . (434)

Given a riemannian manifold (ℳ,g) and an affine connection ∇ on ℳ, the following conditions
are equivalent [677, 679, 678]:

1) (ℳ,g,∇) is a hessian manifold,

2) (ℳ,g,∇) is a Codazzi structure and ∇ is flat,

3) (ℳ,g,∇, 2∇̄ −∇) is a dually flat Norden–Sen geometry, where ∇̄ is the Levi-Civita connection
of g,

4) g((∇̄ − ∇)𝑢𝑣, 𝑤) = g(𝑣, (∇̄ − ∇)𝑢𝑤) ∀𝑢, 𝑣, 𝑤 ∈ Tℳ and for a torsion-free flat ∇.

Hence, hessian structures belong to an intersection of the Norden–Sen geometries with Codazzi struc-
tures, and are characterised by the symmetry and flatness of the affine connection. From 3) above it
follows that (ℳ,g,∇†) for ∇† := 2∇̄ −∇ is also a hessian manifold. This sets up a bijection between
hessian manifolds and dually flat manifolds.

The equation (434) suggests us to introduce the function

Ψ := Φ ∘ ℓ−1 : 𝑋 → R, (435)

where 𝑋 is a codomain vector space of the coordinate system ℓ : ℳ → 𝑋. Let (𝑋,𝑋d, [[·, ·]]𝑋×𝑋d)

be a dual pair (in the sense of Section 3.2) such that (ℓ, ℓ†) : ℳ → 𝑋 × 𝑋d is a pair of dually flat
coordinates of a dually flat manifold (ℳ,g,∇,∇†). Using (435) and (433) we obtain

g(𝑢, 𝑣) = (∇𝑢d(Ψ ∘ ℓ−1))(𝑣) = (∇†
𝑢d(Ψ̃ ∘ (ℓ†)−1))(𝑣). (436)

Hence, for a given dually flat manifold, the form of its hessian riemannian metric gΦ is determined by
Ψ. This allows to denote gΦ as gΨ. For dimℳ = 𝑛 <∞ the direct application of (434) gives Ψ̃ = ΨL

[678], where ΨL is a Legendre transform of Ψ with respect to the duality (259). We define

ΦL := ΨL ∘ ℓ†. (437)

The functions Φ and ΦL are called scalar potentials. In what follows, we will assume that Ψ is
convex (the convexity of ΨL follows from the properties of the Legendre transform, independently of
the convexity of Φ. For dimℳ = 𝑛 < ∞ one can express g, ∇, and ∇† in a coordinate-dependent
form

𝜂𝑖 = 𝜕𝑖Ψ(𝜃), (438)

𝜃𝑖 = 𝜕𝑖Ψ(𝜂), (439)
g𝑖𝑗(𝜃) = 𝜕𝑖𝜕𝑗Ψ(𝜃), (440)

g𝑖𝑗(𝜂) = 𝜕𝑖𝜕𝑗ΨL(𝜂), (441)

Γ∇
𝑖𝑗𝑘(𝜃) = 𝜕𝑖𝜕𝑗𝜕𝑘Ψ(𝜃), (442)

Γ∇† 𝑖𝑗𝑘(𝜂) = 𝜕𝑖𝜕𝑗𝜕𝑘ΨL(𝜂), (443)

Γ∇
𝑖𝑗𝑘(𝜂) = 0, (444)

Γ∇† 𝑖𝑗𝑘(𝜃) = 0, (445)
𝑛∑︁
𝑖=1

𝜃𝑖(𝑝)𝜂𝑖(𝑝) = Ψ(𝜃(𝑝)) + ΨL(𝜂(𝑝)), (446)
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where 𝜕𝑖 := 𝜕
𝜕𝜃𝑖

and 𝜕𝑖 := 𝜕
𝜕𝜂𝑖

. The equation (446) follows from the lower bound of the Young–Fenchel
inequality (194). The equations (438)-(439) are the same as (257)-(258). The equations (440)-(443)
can be obtained as a result of Eguchi equations (416)-(418) applied to the Brègman distance

𝐷Ψ(𝑝, 𝑞) = Ψ(𝜃(𝑝)) + ΨL(𝜂(𝑞)) −
𝑛∑︁
𝑖=1

𝜃𝑖(𝑝)𝜂𝑖(𝑞). (447)

Equations (444)-(445) are instances of (406), which follow from dual flatness. Conversely [17], if there
exists a convex function Φ such that its hessian (matrix of second derivatives) determines pointwise a
riemannian metric, then there exists a pair of dually flat coordinate systems, together with a conjugate
potential ΦL, satisfying equations (438)-(446).

The structure of dually flat manifolds determines affine connections up to affine transformations,
and determines corresponding scalar potentials up to linear terms. This suggests to use the Eguchi
equations in order to reconstruct the unique distance corresponding to the structure of a dually flat
manifold, but it is in general impossible, because Eguchi equations determine distance only up to
the third order terms. Nevertheless, every dually flat manifold has a naturally associated Brègman
distance, which is determined by the Young–Fenchel inequality, and the pair (ℓ, ℓ†) of dually flat coor-
dinates. More precisely [524, 422, 218, 423, 487], every 𝑛-dimensional smooth manifold equipped with
a riemannian metric and a pair of flat and mutually Norden–Sen dual affine connections determines a
pair of affine immersions that are related to each other by the Legendre transformation and are unique
up to affine transformation of the coordinate codomain space R𝑛. These affine immersions determine
in turn a distance functional (447), which belongs to a class of Brègman distances.

The relationship between Brègman distance and dually flat manifolds can be characterised as
follows [23, 383]: if a smooth manifold ℳ is equipped with two torsion-free affine connections ∇1 and
∇2, a riemannian metric g and a distance 𝐷, then (ℳ,g,∇1,∇2) is a dually flat manifold and 𝐷 is
its associated Brègman distance iff

𝐷(𝑝, 𝑞) +𝐷(𝑞, 𝑟) = 𝐷(𝑝, 𝑟) + g𝑞((exp∇1
𝑞 )(𝑝), (exp∇2

𝑞 )(𝑟)) ∀𝑝, 𝑞, 𝑟 ∈ ℳ. (448)

The generalised cosine equation (448) is a special case of the equation (273).
Let us consider further properties of dually flat manifolds [17, 23]. The coordinate system (𝜃𝑖)

on 𝒬 is called ∇-affine iff all basis vectors fields are ∇-parallel on 𝒬. If, for a given ∇ on 𝒬, there
exists a ∇-affine coordinate system, then ∇ is called flat, and 𝒬 is called ∇-flat or ∇-affine. The
∇-flatness of 𝒬 is equivalent to the vanishing of the Riemann curvature tensor R∇. A manifold 𝒬
is called ∇-autoparallel iff ∇𝑢𝑣 ∈ T𝒬 ∀𝑢, 𝑣 ∈ T𝒬. If a manifold ℳ is ∇-flat, then 𝒬 ⊆ ℳ is
∇-autoparallel iff 𝒬 can be expressed as an affine subspace (or an open subset of an affine subspace) of
ℳ with respect to a ∇-affine coordinate system on ℳ. A ∇-autoparallelity of 𝒬 is equivalent to the
vanishing of the Euler–Schouten imbedding curvature tensor [17, 431]. If 𝒬 ⊆ ℳ is ∇-autoparallel
and ℳ is ∇-flat, then 𝒬 is ∇-flat and ∇-geodesics on 𝒬 have linear equations in ∇-affine coordinates.
If (ℳ,g,∇,∇†) is dually flat, and 𝒬 ⊆ ℳ is ∇-autoparallel or ∇†-autoparallel, then (𝒬,g𝒬,∇𝒬,∇†

𝒬)

is also dually flat, with (g𝒬,∇𝒬,∇†
𝒬) induced on 𝒬 by (g,∇,∇†) [17, 23]. If ∇1 and ∇2 are affine

connections on ℳ, g is a riemannian metric on ℳ, and 𝒬 ⊆ ℳ is ∇2-autoparallel, then a point
𝑝𝒬 ∈ 𝒬 is called a (g,∇1,∇2)-projection of 𝑝 ∈ ℳ onto 𝒬 iff the ∇1-geodesic 𝑐∇1(𝑡) connecting 𝑝
with 𝑝𝒬 satisfies

g𝑝𝒬(�̇�∇1(𝑡), �̇�∇2(𝑠)) = 0 ∀𝑐∇2 , (449)

where �̇�∇1 , �̇�∇2 ∈ T𝑝𝒬ℳ, and 𝑐∇2 varies over all ∇2-geodesic lines intersecting 𝑝𝒬 and contained in
𝒬. A set 𝒬 ⊆ ℳ is called ∇-convex iff for all 𝑝1, 𝑝2 ∈ 𝒬 there exists a unique ∇-geodesic connecting
𝑝1 with 𝑝2 and entirely included in 𝒬.

Let (ℳ,g,∇,∇†) be a dually flat manifold, 𝐷Ψ its canonical Brègman distance, 𝒬 ⊆ ℳ, 𝑝𝒬 ∈ 𝒬,
𝑝 ∈ ℳ. If 𝒬 is ∇†-autoparallel submanifold of ℳ, then [23]

𝐷Ψ(𝑝, 𝑝𝒬) = inf
𝑞∈𝒬

{𝐷Ψ(𝑝, 𝑞)} (450)
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holds iff 𝑝𝒬 is a (g,∇,∇†)-projection of 𝑝 onto 𝒬. If 𝒬 is a closed set with a smooth boundary
𝜕𝒬, then the (g,∇,∇†)-projection of 𝑝 onto 𝜕𝒬 is unique if 𝒬 is ∇†-convex [17]. Hence, while the
existence of (g,∇,∇†)-projection from ℳ to 𝒬, given by the minimum of Brègman distance, requires
∇†-autoparallelity of 𝒬, its uniqueness requires ∇†-convexity of 𝒬. By the theorem above, if ℳ is
∇†-flat, then 𝒬 is ∇†-autoparallel iff it is ∇†-affine. So, while in general the existence and uniqueness
of (g,∇,∇†)-projection onto 𝒬 requires ∇†-autoparallelity and ∇†-convexity of 𝒬, this requirement is
weakened to ∇†-affinity and ∇†-convexity in the case when ℳ is a dually flat space.

In particular, if 𝑝, 𝑞, 𝑟 ∈ ℳ such that 𝑝 and 𝑞 are points at ∇-geodesic, 𝑞 and 𝑟 are points at
∇†-geodesic, and these geodesics are orthogonal at 𝑞 in the sense of (449) (but without quantifier
‘∀𝑐∇2 ’), then the generalised pythagorean equation [23]

𝐷Ψ(𝑝, 𝑞) +𝐷Ψ(𝑞, 𝑟) = 𝐷Ψ(𝑝, 𝑟) (451)

holds. It is a special case of nonsmooth generalised pythagorean equation (280).
See [23, 784, 510, 20, 787, 21] for a further discussion of dually flat geometries, their relation-

ship with convex Legendre conjugate potentials and Brègman distances, as well as the corresponding
geometric description of minimisation problems.

5 Smooth information geometries

For a given finite dimensional information model ℳ, the smooth manifold structure can be introduced
using the smooth embeddings into open subsets of R𝑛. As a result, various differential geometric ob-
jects on ℳ(𝒜) and ℳ(𝒩 ) can be studied. For infinite dimensional case, a suitable smooth manifold
structure modelled on Banach spaces is required. Following the work of Pistone and Sempi, most of
the constructions (with an exception of e.g. [46, 535]) employ a suitably constructed family of (com-
mutative or noncommutative) Orlicz spaces. In general, the passage from the setting of information
distances on information models to smooth information geometric structures on information manifolds
imposes restriction on integrability to the sets of countably finite 𝑊 *-algebras, and restriction of dif-
ferentiability to the setting of Fréchet derivatives.42 The former is the price paid for invertibility and
chain rule of the Radon–Nikodým quotients, while the latter is the price paid for linearity of derivatives
of arbitrary degree.

The consideration of finite dimensional parametric statistical models as smooth manifolds dates
back to [601, 351, 13, 147], and the expositions of the subject can be found in [152, 14, 17, 54,
507, 515, 23, 354, 415, 383, 43]. The detailed treatment of the information geometric reformulation
of statistics with the key role played by the smooth geometric structures on statistical manifolds is
given in [152, 381, 17, 382, 507, 383]. Consideration of multidimensional parametric quantum models
dependent on smooth parameters dates back at least to [345, 322], however an explicit study of smooth
geometric structures on quantum models was started in [337, 338, 342, 49, 727, 728, 520, 521, 506]. The
comprehensive treatment of a smooth geometry of finite dimensional quantum manifolds still waits for
its book, but [506, 732, 575, 446, 286, 358, 359, 159, 67, 305, 733] contain some partial overviews of
the topic. The smooth manifold structure on nonparametric statistical and quantum models, as well
as further smooth geometric structures on them, are a subject of current research, and one can consult
[286, 361, 143, 702, 704, 590] for further details.

The main aim of this Section is to provide an overview of the main structures and results of smooth
information geometry, in commutative and quantum, as well as in parametric and nonparametric,
settings. Our intention is to show how the smooth information geometric structures arise as an
approximation to nonsmooth information geometry of f-distances and generalised Brègman distances
(the latter entering through the dually flat geometries). In particular, we prove the smooth parametric
quantum analogue of the generalised pythagorean theorem (382).

42As one of the consequences, one expects that the dualistic Bregman distances naturally associated with the smooth
information manifolds (e.g. by means discussed in Section 4.3) will correspond to Bregman functionals of type (B4).
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5.1 Information manifolds

If a statistical model (resp., probabilistic model) ℳ(𝒜) can be equipped with a smooth manifold
structure, then it is called a statistical manifold (resp., probability manifold). If a quantum
information model ℳ(𝒩 ) can be equipped with a smooth manifold structure, then it will be called a
quantum manifold (or quantum information manifold).

Consider a statistical model ℳ(𝒜) ⊆ 𝐿1(𝒜)+ with dimℳ(𝒜) =: 𝑛 < ∞. Assume the following
regularity conditions:

(1) ℳ(𝒜) can be parametrised by finite dimensional vectors 𝜃 = (𝜃1, . . . , 𝜃𝑛) ∈ Θ, where Θ ⊂ R𝑛 is
an open subset, using the smooth and injective mapping

𝑝 : Θ ∋ 𝜃 ↦→ 𝑝(𝜃) ∈ ℳ(𝒜); (452)

(2) ℳ(𝒜) is represented as ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+ for a given representation (𝒳 ,f(𝒳 ), �̃�)
of 𝒜, and with all supports supp(𝑝) := {x ∈ 𝒳 | 𝑝(x ) > 0} equal to 𝒳 for all elements
𝑝 ∈ ℳ(𝒳 ,f(𝒳 ), �̃�). This implies that all 𝑝(x )�̃�(x ) are mutually absolutely continuous and
ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 ;

(3) integration
∫︀
𝒳 �̃�(x ) over 𝒳 commutes with differentiation 𝜕𝑖 := 𝜕

𝜕𝜃𝑖
over Θ for all functions on

𝒳 × Θ, ∫︁
𝒳
�̃�(x )

𝜕

𝜕𝜃𝑖
𝑓(x , 𝜃) =

𝜕

𝜕𝜃𝑖

∫︁
𝒳
�̃�(x )𝑓(x , 𝜃). (453)

Under these conditions, (𝜃1, . . . , 𝜃𝑛) is a global coordinate system on ℳ(𝒳 ,f(𝒳 ), �̃�), which equips
the statistical model ℳ(𝒳 ,f(𝒳 ), �̃�) with a smooth manifold structure. Such ℳ(𝒳 ,f(𝒳 ), �̃�) is called
a parametric statistical manifold. Its elements are denoted by 𝑝(x , 𝜃). If

ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 := {𝑓 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 |
∫︁
�̃�𝑓 = 1} (454)

is a parametric statistical manifold, then it is called a parametric probabilistic manifold.
The tangent space T𝑝(𝜃)ℳ(𝒳 ,f(𝒳 ), �̃�) of the parametric statistical manifold ℳ(𝒳 ,f(𝒳 ), �̃�) at

𝑝(𝜃) := 𝑝(𝑥, 𝜃) is defined as a vector space spanned by the basis vectors (𝜕𝑖). The Nagaoka–Amari
𝛾-embeddings (294),

ℓ𝛾(𝑝(x , 𝜃)) =: ℓ𝛾(x , 𝜃) =: ℓ𝛾(𝜃), (455)

allow to define a suitable family of representations of this tangent space. If one assumes an additional
regularity condition,

(4) for any fixed 𝜃 the elements of the set {𝜕𝑖ℓ𝛾(𝑥, 𝜃) | 𝑖 ∈ {1, . . . ,dim(ℳ(𝒳 ,f(𝒳 ), �̃�))}} are linearly
independent,

then the 𝛾-representation [17] of T𝑝(𝜃)ℳ(𝒳 ,f(𝒳 ), �̃�) is defined as the push-forward T𝑝(𝜃)ℓ𝛾 of the
𝛾-embeddings. More explicitly, if 𝑣 ∈ T𝑝(𝜃)ℳ(𝒳 ,f(𝒳 ), �̃�) and 𝑐 : ]−𝜀, 𝜀[∋ 𝑡 ↦→ 𝑐(𝑡) ∈ ℳ(𝒳 ,f(𝒳 ), �̃�)
such that 𝑐(0) = 𝑝(𝜃) is a curve in the equivalence class of the vector 𝑣, then the push-forward T𝑝(𝜃)ℓ𝛾
defines the vector space isomorphism

T𝑝(𝜃)ℓ𝛾 : T𝑝(𝜃)ℳ(𝒳 ,f(𝒳 ), �̃�) → Tℓ𝛾(𝑝(𝜃))𝐿1/𝛾(𝒳 ,f(𝒳 ), �̃�), (456)

𝑣 =

𝑛∑︁
𝑖=1

𝑣𝑖𝜕𝑖 ↦→
d

d𝑡
(ℓ𝛾 ∘ 𝑐)|𝑡=0 =

𝑛∑︁
𝑖=1

𝑣𝑖𝜕𝑖ℓ𝛾(𝜃). (457)

From (453) and normalisation condition
∫︀
�̃�𝑝 = 1 it follows that

∫︀
�̃�𝑝(𝜃)𝜕𝑖ℓ0(𝜃) = 0 [203], hence one

has

Tℓ0(𝑝)ℳ(𝒳 ,f(𝒳 ), �̃�) = {𝑓(x ) ∈ 𝐿∞(𝒳 ,f(𝒳 ), �̃�) |
∫︁
�̃�𝑝(𝜃)

𝑛∑︁
𝑖=1

𝑓 𝑖𝜕𝑖ℓ0(𝜃) = 0}

= {𝑓(x ) ∈ 𝐿∞(𝒳 ,f(𝒳 ), �̃�) |
∫︁
𝒳
�̃�(x )𝑝(x , 𝜃)𝑓(x ) = 0}, (458)
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whenever ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01. If 𝑣 = 𝜕
𝜕𝜃𝑖

|𝑞, then its 𝛾-representation is 𝜕𝑖ℓ𝛾(𝜃). But
since

d

d𝑡

(︂
1

𝛾
𝑝𝛾
)︂

= 𝑝𝛾
d(log 𝑝)

d𝑡
, (459)

it can be written as 𝑝𝛾 𝜕(log 𝑝)
𝜕𝜃𝑖

= 𝑝𝛾𝜕𝑖ℓ0(𝜃). Thus,

Tℓ𝛾(𝑝)ℳ(𝒳 ,f(𝒳 ), �̃�) = {𝑓 ∈ 𝐿1/𝛾(𝒳 ,f(𝒳 ), �̃�) |
∫︁
�̃�𝑝𝑓 = 0}. (460)

For the case when dimℳ(𝒜) = ∞, the construction based on smooth embeddings into R𝑛 space
is no longer available. Instead, one needs to introduce smooth Banach manifold structure on the
models ℳ(𝒳 ,f(𝒳 ), �̃�), using smooth embeddings of the neighbourhoods of points of ℳ(𝒳 ,f(𝒳 ), �̃�)
into suitable Banach spaces. Chencov [147, 151, 152] proposed to define a general notion of statistical
manifold as an arbitrary statistical model satisfying regularity condition (2), but without assuming
parametric finite dimensionality, and using the countably additive ideal instead of choosing specific
reference measure. Dawid [203] and Koshevnik and Levit [401] proposed to define a tangent space of
ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 by

T𝑝ℳ(𝒳 ,f(𝒳 ), �̃�) := {𝑓 ∈ 𝐿2(𝒳 ,f(𝒳 ), �̃�) |
∫︁
�̃�𝑝𝑓 = 0}. (461)

However, these ideas do not solve the problem of construction of smooth structure on ℳ(𝒜). The
space (461) does not provide such structure, and neither 𝐿1(𝒳 ,f(𝒳 ), �̃�) nor 𝐿∞(𝒳 ,f(𝒳 ), �̃�) does.
The main obstacle encountered when trying to use (461) is the fact that the set of strictly positive
elements of its unit sphere43 has an empty interior, so while it is a riemannian manifold, an embedding
𝑞 ↦→ ℓ1/2(𝑞) = 2

√
𝑞 into it does not define a smooth atlas (however, see [126], where the mapping

𝑞 ↦→
√︁

𝑞
𝑝 −

∫︀
�̃�𝑝
√︁

𝑞
𝑝 is used instead).

Pistone and Sempi [594] proposed to consider a suitably defined Orlicz space. Given a localisable
measure space (𝒳 ,f(𝒳 ), �̃�), an Orlicz space is defined as [554, 555]

𝐿ϒ(𝒳 ,f(𝒳 ), �̃�) := {𝑓 ∈ 𝐿0(𝒳 ,f(𝒳 ), �̃�;R ∪ {+∞}) | ∃𝜆 > 0

∫︁
𝒳
�̃�(x )Υ(𝜆𝑓(x )) <∞}, (462)

where a Young function [81, 782] Υ : R → R+ ∪ {+∞} is defined by the following conditions

1) Υ(0) = 0,

2) Υ(𝑡) = Υ(−𝑡) ∀𝑡 ∈ R,

3) lim𝑡→+∞ Υ(𝑡) = +∞.

An Orlicz space is a Banach space under several equivalent norms, including the Morse–Transue–
Nakano–Luxemburg norm [508, 527, 472]

||𝑓 ||ϒ,�̃� := inf{𝜆 > 0 |
∫︁
�̃�Υ(𝜆−1𝑓) ≤ 1}. (463)

For a detailed treatment of these spaces, see [527, 408, 460, 516, 480, 604, 605]. For any 𝑝 ∈ [1,∞]
the 𝐿𝑝(𝒳 ,f(𝒳 ), �̃�) space is an Orlicz space determined by the Young function 1

𝑝 |𝑡|
𝑝. An Orlicz space

determined by the Young function

Υ1(𝑡) := cosh(𝑡) − 1 =
e𝑡 + e−𝑡

2
− 1 (464)

43Because every infinite dimensional Hilbert space is diffeomorphic with its unit sphere [70], the same problem is
encountered even if normalisation is dropped.
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is a nonseparable Banach space. Now, for any element 𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 consider the sets

𝐶(𝑝, �̃�) := {𝑓 ∈ 𝐿0(𝒳 ,f(𝒳 ), �̃�) | ∃𝜖 > 0 ∀𝜆 ∈ [−𝜖, 𝜖] 𝑍(𝑝, 𝜆𝑓) <∞}, (465)

𝐶0(𝑝, �̃�) := {𝑓 ∈ 𝐶(𝑝, �̃�) |
∫︁
�̃�𝑝𝑓 = 0}, (466)

where
𝑍(𝑝, 𝑓) :=

∫︁
�̃�𝑝e𝑓 . (467)

(The difference in sign between equations (467) and (591) is because different sign for 𝜃𝑖 is used in
(591).) The condition defining 𝐶(𝑝, �̃�) implies that each 𝑓 ∈ 𝐶(𝑝, �̃�) satisfies

∫︀
�̃�𝑝𝑓 ∈ R. Pistone and

Rogantin [593] show that
spanR𝐶(𝑝, �̃�) = 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�), (468)

while [594] show that the MTNL norms ||·||ϒ1,𝑝�̃�
and ||·||ϒ1,𝑞�̃�

are equivalent for any 𝑓 ∈ 𝐶(𝑝, �̃�)∩𝐶(𝑞, �̃�).
Hence, 𝑓 ∈ 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�) is equivalent to existence and finiteness of the moment generating
function 𝜆 ↦→ 𝑍(𝑝, 𝜆𝑓) on a neighbourhood of 0. As a result, a tangent space of 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01
at 𝑝 can be identified with the closed set 𝐶0(𝑝, �̃�), which parametrises the neighbourhood of 𝑝. The
probability model 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 is then equipped with the Banach smooth manifold structure
modelled on subsets 𝐶0(𝑝, �̃�) of the Orlicz space 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�) by means of the smooth embeddings
given by diffeomorphisms

𝑤−1
𝑝 : 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�) ) 𝐶0(𝑝, �̃�) ⊃ 𝑈(𝑝) ∋ 𝑓 ↦→ 𝑝e𝑓−log(𝑍(𝑝,𝑓)) ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01, (469)

where 𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 and 𝑈(𝑝) is an intersection of an open unit ball of 𝐶(𝑝, �̃�) with 𝐶0(𝑝, �̃�),
𝑈(𝑝) := {𝑓 ∈ 𝐶0(𝑝, �̃�) | ||𝑓 ||ϒ1,𝑝�̃�

< 1}. The bijectivity of 𝑤−1
𝑝 follows from the fact that 𝑝e𝑓1−log𝑍(𝑝,𝑓1) =

𝑝e𝑓2−log𝑍(𝑝,𝑓2) ⇒ 𝑓1 − 𝑓2 = const, and 0 is the only constant element of 𝑈(𝑝). The set 𝐶(𝑝, �̃�) can be
considered as a nonparametric exponential family at 𝑝�̃� (see Section 5.3). The restriction of domain
of the mapping (469) from 𝐶(𝑝, �̃�) to 𝐶0(𝑝, �̃�) is required due to normalisation of probability densities
and is provided in order to turn this map into a bijection.44 The inverse of (469) reads

𝑤𝑝 : 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 ∋ 𝑞 ↦→ log

(︂
𝑞

𝑝

)︂
−
∫︁
�̃�𝑝 log

(︂
𝑞

𝑝

)︂
= log

(︂
𝑞

𝑝

)︂
+𝐷1(𝑝, 𝑞) ∈ 𝐶0(𝑝, �̃�), (470)

and the maps

𝑤𝑞 ∘ 𝑤−1
𝑝 (𝑈(𝑝) ∩ 𝑈(𝑞)) ∋ 𝑢 ↦→ 𝑢+ log

(︂
𝑝

𝑞

)︂
−
∫︁
�̃�𝑞

(︂
𝑢+ log

(︂
𝑝

𝑞

)︂)︂
∈ 𝑤𝑞(𝑈(𝑝) ∩ 𝑈(𝑞)) (471)

are smooth and their domains are open sets. The set {(𝑤−1
𝑝 (𝑈(𝑝)), 𝑤𝑝) | 𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01}

is a smooth atlas on 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01. Each chart of this atlas is defined using different Banach
space, but all of them are isometrically isomorphic [142]. This approach was further developed in
[280, 593, 142, 143] (see [590, 591, 592] for recent overviews). An extension of this construction from
𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 to 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 was provided in [46]. The tangent space of 𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0
is in such case modelled by 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�) instead of 𝐶0(𝑝, �̃�), but otherwise without the form of the
mapping (469). On the other hand, the right hand side of (470) changes, because𝐷1(𝑝, 𝑞) = log𝑍(𝑝, 𝑓)
only at 𝐶0(𝑝, �̃�). As a result, we can define the nonparametric statistical manifold as a statistical
model ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 which is a Banach smooth submanifold of 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 .

44In [143] the improved construction is provided, with 𝑈(𝑝) replaced by ̃︀𝑈(𝑝) := int(efd(log𝑍(𝑝, · ))). In such case,
the image 𝑤−1

𝑝 (̃︀𝑈(𝑝)) is called a maximal exponential model at 𝑝. Pistone and Sempi [594] showed that 𝑍(𝑝, ·) is
Gâteaux differentiable on int(efd(𝑍(𝑝, ·))) (for a proof that is analytic on this set, see [766]), and that it is Fréchet
differentiable on {𝑓 ∈ 𝐿ϒ1(𝒳 ,f(𝒳 ), 𝑝�̃�) | ||𝑓 ||ϒ1,𝑝�̃�

< 1}, while log𝑍(𝑝, ·) is analytic on efd(log𝑍(𝑝, ·)) ∩ 𝐶0(𝑝, �̃�).
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Following the idea of Pistone [589], Grasselli [286, 287, 289] developed a modification of the Pistone–
Sempi approach, with 𝐿ϒ1(𝒳 ,f(𝒳 ), �̃�) and 𝐶0(𝑝, �̃�) in (469) replaced, respectively, by

𝐵ϒ1(𝒳 ,f(𝒳 ), �̃�) := {𝑓 ∈ 𝐿0(𝒳 ,f(𝒳 ), �̃�;R ∪ {+∞}) | ∀𝜆 ∈ R
∫︁
𝒳
�̃�(x )Υ1(𝜆𝑓(x )) <∞}, (472)

𝐵0
ϒ1

(𝑝, �̃�) := {𝑓 ∈ 𝐵ϒ1(𝒳 ,f(𝒳 ), �̃�) |
∫︁
�̃�𝑝𝑓 = 0}. (473)

The space 𝐵ϒ1(𝒳 ,f(𝒳 ), �̃�) coincides with the closure of 𝐿∞(𝒳 ,f(𝒳 ), �̃�) in the topology generated
by the norm ||·||ϒ1,�̃�

. The condition in (472) reads explicitly∫︁
�̃�𝑝

(︂
e𝜆𝑓 + e−𝜆𝑓

2
− 1

)︂
<∞ ∀𝜆 ∈ R, (474)

which implies that 𝑍(𝑝, 𝑓) ∈ R ∀𝑓 ∈ 𝐵0
ϒ1

(𝑝, �̃�).
The finite dimensional parametric quantum manifolds are constructed in the way analogous to the

commutative parametric case. The standard approach is based on the choice of a finite dimensional
Hilbert space ℋ and some parametric family 𝜃 ↦→ 𝜌(𝜃) of invertible positive trace class operators that
act on ℋ, forming the subset

ℳ(ℋ,Θ) ⊆ {𝜌(𝜃) ∈ G1(ℋ)sa | 𝜌(𝜃) > 0, 𝜃 ∈ Θ ⊆ R𝑚 open, dimℋ =: 𝑛 <∞} ⊆ G1(C𝑛)+0
∼= M𝑛(C)+0 .

(475)
Usually, the additional condition tr(𝜌(𝜃)) = 1 is imposed on the elements of ℳ(ℋ,Θ). From the
algebraic perspective, this construction is a choice of a particular ‘dominating’ 𝜔 ∈ 𝒩+

⋆ on a𝑊 *-algebra
𝒩 ∼= B(ℋ), and the choice of a subset ℳ(𝒩 , 𝜔) of the faithful normal algebraic states that belong
to the folium of 𝜔, which means that the space ℳ(𝒩 , 𝜔) can be represented as a parametric family
(475) with ℋ given by the GNS Hilbert space ℋ𝜔 of 𝜔. Yet, the condition dimℋ < ∞ restricts the
considerations to finite dimensional 𝑊 *-algebras B(ℋ) of type I𝑛, with ℳ(ℋ) ⊆ B(ℋ)+⋆0

∼= M𝑛(C)+0 ,
which inherits the structure of smooth manifold as an open subset of the real vector space M𝑛(C)sa.
Generalisation of this construction to semi-finite 𝑊 *-algebras 𝒩 requires replacing selection of the
subset of a folium of a given algebraic state by selection of the set of states on 𝒩 that satisfy the
noncommutative analogue of the Radon–Nikodým theorem with respect to a given faithful normal
semi-finite trace 𝜏 on 𝒩+. Hence, for a given semi-finite 𝑊 *-algebra 𝒩 and a faithful normal semi-
finite trace 𝜏 on 𝒩 , we define the parametric quantum manifold ℳ(𝒩 , 𝜏,Θ) as an image of a
smooth map

𝜌 : R𝑚 ) Θ ∋ 𝜃 ↦→ 𝜌(𝜃) ∈ 𝐿1(𝒩 , 𝜏)+0 ⊆ M (𝒩 , 𝜏) (476)

on an open set Θ ( R𝑚, 𝑚 ∈ N. Each 𝜌(𝜃) is a Dye–Segal density of 𝜏 with respect to some element of
𝒩+
⋆0. Note that the above definition does not encapsulate the analogue of the condition (453), so the

relationship between differentiation 𝜕
𝜕𝜃𝑖

and integration 𝜏(·), required for an explicit representation of
the tangent space of ℳ(𝒩 , 𝜏,Θ) as a space of operators, remains to be clarified in further applications
of this definition.

A tangent space T𝜌M𝑛(C)+0 is the real vector space of all Fréchet derivatives in the directions of
smooth curves in M𝑛(C)+0 that pass through 𝜌, so it can be identified with a restriction of M𝑛(C)sa.
A restriction of domain of 𝜌 to M𝑛(C)+01 implies a restriction of the tangent vectors to the space
{𝑥 ∈ M𝑛(C)sa | tr(𝑥) = 0}. Constructions of the 𝛾-representations for the parametric quantum
manifolds ℳ(ℋ,Θ) are, as in the commutative case, based on push-forwards of the 𝛾-embeddings
(295). In the case of 𝛾 ∈ ]0, 1], the codomains of 𝛾-embeddings are G1/𝛾(ℋ) spaces. In the case 𝛾 = 0
the mapping

ℓ0 ≡ log : M𝑛(C)+0 ∋ 𝜌 ↦→ log 𝜌 ∈ M𝑛(C)sa (477)

is a diffeomorphism, allowing to identify M𝑛(C)+0 with M𝑛(C)sa. In particular, any 𝑛-dimensional
submanifold 𝒬𝑛 of M𝑛(C)sa corresponds to 𝑛-dimensional submanifold exp(𝒬𝑛) =: ℳ(M𝑛(C),Θ) ⊆
M𝑛(C)+0 for some Θ ⊆ R𝑛. If

𝐻 : R𝑛 ⊇ 𝒪 ∋ (𝑥1, . . . , 𝑥𝑛) =: 𝑥 ↦→ 𝐻(𝑥) ∈ 𝒰 ⊆ 𝒬𝑛 (478)
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is a diffeomorphism of open subsets 𝒪 ⊂ R𝑛 and 𝒰 ⊆ 𝒬𝑛, then the inverse map 𝐻−1 is a coordinate
system on 𝒰 .

Any 𝑥 ∈ M𝑛(C)sa can be decomposed as 𝑥 = �̃� + i[𝜌,𝐻] for [�̃�, 𝜌] = 0 and 𝐻 ∈ M𝑛(C)sa. If
𝑓 ∈ C(]0,∞[), then [72]

d

d𝜌
𝑓(𝑥) = 𝑓 ′(𝜌)�̃�+ i[𝑓(𝜌), 𝐻], (479)

where 𝑓 ′ is a derivative of 𝑓 . This follows from

d

d𝑡
|𝑡=0𝑓(𝑥+ 𝑡𝑦 + i𝑡[𝑥, 𝑧]) = 𝑦𝑓 ′(𝑥) + i[𝑓(𝑥), 𝑧] ∀𝑥, 𝑦, 𝑧 ∈ M𝑛(C)sa, (480)

which holds if [𝑥, 𝑦] = 0. An infinitesimal transformation 𝜌 ↦→ 𝜌+ ð𝜌 can be decomposed as [313]

ð𝜌 := ̃︀ð𝜌+ [𝜌,𝑊 ] =

𝑛∑︁
𝑖=1

(︂
𝜕𝜌(𝜃)

𝜕𝜃𝑖
+ [𝜌,𝑊𝑖]

)︂
d𝜃𝑖, (481)

where ̃︀ð𝜌 =
∑︀𝑛

𝑖=1
𝜕𝜌(𝜃)
𝜕𝜃𝑖

d𝜃𝑖 is defined by [̃︀ð𝜌, 𝜌] = 0, while 𝑊 =
∑︀𝑛

𝑖=1𝑊𝑖d𝜃
𝑖 is an antiself-adjoint

operator. The mappings ð, ̃︀ð and [ · ,𝑊 ] are derivations on B(ℋ). This determines a decomposition
of tangent space at 𝜌 into the direct product of the corresponding subspaces, and allows to write the
𝛾-representation of 𝑣 =

∑︀𝑛
𝑖=1 𝑣𝑖

𝜕
𝜕𝜃𝑖

∈ T𝜌B(ℋ)+⋆01, corresponding to (295), as [313, 314]

T𝜌ℓ𝛾(𝑣) =

⎧⎪⎨⎪⎩
∑︀𝑛

𝑖=1 𝑣𝑖

(︁
𝜌𝛾 𝜕 log 𝜌

𝜕𝜃𝑖
+ 1

𝛾 [𝜌𝛾 ,𝑊𝑖]
)︁

: 𝛾 ̸∈ {0, 1}∑︀𝑛
𝑖=1 𝑣𝑖

𝜕 log(𝜌(𝜃))
𝜕𝜃𝑖

: 𝛾 = 0∑︀𝑛
𝑖=1 𝑣𝑖

𝜕𝜌(𝜃)
𝜕𝜃𝑖

: 𝛾 = 1.

(482)

Note that T𝜌ℓ𝛾(𝑥) =
(︀
DF
𝜌 (ℓ𝛾(𝜌))

)︀
(𝑥). For 𝛾 ∈ {0, 1} the codomain spaces of these mappings are given

by

T𝜌ℓ0 : T𝜌G1(ℋ)+01 → {𝑥 ∈ B(ℋ)sa | tr(𝜌𝑥) = 0}, (483)
T𝜌ℓ1 : T𝜌G1(ℋ)+01 → {𝑥 ∈ B(ℋ)sa | tr(𝑥) = 0}. (484)

The Banach smooth manifold structure on the set45

B(ℋ)+⋆01 ∩

⎛⎝ ⋃︁
0<𝑝<1

G𝑝(ℋ)

⎞⎠ (485)

for dimℋ = ∞ was introduced and studied by Streater [698, 696, 697, 699, 700, 701, 704, 703, 702] (in
partial collaboration with Grasselli [290, 286]). He used the Rellich–Kato theory [608, 609, 610, 611,
384, 385] of perturbation of operators by semi-bounded forms. All variants of this construction depend
on the choice of an underlying Hilbert space representation. An alternative Banach smooth manifold
structure was introduced by Jenčová [361, 362] on 𝒩+

⋆01 for an arbitrary 𝑊 *-algebra 𝒩 . She used
the Araki–Donald theory [33, 39, 38, 41, 230, 232, 233] of relative entropic perturbations of quantum
states by bounded self-adjoint operators (see Section 3.4). This way Jenčová’s approach follows the
Pistone–Grasselli approach, while Streater’s approach follows the Pistone–Sempi approach.46 In both
cases the central role is played by suitably defined noncommutative analogue of an Orlicz space, such
that the resulting quantum manifolds are quantum models ℳ(𝒩 ) with local neighbourhood of any
quantum state 𝜑 ∈ ℳ(𝒩 ) consisting only of such quantum states which have finite Araki distance
to 𝜑. Streater’s approach is stronger, because his quantum manifolds also make the absolute von
Neumann entropy (601) finite, but the price paid is the restriction of the class of states and class of
algebras under consideration. We consider Jenčová’s approach to be more suitable as a general setting

45If 0 < 𝑝 < 1, then G𝑝(ℋ) space is defined as a subset of all 𝑥 ∈ G0(ℋ) such that |𝑥|𝑝 ∈ G1(ℋ).
46The 𝑊 *-algebras 𝒩 which are not countably finite do not allow faithful quantum states (𝒩+

⋆0 = ∅), so one cannot
introduce any of the above Banach smooth manifold structures on quantum models ℳ(𝒩 ) over such algebras.
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for quantum manifolds, because it allows to deal with arbitrary countably finite 𝑊 *-algebras, and is
manifestly Hilbert space independent.

Jenčová’s approach [361] starts from a generalisation of the notion of Young function to such
Υ : 𝑋 → R+ ∪ {+∞} over a real Banach space 𝑋, that

i) Υ(0) = 0,

ii) Υ(𝑥) = Υ(−𝑥) ∀𝑥 ∈ 𝑋,

iii) 𝑥 ̸= 0 ⇒ lim𝑡→+∞ Υ(𝑡𝑥) = +∞.

If Υ is also convex and lower semi-continuous, then the corresponding Orlicz space is defined as a
Banach space 𝐵ϒ(𝑋) arising from the Cauchy completion of the real vector space

𝐿ϒ(𝑋) := {𝑓 ∈ 𝑋 | ∃𝜆 > 0 Υ(𝜆𝑓) <∞} (486)

in the norm
||𝑓 ||ϒ := inf{𝜆 > 0 | Υ(𝜆−1𝑓) ≤ 1}. (487)

For an arbitrary 𝑊 *-algebra 𝒩 and 𝜑 ∈ 𝒩+
⋆ , Jenčová considers the Young function on 𝒩 sa given by

Υ𝜑 : 𝒩 sa ∋ ℎ ↦→ Υ𝜑(ℎ) :=
̃︁𝜑ℎ(I) + ̃︂𝜑−ℎ(I)

2
− 1 =

e−𝑐(𝜑,−ℎ) + e−𝑐(𝜑,ℎ)

2
− 1 ∈ R+, (488)

as well as the Young function on {𝑥 ∈ 𝒩 sa | 𝜑(𝑥) = 0},

̃︀Υ𝜑 : {𝑥 ∈ 𝒩 sa | 𝜑(𝑥) = 0} ∋ ℎ ↦→ −𝑐(𝜑,−ℎ) + 𝑐(𝜑, ℎ)

2
= −

𝐷1|𝒩+
⋆1

(𝜑, 𝜑ℎ) +𝐷1|𝒩+
⋆1

(𝜑, 𝜑−ℎ)

2
∈ R.

(489)
The function Υ𝜑 coincides for 𝒩 = B(ℋ) with the Young function introduced by Streater in [698, 700].
The analogues of (472) and (473) are defined, respectively, as

𝐵ϒ𝜑(𝒩 ) := 𝐿ϒ𝜑(𝒩 )
||·||ϒ𝜑 , (490)

𝐵0
ϒ𝜑

(𝒩 ) := {𝑥 ∈ 𝐵ϒ𝜑(𝒩 ) | 𝜑(𝑥) = 0}. (491)

The space 𝐵ϒ𝜑(𝒩 ) is an example of a noncommutative Orlicz space. (For other approaches to the
theory of noncommutative Orlicz spaces see [511, 512, 228, 420, 4, 424, ?, 5, 47, ?, 645].) The norms
||·||ϒ𝜑 and ||·||̃︀ϒ𝜑 are equivalent on {𝑥 ∈ 𝒩 sa | 𝜑(𝑥) = 0}, the inclusion 𝒩 sa ⊆ 𝐵ϒ𝜑(𝒩 ) is continuous,
and

𝐵0̃︀ϒ𝜑(𝒩 ) := {𝑥 ∈ 𝐵̃︀ϒ𝜑 | 𝜑(𝑥) = 0} = {𝑥 ∈ 𝒩 sa | 𝜑(𝑥) = 0}||·||ϒ𝜑 = 𝐵0
ϒ𝜑

(𝒩 ). (492)

Jenčová proves that the quantum model 𝒩+
⋆01 can be equipped with the smooth Banach manifold

structure modelled on closed subsets 𝐵0
ϒ𝜑

(𝒩 ) of Banach spaces 𝐵ϒ𝜑(𝒩 ) by means of the smooth
embeddings given by inverses of diffeomorphisms

𝑤−1
𝜑 : 𝐵0

ϒ𝜑
(𝒩 ) ⊇ 𝑈(𝜑) ∋ ℎ ↦→ 𝜑ℎ ∈ 𝒩+

⋆01, (493)

where 𝜑 ∈ 𝒩+
⋆01 and 𝑈(𝜑) := {𝑥 ∈ 𝐵0

ϒ𝜑
(𝒩 ) | ||𝑥||ϒ𝜑 < 1} (i.e., 𝑈(𝜑) is an open unit ball of 𝐵0

ϒ𝜑
(𝒩 )).

The set {(𝑤−1
𝜑 (𝑈(𝜑)), 𝑤𝜑) | 𝜑 ∈ 𝒩+

⋆01} is a smooth atlas on 𝒩+
⋆01. This provides a quantum generalisa-

tion of the Pistone–Grasselli manifold structure, and coincides with it for 𝒩 = 𝐿∞(𝒳 ,f(𝒳 ), �̃�). We
conjecture that Jenčová’s construction can be extended to 𝒩+

⋆0 analogously to the commutative case,
by replacing 𝐵0

ϒ𝜑
by 𝐵ϒ𝜑 in (493) and in 𝑈(𝜑). Under this conjecture, we define a nonparametric

quantum manifold as a quantum model ℳ(𝒩 ) ⊆ 𝒩+
⋆0 that is a Banach smooth submanifold of 𝒩+

⋆0.
In [362] it is noted that the proper quantum analogue of the Pistone–Sempi manifold structure

could be provided by an extension of the map 𝑤−1
𝜑 to the space {𝑥 ∈ (𝐵0

ϒ𝜑
(𝒩 ))⋆⋆ | ||𝑥|| < 1}. We

propose to provide it by defining a vector space

𝒩±ext
𝜑 := {𝑥 ∈ spanR(𝒩 ext) | 𝜑(𝑥) ∈ R}, (494)
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considering the extension of the domain of Υ in (488) to 𝒩±ext
𝜑 , on which (488) is a pseudomodular

function (its convexity follows from joint convexity of 𝐷1|𝒩+
⋆1

(𝜔, 𝜑)). This allows us to define

(𝒩±ext
𝜑 )ϒ𝜑 := {ℎ ∈ 𝒩±ext

𝜑 | lim
𝜆→0

Υ𝜑(𝜆ℎ) = 0}, (495)

𝐿ϒ𝜑(𝒩±ext
𝜑 ) := (𝒩±ext

𝜑 )ϒ𝜑
||·||ϒ𝜑 , (496)

𝑈(𝜑) := {𝑥 ∈ 𝐿ϒ𝜑(𝒩±ext
𝜑 ) | ||·||ϒ𝜑 < 1}, (497)

𝑤−1
𝜑 : 𝐿ϒ𝜑(𝒩±ext

𝜑 ) ⊇ 𝑈(𝜑) ∋ ℎ ↦→ 𝜑ℎ ∈ 𝒩+
⋆0. (498)

We use here open unit ball 𝑈(𝜑) instead of ̃︀𝑈(𝜑) := int(efd(𝑐(𝜑, ·))), because from 𝜑(𝑥) ≥ 𝑐(𝜑, 𝑥)
∀𝑥 ∈ 𝒩 ext it follows that 𝒩±ext

𝜑 ⊆ efd(𝑐(𝜑, ·)), so int(efd(𝑐(𝜑, ·))) may be too large for our purposes.
Note that 𝒩±ext

𝜑 is not a Banach space. We will discuss this generalisation in full detail elsewhere. The
main reason why we will not use our generalisation of the noncommutative Orlicz spaces, 𝐿ϒ(𝒩 ), for
the above purpose is that their elements belong to the space M ( ̃︀𝒩 , ̃︀τ), while the strict results for 𝐷1

projections are known for the elements of 𝒩 ext. In general, M (𝒩 , 𝜏) ⊆ aff(𝒩 ), M ( ̃︀𝒩 , ̃︀τ) ⊆ aff( ̃︀𝒩 ),
and aff(𝒩 ) ⊆ 𝒩 ext. So, without establishing more direct relationship between 𝒩 ext and M ( ̃︀𝒩 , ̃︀τ), or
without restriction to semi-finite algebras with some choice of a faithful normal semifinite trace 𝜏 and
restriction of allowed vectors from 𝒩 ext to M (𝒩 , 𝜏), it is unclear how to apply the spaces 𝐿ϒ(𝒩 ) in
this specific case. Once again, this shows the very specific character of 𝐷1 distance and its projections.

5.2 Smooth f- and 𝛾-geometries

A riemannian quantum manifold is defined as a riemannian manifold (ℳ(𝒩 ),g), where ℳ(𝒩 )
is a quantum manifold. A riemannian statistical manifold is defined as a riemannian manifold
(ℳ(𝒜),g), where ℳ(𝒜) is a statistical manifold. For early discussions of various finite dimensional
riemannian statistical manifolds, see [152, 647, 14, 45, 124, 125].

A Fisher matrix [255] on a finite dimensional statistical manifold ℳ(𝒳 ,f(𝒳 ), �̃�),

gFRJ
𝑖𝑗 (𝜃) : =

∫︁
𝒳
�̃�(x )𝑝(x , 𝜃)

𝜕

𝜕𝜃𝑖
log 𝑝(x , 𝜃)

𝜕

𝜕𝜃𝑗
log 𝑝(x , 𝜃) =

∫︁
𝒳
�̃�(x )𝜕𝑖ℓ𝛾(x , 𝜃)𝜕𝑗ℓ1−𝛾(x , 𝜃)

=

∫︁
𝒳
�̃�(x )𝑝(x , 𝜃)𝜕𝑖ℓ0(x , 𝜃)𝜕𝑗ℓ0(x , 𝜃) = −

∫︁
𝒳
�̃�(x )𝑝(x , 𝜃)𝜕𝑖𝜕𝑗ℓ0(x , 𝜃), (499)

defines an inner product

gFRJ
𝜃(𝑝) (·, ·) : T𝜃(𝑝)ℳ(𝒳 ,f(𝒳 ), �̃�) ×T𝜃(𝑝)ℳ(𝒳 ,f(𝒳 ), �̃�) ∋ (𝜕𝑖, 𝜕𝑗) ↦→ gFRJ

𝑖𝑗 (𝜃) ∈ R, (500)

which is symmetric (gFRJ
𝑖𝑗 (𝜃) = gFRJ

𝑗𝑖 (𝜃)) and positive definite,

gFRJ
𝜃(𝑝) (𝑢, 𝑢) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

gFRJ
𝑖𝑗 (𝜃)𝑢𝑖𝑢𝑗 > 0 ∀𝑢 ̸= 0. (501)

The last property follows from the regularity condition (4). Hence, as Rao [601, 602] and Jeffreys [351]
have independently observed, (500) defines a riemannian metric

gFRJ : Tℳ(𝒳 ,f(𝒳 ), �̃�) ×Tℳ(𝒳 ,f(𝒳 ), �̃�) → R, (502)

which will be called the Fisher–Rao–Jeffreys metric. In consequence, (ℳ(𝒳 ,f(𝒳 ), �̃�),g) is a
riemannian manifold. Further study of (502) as a riemannian metric was carried by Kozlov [406]. A
riemannian distance 𝑑gFRJ of gFRJ is given by

𝑑gFRJ(𝑝, 𝑞) = 2𝐷KH(𝑝, 𝑞) (503)

for 𝑝, 𝑞 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 , and by 2 arccos(𝐷B(𝑝, 𝑞)) for 𝑝, 𝑞 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01.
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The Christoffel symbols with respect to the FRJ metric given by

gFRJ
𝜃(𝑝) (∇𝛾

𝜕𝑖
𝜕𝑗 , 𝜕𝑘) = Γ𝛾𝑖𝑗𝑘(𝜃) =

∫︁
�̃�𝑝(𝜃)𝜕𝑖𝜕𝑗ℓ𝛾(𝜃)𝜕𝑘ℓ1−𝛾(𝜃)

=

∫︁
�̃�𝑝(𝜃) (𝜕𝑖𝜕𝑗ℓ0(𝜃) + 𝛾𝜕𝑖ℓ0(𝜃)𝜕𝑗ℓ0(𝜃)𝜕𝑘ℓ0(𝜃)) , (504)

determine the family {∇𝛾 | 𝛾 ∈ R} of affine connections on ℳ(𝒳 ,f(𝒳 ), �̃�), called the Chencov–
Amari 𝛾-connections [152, 14].47 The Levi-Civita connection of the FRJ metric is equal to ∇1/2.
The Chencov–Amari 𝛾-connections are torsion free (T𝛾𝑖𝑗𝑘 = 0) [17, 18, 505, 506] and Norden–Sen dual
with respect to the FRJ metric: (∇𝛾)† = ∇1−𝛾 [524]. The connection ∇𝛾 is flat on 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0
for every 𝛾 ∈ [0, 1], but it is flat on 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 only for 𝛾 ∈ {0, 1}. If ∇𝛾 is flat, then its dually
flat coordinates are given by the Nagaoka–Amari 𝛾-embeddings (ℓ𝛾 , ℓ1−𝛾) specified by (294). The
dually flat geometries (ℳ(𝒳 ,f(𝒳 ), �̃�),gFRJ,∇𝛾 ,∇1−𝛾) were first considered explicitly in [524] and
will be called the Chencov–Amari–Nagaoka geometries. They can be characterised as Lauritzen
manifolds (ℳ(𝒳 ,f(𝒳 ), �̃�),gFRJ, 𝐶) for 𝜗 = 𝛾 and for

𝐶𝑖𝑗𝑘(𝜃) =

∫︁
�̃�𝑝(𝜃)𝜕𝑖ℓ0(𝜃)𝜕𝑗ℓ0(𝜃)𝜕𝑘ℓ0(𝜃). (505)

An explicit characterisation of the ∇𝛾-geodesics was provided in [506]. The relationship between
Riemann curvature tensors for 𝛾 ∈ [0, 1] reads [18, 505, 506]

R∇𝛾 = 4𝛾(1 − 𝛾)R∇1/2
. (506)

Chencov [151, 152] (see also [136, 137]) showed that the FRJ metric gFRJ is a unique (up to
a multiplicative constant) riemannian metric g on submanifolds ℳ(𝒳 ,f(𝒳 )) of a finite probability
simplex 𝐿1(𝒳 ,f(𝒳 ))+1 such that its riemannian distance 𝑑g is monotone with respect to finite coarse
grainings (that is, with respect to arrows in ProbModfin(𝒳 )),

𝑑g(𝑝, 𝑞) ≥ 𝑑g(𝑇⋆(𝑝), 𝑇⋆(𝑞)) ∀𝑝, 𝑞 ∈ ℳ(𝒳 ,f(𝒳 )) ∀𝑇⋆ ∈ Mark⋆(ℳ(𝒳 ,f(𝒳 ))). (507)

He has also shown [152] that the Chencov–Amari 𝛾-connections are unique (up to a multiplicative
constant) affine connections ∇ on submanifolds ℳ(𝒳 ,f(𝒳 )) such that the image of each ∇-geodesic
line on ℳ(𝒳 ,f(𝒳 )) belongs to a ∇-geodesic line on 𝑇⋆(ℳ(𝒳 ,f(𝒳 ))) as its interval or its point.48

Eguchi [243, 244] proved that for arbitrary Csiszár–Morimoto distance 𝐷f, with smooth f and on
finite dimensional probabilistic manifold ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01, the riemannian metric
gf associated to 𝐷f by means of (416) takes the form

gf = gFRJf′′(1), (508)

while the ∇f-connections derived by means of (417) coincide with ∇𝛾-connections with

1 − 2𝛾 = 2f′′′(1) + 3f′′(1), (509)

with f′′′ denoting third derivative of f. For the higher order Taylor approximations of the Csiszár–
Morimoto f-distance, see [55]. The Eguchi equations (416)-(418) applied to any Liese–Vajda 𝛾-distance

47An affine connection ∇0 was introduced by Chencov [147], following the suggestion of Morozova (see [507]), and it
was rediscovered later by Dawid [203, 204]. In [152] Chencov characterised a family (504) of 𝛾-connections, with 𝛾 ∈ R,
which was rediscovered later by Amari [14, 15]. The expressions for Γ𝛾𝑖𝑗𝑘 have appeared for the first time in the works
of Hartigan [309, 310, 311], but without realising their differential geometric meaning.

48The more general Amari conjecture [17], stating that (the scalar multiples of) FRJ metric and the Chencov–Amari
𝛾-connections are the unique riemannian metric and unique affine connections which are invariant under any coordinate
transformations of the sample space 𝒳 and the parameter space Θ, still waits for a proof, although there are some partial
results for continuous 𝒳 , see [586, 23]. Campbell [137] has shown that the extension of gFRJ from 𝐿1(𝒜)+1 to 𝐿1(𝒜)+ is
not unique under Markov morphisms. Zhu [789] attempted to provide an extension of the Chencov uniqueness theorem
to arbitrary dimensional 𝐿1(𝒜)+ by restricting the class of morphisms under consideration. For a recent work on these
problems, see [46].
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or ACR 𝛾-distance determine the FRJ metric and the Chencov–Amari 𝛾-connection, with (∇𝛾)† =
∇1−𝛾 . Thus, CAN geometries are Eguchi geometries induced from Liese–Vajda 𝛾-distances. The third
order Taylor expansion of 𝐷𝛾 can be expressed completely in geometric terms. Let 𝑝(𝜃+d𝜃) = 𝑝+d𝑝

be expressed as 𝑝 +
∑︀𝑛

𝑖=1
𝜕 log 𝑝(x ,𝜃)

𝜕𝜃𝑖
d𝜃𝑖 in terms of 0-representation Tℓ0(𝑝)ℳ(𝒳 ,f(𝒳 ), �̃�) of a vector

space T𝑝ℳ(𝒳 ,f(𝒳 ), �̃�), where 𝜕𝑖 log 𝑝(𝜃) = 𝜕𝑖ℓ0(𝜃) represents 𝜕𝑖. Then, up to cubic terms,

𝐷𝛾(𝑝(𝜃 + d𝜃), 𝑝(𝜃)) =
1

2

∑︁
𝑖,𝑗

gFRJ
𝑖𝑗 (𝜃)d𝜃𝑖 ⊗ d𝜃𝑗 +

∑︁
𝑖,𝑗,𝑘

1

6
(Γ0
𝑖𝑗𝑘 + Γ𝛾𝑘𝑖𝑗 + Γ1

𝑗𝑘𝑖)d𝜃
𝑖 ⊗ d𝜃𝑗 ⊗ d𝜃𝑘. (510)

For 𝑝1(x ), 𝑝2(x ) ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 the ∇0-geodesic curve is given by

𝑝(x , 𝑡) = exp((1 − 𝑡)𝑝1(x ) + 𝑡𝑝2(x ) − 𝑐(𝑡)), (511)

with factor 𝑐(𝑡) arising from normalisation condition
∫︀
𝒳 �̃�(x )𝑝(x , 𝑡) = 1, while the ∇1-geodesic is given

by
𝑝(x , 𝑡) = (1 − 𝑡)𝑝1(x ) + 𝑡𝑝2(x ). (512)

For this reason the ∇0-geodesics are called exponential, while the ∇1-geodesics are called affine.
The vector 𝑢(x ) ∈ Tℓ0(𝑝)𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 is not equal to itself after ∇0-parallel transport to �̃�(x ) ∈
Tℓ0(𝑞)𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 for 𝑝 ̸= 𝑞:

t∇
0

𝑝,𝑞 (𝑢) = �̃� ⇐⇒ �̃�(x ) = 𝑢(x ) −
∫︁
𝒳
�̃�(x )𝑞(x )𝑢(x ). (513)

However, for

𝑣(x ) ∈ Tℓ1(𝑞)𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 := {𝑣(x ) |
∫︁
𝒳
�̃�(x )𝑣(x ) = 0}, (514)

the ∇1-parallel transport does not change the vector:

t∇
1

𝑝,𝑞 (𝑣) = 𝑣 ⇐⇒ 𝑣(x ) = 𝑣(x ). (515)

As shown in [17, 23], if the statistical manifold 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 is finite dimensional, then it is
dually flat for every 𝛾 ∈ [0, 1]. Hence, as follows from the results discussed in Section 4.3, for any
closed and ∇1−𝛾-convex subset 𝒬 ⊆ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 , 𝑞 ∈ 𝒬, and 𝑝 ∈ 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 , the solution
of the minimisation problem

P
𝐷𝛾
𝒬 (𝑝) := arg inf

𝑞∈𝒬
{𝐷𝛾(𝑞, 𝑝)} (516)

is a singleton set. In particular, 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 is ∇𝛾-convex for every 𝛾 ∈ [0, 1]. However, under
restriction to the submanifold 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 the 𝛾-connections are dually flat only for 𝛾 ∈ {0, 1},
and 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01 is ∇𝛾-convex only for 𝛾 = 1.

The generalised cosine equation (273) has two important special cases. Let 𝑐1(𝑡) and 𝑐2(𝑡) be
two curves [0, 1] → ℳ, which are, respectively, a ∇𝛾-geodesic and a ∇1−𝛾-geodesic, and satisfy
𝑐1(0) = 𝑞 = 𝑐2(0), 𝑐1(1) = 𝑝, 𝑐2(1) = 𝑟 with 𝑐𝑖1(𝑡) := 𝜃𝑖(𝑐1(𝑡)) − 𝜃𝑖(𝑞) and 𝑐𝑖2(𝑡) := 𝜃𝑖(𝑐2(𝑡)) − 𝜃𝑖(𝑞).
Then for 𝑡→+ 0 one obtains [23]

𝐷𝛾(𝑐1(𝑡), 𝑞) +𝐷𝛾(𝑞, 𝑐2(𝑡)) = 𝐷𝛾(𝑐1(𝑡), 𝑐2(𝑡)) + gFRJ
𝑞 (�̇�1(𝑡), �̇�2(𝑡)) · 𝑡2 + 𝒪(𝑡3). (517)

If 𝑐1 and 𝑐2 intersect at 𝑞 orthogonally with respect to gFRJ, then the generalised pythagorean
equation holds [150, 179, 524]49:

𝐷𝛾(𝑝, 𝑞) +𝐷𝛾(𝑞, 𝑟) = 𝐷𝛾(𝑝, 𝑟). (518)
49Chencov [150] proved it for 𝛾 = 1 and 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01, Csiszár [179] proved it for 𝛾 = 0 and 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01,

while Nagaoka and Amari [524] proved it for 𝛾 ∈ R and 𝐿1(𝒳 ,f(𝒳 ), �̃�)+0 . All these proofs were provided in finite
dimensional parametric setting.
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Since ∇-geodesics are always ∇-convex, the equation (516) implies that (518) is a special case of the
generalised pythagorean equation (451), and, as a result, also of (382).

In the noncommutative parametric case the garden of smooth Eguchi geometries arising from the
Kosaki–Petz f-distances is essentially richer. A Morozova–Chencov function is defined as a function
c(𝜆1, 𝜆2) ∈ [0,∞[ acting on the set 𝜆1 ∈ [0,∞[, 𝜆2 ≤ 𝜆1 + 𝜆2 ≤ 1, and satisfying [506]

i) c(𝜆1, 𝜆2) = c(𝜆2, 𝜆1),

ii) ∃𝜆 ∈ ]0,∞[ c(𝜆1, 𝜆2) = 𝜆𝜆−1
1 ,

iii) ∀𝜆3 ∈ ]0,∞[ c(𝜆3𝜆1, 𝜆3𝜆2) = 1
𝜆3
c(𝜆1, 𝜆2).

A Petz function is defined as a function h : [0,∞[→ [0,∞[ satisfying [575]

i) h(𝜆) = 𝜆h(𝜆−1) ∀𝜆 > 0,

ii) h is operator monotone increasing.

To each Petz function h there corresponds a unique Morozova–Chencov function ch [575]

ch(𝜆1, 𝜆2) = (h(𝜆1𝜆
−1
2 )𝜆2)

−1 =
𝜆1h

(︁
𝜆2
𝜆1

)︁
+ 𝜆2h

(︁
𝜆1
𝜆2

)︁
2𝜆1𝜆2h

(︁
𝜆2
𝜆1

)︁
h
(︁
𝜆1
𝜆2

)︁ ∀𝜆1, 𝜆2 > 0. (519)

The converse relationship is h(𝜆) = (ch(𝜆, 1))−1. Every Morozova–Chencov function ch is operator
convex. A riemannian metric g on TB(ℋ)+⋆01 for dimℋ = 𝑛 <∞ is called:

(1) symmetric iff g𝜌((T𝜌ℓ1)
−1(𝑥), (T𝜌ℓ1)

−1(𝑦)) = g𝜌((T𝜌ℓ1)
−1(𝑦*), (T𝜌ℓ1)

−1(𝑥*)),

(2) monotone iff g𝑇⋆(𝜌)(𝑇⋆(𝑢), 𝑇⋆(𝑣)) ≤ g𝜌(𝑢, 𝑣) ∀𝑇⋆ ∈ Mark⋆(B(ℋ)+⋆01),

(3) normalised iff g𝜌((T𝜌ℓ1)
−1(I), (T𝜌ℓ1)

−1(I)) = tr(𝜌−1),

where
𝑇⋆(𝑢) :=

(︀
T𝑇⋆(𝜌)ℓ1

)︀−1 (︀
𝑇⋆(T𝑇⋆(𝜌)ℓ1(𝑢))

)︀
. (520)

According to Petz’s characterisation theorem [575], which followed earlier work by Morozova and
Chencov [506] and Petz [573, 579], there exists a bijection between the set of monotone symmetric
riemannian metrics on TB(ℋ)+⋆01 (or, equivalently, on ∪M𝑛(C)+01

M𝑛(C), see below) and the set of Petz
functions. It is given by

gh
𝜌(𝑢, 𝑣) =

⟨
T𝜌ℓ1(𝑢), Jh𝜌(T𝜌ℓ1(𝑣))

⟩
G2(ℋ)

, (521)

with
Jh𝜌(𝑥) := (h(∆𝜌)R𝜌)

−1 = R−1
𝜌 (h(∆𝜌))

−1 = (R1/2
𝜌 h(∆𝜌)R

1/2
𝜌 )−1. (522)

The equation (519) allows to write each (521) as

gh
𝜌(𝑢, 𝑣) = tr ((T𝜌ℓ1(𝑢))*ch(L𝜌,R𝜌)T𝜌ℓ1(𝑣)) . (523)

The riemannian metrics given by equivalent formulas (521) and (523) will be called the Morozova–
Chencov–Petz metrics. If [𝑥, 𝜌] = 0, then Jh𝜌(𝑥) = 𝜌−1𝑥. The additional condition h(1) = 1 is
equivalent to normalisation of gh

𝜌, and corresponds to the condition ch(1, 1) = 1. Hansen [306] showed
that every normalised Morozova–Chencov function (519) admits a canonical representation

ch(𝜆1, 𝜆2) =

∫︁ 1

0
�̃�(𝜆)

1 + 𝜆

2

(︂
1

𝜆1 + 𝜆𝜆2
+

1

𝜆𝜆1 + 𝜆2

)︂
, (524)
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where �̃� : [0, 1] → [0, 1] is a probability measure (see also [305]). The set of all normalised Morozova–
Chencov functions (519) is a Bauer simplex50. The set of all normalised Petz functions is convex. A
riemannian distance determined by (521) according to (393) reads [446]

𝑑gh(𝜌0, 𝜌1) = inf
𝑐

{︂∫︁ 1

0
d𝜆

√︂⟨
T𝜌ℓ1(�̇�(𝑡)), J

h
𝑐(𝑡)T𝜌ℓ1(�̇�(𝑡))

⟩
G2(ℋ)

| 𝑐(0) = 𝜌0, 𝑐(1) = 𝜌1

}︂
, (525)

and it satisfies [446]

𝑑gh(𝜑, 𝜔) ≥ 𝑑gh(𝑇⋆(𝜑), 𝑇⋆(𝜔)) ∀𝑇 ∈ Mark⋆(ℳ(𝒩 )) ∀𝜑, 𝜔 ∈ ℳ(𝒩 ), (526)

where 𝑇⋆ varies over coarse grainings into parametric quantum submanifolds of B(ℋ)+⋆01, while ℳ(𝒩 )
is one of these manifolds and 𝒩 = B(ℋ) ∼= M𝑛(C).

The domain of gh
𝜌(·, ·) can be extended to M𝑛(C) by extension of domain of Jh𝜌 to traceless matrices

{𝑥 ∈ M𝑛(C) | tr(𝑥) = 0} by the complexification T𝜌B(ℋ)+⋆01 ∋ 𝑥1, 𝑥2 ⇒ 𝑥 = 𝑥1 + i𝑥2, and further
extension to M𝑛(C) ∼= C𝑛 × C𝑛 provided by linearity and Jh𝜌(I) = 𝜌−1I. This was done already
in [575] for 𝜌 ∈ M𝑛(C)+01, where gh

𝜌(·, ·) was characterised among all 𝜌-dependent inner products
⟨·, ·⟩𝜌 : M𝑛(C) × M𝑛(C) → C by the conditions

(̃︀1) (𝑥, 𝑦) ↦→ ⟨𝑥, 𝑦⟩𝜌 is linear in 𝑦 and antilinear in 𝑥 ∀𝜌 ∈ M𝑛(C)+01,

(̃︀2) 𝜌 ↦→ ⟨𝑥, 𝑥⟩𝜌 is continuous on M𝑛(C)+0 ∀𝑥 ∈ M𝑛(C)+01,

(̃︀3) ⟨𝑥, 𝑥⟩𝜌 ≥ 0,

(̃︀4) ⟨𝑥, 𝑥⟩𝜌 = 0 ⇐⇒ 𝑥 = 0,

(̃︀5) ⟨𝑇 (𝑥), 𝑇 (𝑦)⟩𝑇 (𝜌) ≤ ⟨𝑥, 𝑦⟩𝜌 ∀𝑇 ∈ Mark⋆(M𝑛(C)),

(̃︀6) ⟨𝑥, 𝑦⟩𝜌 = ⟨𝑦*, 𝑥*⟩𝜌.

This allows to drop the notation T𝜌ℓ1 above. However, we prefer to keep it, because we are interested
in riemannian metrics more than in inner products, and we also want to provide a clear separation
between geometric and representational properties of quantum smooth geometries. An extension of
the Petz characterisation theorem to 𝜌 ∈ M𝑛(C)+0 (corresponding to Campbell’s extension [137] of
Chencov’s characterisation theorem in the commutative case) was carried out by Kumagai [419]. The
resulting class of metrics reads

gh
𝜌(𝑥, 𝑦) = 𝑚(tr(𝜌))tr(𝑥*)tr(𝑦) + 𝜆

⟨
𝑥, Jh𝜌(𝑦)

⟩
G2(ℋ)

, (527)

where 𝑚 : R+ → R+ and 𝜆 > 0.
According to the Lesniewski–Ruskai theorem [446], the Eguchi equation (416) applied to the

Kosaki–Petz f-distance (186) yields the MCP metric (521) with the Petz function given by

hf(𝜆) =
(𝜆− 1)2

f(𝜆) + fc(𝜆)
. (528)

This theorem does not require to assume f(0) ≤ 0. Moreover, due to finite dimensionality of the
problem, the additional assumption of the smoothness of f is also not required. The set of all functions
f : ]0,∞[→ R that are operator convex on ]0,∞[ and satisfy f(1) = 0 will be denoted F. An f ∈ F will
be called symmetric iff f = fc. A subset of all symmetric elements of F will be denoted Fsym. The
convex combinations

f̄𝑡(𝜆) := 𝑡f(𝜆) + (1 − 𝑡)fc(𝜆) = 𝑡f(𝜆) + (1 − 𝑡)𝜆f(𝜆−1) ∈ F (529)
50A Bauer simplex is a nonempty convex compact subset of a locally convex space that is a Choquet simplex and

such that the set of its extreme elements is closed [57, 10].
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yield the same function hf̄𝑡 for all 𝑡 ∈ [0, 1]. Thus, several different Kosaki–Petz f-distances lead to the
same MCP metric. On the other hand, each h defines a unique symmetric f, given by

f(𝜆) =
(𝜆− 1)2

2h(𝜆)
. (530)

The normalisation condition h(1) = 1 is equivalent to the condition f′′(1) = 1. A set of elements f ∈ F
satisfying this condition will be denoted F1, and we will also use the set Fsym

1 := F1 ∩ Fsym, which
consists of all operator convex functions f : ]0,∞[→ R satisfying f = fc, f(1) = 0, and f′′(1) = 1. As
shown in [413],

R−1
𝜌 + L−1

𝜔 ≥ R−1
𝜌 h−1

f (∆𝜔,𝜌) ≥ (R𝜌 + L𝜔)−1 ∀𝜌, 𝜔 ∈ B(ℋ)+⋆01 ∀f ∈ F1. (531)

The symmetry condition on gh
𝜌 is equivalent to

h(L𝜌R
−1
𝜌 )R𝜌 = h(R𝜌L

−1
𝜌 )L𝜌, (532)

and it follows that
h(L𝜌R

−1
𝜌 ) = h(R𝜌L

−1
𝜌 )L𝜌R

−1
𝜌 = h(∆−1

𝜌 )∆𝜌. (533)

Thus, the theorems of Petz and Lesniewski–Ruskai imply that there is a bijection between the sets of:

(i) normalised MCP metrics,

(ii) normalised Petz functions,

(iii) elements of Fsym
1 .

The key examples of the MCP metrics are:

1) The Mori–Kubo–Bogolyubov metric (introduced by Mori [499] and Kubo [414], and shown
to be real and positive definite by Bogolyubov [87])

gMKB
𝜌 (𝑥, 𝑦) = tr

(︂∫︁ ∞

0
d𝜆𝑥*

1

𝜆I + 𝜌
𝑦

1

𝜆I + 𝜌

)︂
, (534)

which corresponds to

h(𝜆) =
𝜆− 1

log 𝜆
=

∫︁ 1

0
d𝑡𝜆𝑡, ch(𝜆1, 𝜆2) =

log 𝜆1 − log 𝜆2
𝜆1 − 𝜆2

, (535)

and
Jh𝜌(𝑥) =

∫︁ ∞

0
d𝜆

1

𝜆I + L𝜌
𝑥

1

𝜆I + R𝜌
. (536)

In [338] the MKB metric (534) was derived using the Eguchi equation (416) from the Umegaki
distance (308), which is a Kosaki–Petz f-distance for f(𝜆) = − log 𝜆. Early studies of gMKB

were carried in [252, 581]. The monotonicity of (534) was proved in [573]. The formula (534)
is specified in terms of 𝑥, 𝑦 ∈ M𝑛(C), which corresponds to an implicit use of a ‘mixture’ (𝛾 =
1)-representation of gMKB

𝜌 (𝑢, 𝑣) by means of 𝑥 = T𝜌ℓ1(𝑢) and 𝑦 = T𝜌ℓ1(𝑣). A coordinate
transformation to an ‘exponential’ (𝛾 = 0)-representation,

T𝜌ℓ1(𝑢) = 𝑢 ↦→ T𝜌ℓ0(𝑢) = 𝑢− tr(𝜌𝑢)I =

∫︁ ∞

0
d𝜆

1

𝜌+ 𝜆I
𝑢

1

𝜌+ 𝜆I
=

d

d𝑡
|𝑡=0 log(𝜌+ 𝑡𝑢), (537)

is a functional form of the Fréchet derivative of log 𝜌 in the 𝑢 direction, and is called the Kubo
transform (if [𝜌, 𝑢] = 0, then the Kubo transform reduces to 𝑢 ↦→ 𝜌−1𝑢). This allows to write
the MKB metric as

gMKB
𝜌 (𝑢, 𝑣) =

∫︁ 1

0
d𝜆tr(𝜌𝜆T𝜌ℓ0(𝑢)𝜌1−𝜆T𝜌ℓ0(𝑣)) = tr(T𝜌ℓ1(𝑢)T𝜌ℓ0(𝑣)). (538)
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This form is suitable to describe the MKB metric on arbitrary submanifold 𝒬𝑛 ⊆ M𝑛(C)sa:

gMKB
ℎ (𝑢, 𝑣) =

∫︁ 1

0
d𝜆tr

(︁
e𝜆ℎ𝑢e(1−𝜆)ℎ𝑣

)︁
, (539)

where ℎ ∈ 𝒬𝑛 and 𝑢, 𝑣 ∈ Tℎ𝒬𝑛 ⊂ TℎM𝑛(C)sa ∼= M𝑛(C)sa. Using the parametrisation 𝐻 of 𝒬𝑛

defined by (478), we can locally express matrix elements of the metric tensor (539) as

gMKB
𝑖𝑗 (𝑥) =

∫︁ 1

0
d𝜆tr

(︁
e𝜆𝐻(𝑥)(𝜕𝑖𝐻)(𝑥)e(1−𝜆)𝐻(𝑥)(𝜕𝑗𝐻)(𝑥)

)︁
. (540)

This can be simplified to

gMKB
𝑖𝑗 (𝑥) = 𝜕𝑖𝜕𝑗tr

(︁
e𝐻(𝑥)

)︁
− tr

(︁
(𝜕𝑖𝜕𝑗𝐻)(𝑥)e𝐻(𝑥)

)︁
, (541)

which follows from

𝜕𝑖e
𝐻 =

∫︁ 1

0
d𝜆e𝜆𝐻(𝜕𝑖𝐻)e(1−𝜆)𝐻 , (542)

𝜕𝑖𝜕𝑗tr
(︀
e𝐻
)︀

= 𝜕𝑖tr
(︀
e𝐻𝜕𝑗𝐻

)︀
=

∫︁ 1

0
d𝜆tr

(︁
e𝜆𝐻(𝜕𝑖𝐻)e(1−𝜆)𝐻(𝜕𝑗𝐻)

)︁
+ tr

(︀
e𝐻𝜕𝑖𝜕𝑗𝐻

)︀
= gMKB

𝑖𝑗 + tr
(︀
(𝜕𝑖𝜕𝑗𝐻)e𝐻

)︀
. (543)

2) The Wigner–Yanase metric [770]

gWY
𝜌 (𝑥, 𝑦) = 4tr

(︁(︁
(
√︀

L𝜌 +
√︀
R𝜌)

−1(𝑥)
)︁* (︁

(
√︀
L𝜌 +

√︀
R𝜌)

−1(𝑦)
)︁)︁

, (544)

which corresponds to

h(𝜆) =
1

4
(1 +

√
𝜆)2, ch(𝜆1, 𝜆2) =

(︂
2√

𝜆1 +
√
𝜆2

)︂
, (545)

and
Jh𝜌(𝑥) = 4(

√︀
L𝜌 +

√︀
R𝜌)

−2(𝑥), (546)

and can be derived using the Eguchi equation (416) from the distance

𝐷(𝜌1, 𝜌2) = 4tr
(︁
𝜌1 − 𝜌

1/2
1 𝜌

1/2
2

)︁
(547)

which is a Kosaki–Petz f-distance for f(𝜆) = 4(1−
√
𝜆). The riemannian distance of (544) reads

[278]
𝑑gWY(𝜌1, 𝜌2) = 2 arccos (tr(

√
𝜌1
√
𝜌2)) . (548)

3) The Yuen–Lax metric [780, 781], known also as the right/left logarithmic derivative metric,

gYL
𝜌 (𝑥, 𝑦) =

1

2
tr
(︀
𝜌−1(𝑥*𝑦 + 𝑦𝑥*)

)︀
, (549)

which corresponds to

h(𝜆) =
2

1 + 𝜆
, ch(𝜆1, 𝜆2) =

𝜆1 + 𝜆2
2𝜆1𝜆2

, (550)

and
Jh𝜌(𝑥) =

1

2
(𝜌−1𝑥+ 𝑥𝜌−1). (551)

The Yuen–Lax metric can be derived from the distance (187), which is a Kosaki–Petz f-distance
for f(𝜆) = (𝜆− 1)2.
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4) The Wigner–Yanase–Dyson–Hasegawa metric [770, 313] for 𝛾 ∈ [−1, 2] ∖ {0, 1}

g𝛾𝑖𝑗(𝜃(𝜌)) = tr

(︂
𝜌
𝜕 log 𝜌

𝜕𝜃𝑖
𝜕 log 𝜌

𝜕𝜃𝑗

)︂
+

1

𝛾(1 − 𝛾)
tr
(︀
[𝜌𝛾 ,𝑊𝑖][𝜌

1−𝛾 ,𝑊𝑗 ]
)︀
, (552)

where
g𝛾𝑖𝑗(𝜃(𝜌)) = tr

(︂
T𝜌ℓ𝛾

(︂
𝜕

𝜕𝜃𝑖

)︂
T𝜌ℓ1−𝛾

(︂
𝜕

𝜕𝜃𝑗

)︂)︂
= g1−𝛾

𝑖𝑗 (𝜃(𝜌)). (553)

Given decomposition (481), we have

g𝛾𝜌(i[𝜌,𝑊 ], i[𝜌,𝑊 ]) =
1

𝛾(1 − 𝛾)
tr([𝜌𝛾 , i𝑊 ][𝜌1−𝛾 , i𝑊 ]) =: − 2

𝛾(1 − 𝛾)
IWYD
𝛾 (𝜌, i𝑊 ). (554)

The former part of the metric g𝛾𝑖𝑗(𝜃(𝜌)) is a direct quantum analogue of the FRJ metric (499),
while IWYD

𝛾 (𝜌, i𝑊 ) is called the Wigner–Yanase–Dyson skew information, and it arises
due to [𝜌,ð𝜌] ̸= 0. The WYDH metric (552) corresponds to [578, 317]

h𝛾(𝜆) = 𝛾(1 − 𝛾)
(𝜆− 1)2

(𝜆𝛾 − 1)(𝜆1−𝛾 − 1)
, ch𝛾 (𝜆1, 𝜆2) =

1

𝛾(1 − 𝛾)

(𝜆𝛾1 − 𝜆𝛾2)(𝜆1−𝛾1 − 𝜆1−𝛾2 )

(𝜆1 − 𝜆2)2
. (555)

The metric (552) was obtained in [313] by applying the Eguchi equation (416) to the Hasegawa
distance (305), which is a Kosaki–Petz f-distance for

f(𝜆) =
1

𝛾(1 − 𝛾)
(1 − 𝜆𝛾). (556)

The restriction of the allowed domain of 𝛾 from R ∖ {0, 1} to [−1, 2] ∖ {0, 1} follows from the
fact that (556) is operator convex only for the latter range [578, 317, 316]. The Wigner–Yanase
metric (544) is the WYDH metric with 𝛾 = 1

2 , the Yuen–Lax metric (549) is the WYDH metric
with 𝛾 = 2, while the MKB metric (534) arises as a limit of the WYDH family for 𝛾 → 0 or
𝛾 → 1, which can be obtained for (521) with (555), or for (186) with (556). These limits turn
(552) into [313]

gMKB
𝑖𝑗 (𝜃(𝜌)) = tr

(︂
𝜌
𝜕 log 𝜌

𝜕𝜃𝑖
𝜕 log 𝜌

𝜕𝜃𝑗

)︂
+ tr ([𝑊𝑖, log 𝜌][𝑊𝑗 , 𝜌]) . (557)

5) The Helstrom–Uhlmann metric [322, 323, 324, 730, 731] (see also [521, 332, 729, 219, 220]),
known also as the symmetric logarithmic derivative metric,

gHU
𝜌 (𝑥, 𝑦) = tr

(︀
𝑥*(R𝜌 + L𝜌)

−1(𝑦)
)︀
, (558)

which corresponds to

h(𝜆) =
1 + 𝜆

2
, ch(𝜆1, 𝜆2) =

2

𝜆1 + 𝜆2
, (559)

and
Jh𝜌(𝑥) =

1

R𝜌 + L𝜌
(𝑥) = 2

∫︁ ∞

0
d𝜆e−𝜆𝜌𝑥e−𝜆𝜌. (560)

The Helstrom–Uhlmann metric can be derived from the distance

𝐷(𝜌1, 𝜌2) = tr
(︀
(𝜌1 − 𝜌2)(R𝜌2 + L𝜌1)−1(𝜌1 − 𝜌2)

)︀
, (561)

which is a Kosaki–Petz f-distance with f(𝜆) = (𝜆−1)2

𝜆+1 . Uhlmann [730, 731] showed that a rieman-
nian distance of (558) satisfies

𝑑gHU(𝜌1, 𝜌2) = 4𝑑Bures(𝜌1, 𝜌2) =

√︂
tr(𝜌1) + tr(𝜌2) − tr

√︁
𝜌
1/2
1 𝜌2𝜌

1/2
1 , (562)

where 𝑑Bures is a Bures distance (161). The monotonicity of (558) was first established in [117].
An explicit formula for (558) is given in [222].
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From (531) it follows that

L−1
𝜌 + R−1

𝜌 ≥ J
hf
𝜌 ≥ (R𝜌 + L𝜌)

−1 ∀ f ∈ Fsym
1 , (563)

hence
gYL
𝜌 (𝑥, 𝑦) ≥ g

hf
𝜌 (𝑥, 𝑦) ≥ gHU(𝑥, 𝑦) ∀ f ∈ Fsym

1 ∀𝑥, 𝑦 ∈ M𝑛(C). (564)

An extension of the MCP metrics to the pure states (𝜌2 = 𝜌) was studied in [221, 707, 580]. Among
the above examples, only gHU admits such extension, and it coincides on the pure states with the
Fubini–Study metric [267, 705].

The equation (554) was generalised by Hansen [306] to the notion of skew information of 𝑥 ∈
M𝑛(C) with respect to 𝜌,

Ih(𝜌, 𝑥) :=
h(0)

2
gh
𝜌(i[𝜌, 𝑥], i[𝜌, 𝑥]) =

h(0)

2
tr (i[𝜌, 𝑥*]ch(L𝜌,R𝜌)i[𝜌, 𝑥]) , (565)

for such h that satisfy h(0) > 0. This is not the case for (554) if 𝛾 ∈ ]1, 2], for which another extension
of IWYD

𝛾 has been constructed, see [313, 365, 135].
Early study [522, 523, 314, 315, 23] of the affine connections on M𝑛(C)+0 which are the Norden–Sen

dual with respect to a given MCP metric showed that, unlike in commutative case, the Norden–Sen
dual connections can satisfy R𝑙

𝑖𝑗𝑘 = 0 and T𝑘𝑖𝑗 ̸= 0 (which, as remarked in [23], allows to study ‘distant
parallelism’ on quantum manifolds). The quantum analogues of (𝛾 = 0)- and (𝛾 = 1)-connections can
be defined by means of parallel transports

t∇
0

𝜌,𝜔 : Tℓ0(𝜌)B(ℋ)+⋆01 → Tℓ0(𝜔)B(ℋ)+⋆01, (566)

t∇
1

𝜌,𝜔 : Tℓ1(𝜌)B(ℋ)+⋆01 → Tℓ1(𝜔)B(ℋ)+⋆01, (567)

satisfying the conditions

t∇
0

𝜌,𝜔(𝑥) = �̃� ⇐⇒ �̃� = 𝑥− tr(𝜔𝑥), (568)

t∇
1

𝜌,𝜔(𝑥) = �̃� ⇐⇒ �̃� = 𝑥. (569)

Both t∇
0 and t∇

1 are independent of the choice of the curve connecting 𝜌 and 𝜔, so ∇0 and ∇1 have
vanishing Riemann curvature tensors. The (𝛾 = 0)-representation of the ∇𝛾=0-covariant derivative
applied to 𝜕

𝜕𝜃𝑖
is

T𝜌ℓ0

(︂
∇𝛾=0
𝜕𝑖

𝜕

𝜕𝜃𝑗

)︂
=
𝜕2 log 𝜌

𝜕𝜃𝑖𝜕𝜃𝑗
− tr

(︂
𝜌
𝜕2 log 𝜌

𝜕𝜃𝑖𝜕𝜃𝑗

)︂
. (570)

Let 𝑥1, . . . , 𝑥𝑛 ∈ M𝑛(C)sa. If 𝜌 is parametrised in terms of the (𝛾 = 0)-affine system,

𝜌 = e
∑︀𝑛
𝑖=1 𝜃

𝑖𝑥𝑖−(log𝑍)I, (571)

with log𝑍 determined by the condition tr(𝜌) = 1, then (570) becomes equal to zero, which shows
that B(ℋ)+⋆01, as well as the parametric exponential families, are ∇𝛾=0-flat. On the other hand, the
(𝛾 = 1)-representation of the ∇𝛾=1-covariant derivative applied to 𝜕

𝜕𝜃𝑖
reads

T𝜌ℓ1

(︂
∇𝛾=1
𝜕𝑖

𝜕

𝜕𝜃𝑗

)︂
=

𝜕2𝜌

𝜕𝜃𝑖𝜕𝜃𝑗
. (572)

If 𝜌 is parametrised in terms of the (𝛾 = 1)-affine system,

𝜌 =

𝑛∑︁
𝑖=1

𝜂𝑖𝑥𝑖, (573)

then the right hand side of (572) becomes equal to zero, which shows that B(ℋ)+⋆01, as well as any of
its linear subspaces, is ∇𝛾=1-flat.
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The family of torsion-free 𝛾-connections on M𝑛(C)+0 for 𝛾 ∈ R was introduced and studied by
Jenčová [355, 356], who defined them by means of 𝛾-representation. She showed that the Riemann
curvature tensor R∇𝛾 is equal to zero for all 𝛾 ∈ [−1, 2] on M𝑛(C)+0 and for 𝛾 ∈ {0, 1} on M𝑛(C)+01.
The affine connections (∇𝛾)†h , defined as the Norden–Sen duals of ∇𝛾 with respect to a given MCP
metric gh have vanishing Riemann curvature tensor, but are not necessarily torsion-free (hence, are
not flat). The geodesics of these connections are determined by the equation

𝑥 = ℓ−1
𝛾

(︁
Jh𝜌(𝑡)(�̇�(𝑡))

)︁
, (574)

where 𝑥 ∈ M𝑛(C)sa and 𝜌 ∈ M𝑛(C)+0 . In general, (∇𝛾)†h ̸= ∇1−𝛾 . The condition that (∇𝛾)†h is
torsion-free implies that 𝛾 ∈ [−1, 2] and h = h𝛾 , where h𝛾 is given by (555). In such case

(∇𝛾)†h𝛾 = ∇1−𝛾 . (575)

Using an integral representation of f ∈ F,

f(𝜆) = 𝑐1(𝜆− 1) + 𝑐2(𝜆− 1)2 + 𝑐3
(𝜆− 1)2

𝜆
+

∫︁ ∞

0
�̃�(𝑡)(𝜆− 1)2

1 + 𝑡

𝜆+ 𝑡
, (576)

where 𝑐2, 𝑐3 ≥ 0, 𝑐1 ∈ R, and �̃� : ]0,∞[→ R+ is a measure satisfying
∫︀∞
0 �̃�(𝑡) ∈ R [446], Jenčová [359]

showed that the f-connections, defined by the Eguchi equation (417) applied to the Kosaki–Petz
f-distance (186), have the form

g
hf
𝜌 (∇f

𝑥𝑦, 𝑧) = 2

∫︁ ∞

0
�̃�(𝜆)re ( ̃︀𝐶(𝜆, 𝑧, 𝑥, 𝑦))−2

∫︁ ∞

0
�̃�(𝜆−1)

(︁
re ( ̃︀𝐶(𝜆, 𝑦, 𝑥, 𝑧) + re ( ̃︀𝐶(𝜆, 𝑦, 𝑥, 𝑧))

)︁
, (577)

where ̃︀𝐶(𝜆, 𝑥, 𝑦, 𝑧) := (1 + 𝜆)tr

(︂
𝑥

1

𝜆R𝜌 + L𝜌
(𝑦)

1

R𝜌 + 𝜆L𝜌
(𝑧)

)︂
. (578)

The connections determined from 𝐷f by the equation (418) are equal to ∇fc . The connections ∇f and
∇fc are torsion-free and mutually Norden–Sen dual with respect to ghf = ghfc . Using this setting,
Jenčová [358, 359] proved that:

1) ∇f is flat iff ∇f = ∇𝛾 for 𝛾 ∈ [−1, 2], and in such case f = f𝛾 , where f𝛾 is given by (286),

2) for a given f ∈ F1 the MCP metric ghf admits a pair of dually flat affine connections iff hf = h𝛾
for 𝛾 ∈ [−1, 2].

In such case, the corresponding dually flat connections are uniquely determined and are given by
(∇𝛾 ,∇1−𝛾). Hence, the family of quantum Norden–Sen geometries (M𝑛(C)+0 ,g

h𝛾 ,∇𝛾 ,∇1−𝛾) for 𝛾 ∈
[−1, 2] is characterised as the dually flat Eguchi geometry arising from the Kosaki–Petz f-distances.51

Under restriction to M𝑛(C)+01 this condition characterises the unique quantum Norden–Sen geometry,

(M𝑛(C)+01,g
MKB,∇1,∇0). (579)

For any f ∈ F1 ∖ Fsym
1 the triple (M𝑛(C)+0 ,g

hf , 𝐶), where

𝐶(𝑥, 𝑦, 𝑧) := ghf
(︁

(∇f
𝑥𝑦 −∇fc

𝑥 𝑦), 𝑧
)︁

(580)

is a Lauritzen manifold [358, 359]. Every convex mixture

f𝜗 := 𝜗f + (1 − 𝜗)fc ∀𝜗 ∈ [0, 1] (581)
51See [317, 316, 288] for related but weaker characterisations. The first result of this type was obtained by Grasselli

and Streater [292, 291, 286], who showed that for M𝑛(C)+01 the condition that the pair (∇1,∇0) of affine connections
should be Norden–Sen dual with respect to the given riemannian metric g characterises gMKB among all MCP metrics,
which selects a single Norden–Sen geometry, (M𝑛(C)+01,g

MKB,∇1,∇0).
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determines a torsion-free connection ∇f𝜗 , which is a ∇𝜗 connection for (ghf ,∇f,∇fc) in the sense of
(419), and ∇𝜗= 1

2 is a Levi-Civita connection of ghf . The family of ∇𝜗-connections associated this way
to f𝛾 with 𝛾 ∈ {0, 1} is torsion-free, but

∇𝛾=𝑟 ̸= ∇𝜗=𝑟 ∀𝑟 ∈ ]0, 1[, (582)

and ∇𝜗 is not flat unless 𝜗 ∈ {0, 1} (see also a discussion in [291, 286]). The Ricci curvature scalars of
the Levi-Civita connections of the various MCP metrics (and under various assumptions) were calcu-
lated in [219, 573, 223, 224, 495, 25, 278]. The Riemann curvature tensors of various ∇f connections
were calculated in [355, 356, 358, 359].

A quantum analogue of the generalised cosine equation (517) for (M𝑛(C)+01,g
MKB,∇1,∇0) was

obtained independently by Petz [573] and Nagaoka [522, 523] and reads

𝐷1|𝒩+
⋆1

(𝜑, 𝜔) +𝐷1|𝒩+
⋆1

(𝜔, 𝜓) = 𝐷1|𝒩+
⋆1

(𝜑, 𝜓) + gMKB
𝜔

(︁
�̇�∇

𝛾=0

𝜔,𝜑 (0), �̇�∇
𝛾=1

𝜔,𝜓 (0)
)︁
. (583)

Under orthogonality assumption, defined as vanishing of the last term at right hand side, (583) turns
to a generalised pythagorean equation, which is both a quantum analogue of Chencov’s generalised
pythagorean equation [150] and a smooth geometric special case of Donald’s quantum generalised
pythagorean equation (366). The above results of Jenčová allow us to generalise the Nagaoka–Petz
generalised pythagorean equation to a direct quantum counterpart of (518):

Proposition 5.1. If 𝜑, 𝜔, 𝜓 ∈ M𝑛(C)+0 , 𝛾 ∈ [−1, 2], 𝑐∇𝛾𝜔,𝜑 is a ∇𝛾-geodesic curve, 𝑐∇1−𝛾
𝜔,𝜓 is a ∇1−𝛾-

geodesic curve, and these curves intersect at 𝜔 while satisfying

g
h𝛾
𝜔

(︁
�̇�∇

𝛾

𝜔,𝜑(0), �̇�∇
1−𝛾

𝜔,𝜓 (0)
)︁

= 0, (584)

then
𝐷𝛾(𝜑, 𝜔) +𝐷𝛾(𝜔, 𝜑) = 𝐷𝛾(𝜑, 𝜓). (585)

Proof. Follows directly from dual flatness of (M𝑛(C)+0 ,g
h𝛾 ,∇𝛾 ,∇1−𝛾), (448) and (451).

An early study of an extension of the Fisher–Rao metric and the Chencov–Amari 𝛾-connections
for the nonparametric commutative models was carried out by Amari [18, 22] in terms of bundles of
Hilbert spaces 𝐿2(𝒳 ,f(𝒳 ), �̃�) and their subspaces given by (461). Eguchi [244, 245] investigated the
equations (416)-(418) for statistical distances over nonparametric models, including 𝛾-connections, us-
ing Gâteaux and Fréchet derivatives. However, these approaches lacked a definite underlying smooth
manifold structure. Pistone and Rogantin [593] (see also [143]) used the Pistone–Sempi smooth man-
ifold structure, and introduced a positive definite, symmetric, bilinear inner product on 𝐶0(𝑝, �̃�),

𝐶0(𝑝, �̃�) × 𝐶0(𝑝, �̃�) ∋ (𝑢, 𝑣) ↦→
∫︁
�̃�𝑝𝑢𝑣 ∈ R+. (586)

From a generalised Rogers–Hölder inequality for Orlicz spaces it follows that

∃𝜆 ∈ ??? ∀𝑢, 𝑣 ∈ 𝐶0(𝑝, �̃�)

⃒⃒⃒⃒∫︁
�̃�𝑝𝑢𝑣

⃒⃒⃒⃒
≤ 𝜆||𝑢||ϒ1,𝑝�̃�

||𝑣||ϒ1,𝑝�̃�
, (587)

so (586) is continuous in 𝑝. Moreover, it arises as a hessian of the WGKL distance, so it can be
considered as a generalisation of the FRJ riemannian metric to nonparametric statistical manifold
ℳ(𝒳 ,f(𝒳 ), �̃�). The same is true for 𝐶0(𝑝, �̃�) replaced by 𝐵0(𝑝, �̃�) [286]. A generalisation of the
Chencov–Amari family of 𝛾-connections was developed in [280, 281, 142] for the Pistone–Sempi mani-
folds, and in [286, 287, 289] for the Pistone–Grasselli manifolds. In particular, for 𝑟, 𝑞 ∈ 𝑤−1

𝑝 (𝑈(𝑝)) or
𝑟, 𝑞 ∈ 𝑤−1

𝑝 (̃︀𝑈(𝑝)), then (𝛾 = 0)- and (𝛾 = 1)-connections are defined in terms of their corresponding
parallel transports,

t∇
0

𝑝𝑞 : 𝐶0(𝑝, �̃�) ∋ 𝑢 ↦→ 𝑢−
∫︁
�̃�𝑞𝑢 ∈ 𝐶0(𝑞, �̃�), (588)

t∇
1

𝑝𝑞 : 𝐶0(𝑝, �̃�) ∋ 𝑢 ↦→ 𝑝

𝑞
𝑢 ∈ 𝐶0(𝑞, �̃�). (589)
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The quantities (586), (588), and (589) satisfy the analogue of the Norden–Sen duality (413). How-
ever, since tangent spaces 𝐶0(𝑝, �̃�) and 𝐵0(𝑝, �̃�) are neither self-dual nor reflexive, these generali-
sations are somewhat problematic: the Pistone–Gibilisco 𝛾-connections are not defined on tangent
spaces but on vector bundles (for 𝛾 ∈ ]0, 1[ these are given by 𝐿1/𝛾(𝒳 ,f(𝒳 ), �̃�) spaces), while Gras-
selli’s 𝛾-connections do not determine a covariant derivative that would be defined everywhere on
ℳ(𝒳 ,f(𝒳 ), �̃�). For finite dimensional manifolds all these problems disappear and the above settings
coincide with the parametric one (see [286, 142] for an explicit discussion).

The infinite dimensional nonparametric generalisation of the Wigner–Yanase metric was intro-
duced by Connes and Størmer [171], while the infinite dimensional nonparametric generalisation of
the Wigner–Yanase–Dyson skew information was introduced by Kosaki [397], following earlier work
by Pusz and Woronowicz [598]. Construction of the WYDH riemannian metrics on nonparamet-
ric quantum manifolds induced by embeddings from noncommutative 𝐿1/𝛾 spaces was considered in
[277], while the construction of various inequivalent families of 𝛾-connections in infinite dimensional
noncommutative case was provided in [276, 286, 699, 360, 361].

Let us note, following [203, 593], the distinguished role played by the generalisation of the Chencov–
Dawid ∇0 connection in the nonparametric setting (both commutative and quantum). When smooth
manifold structure is introduced through the embedding into the Orlicz space 𝐿ϒ1 , then it determines
each tangent vector by means of an equivalence class of curves, that are one dimensional exponential
models: 𝑝 exp(𝜆𝑓 − log𝑍(𝑝, 𝜆𝑓)) in the commutative case of (469) and 𝜑𝜆ℎ in the noncommutative
case of (493). Hence, the smooth structure equips information model with local ∇0-geodesics, which
determine the ∇0-connection.

5.3 Exponential models

The most prominent example of an information manifold is an exponential family defined as an
𝑛-dimensional parametric probabilistic manifold [200, 395, 597]

ℳexp(𝒳 ,f(𝒳 ), �̃�) := {𝑝(x , 𝜃) := exp(− log𝑍(𝜃)−
∑︀𝑛

𝑖=1 𝜃
𝑖𝑓𝑖(x )) | 𝜃 := (𝜃1, . . . , 𝜃𝑛) ∈ Θ ⊆ R𝑛}, (590)

where 𝑓𝑖 : 𝒳 → R are assumed to be arbitrary functions, linearly independent of each other and of the
constant function 1 (this guarantees that 𝜃 ↦→ 𝑝(𝜃) is one-to-one and that the matrix g𝑖𝑗 is invertible
[758]),

log𝑍(𝜃) := log

∫︁
𝒳
�̃�(x ) exp

(︃
−

𝑛∑︁
𝑖=1

𝜃𝑖𝑓𝑖(x )

)︃
(591)

is a factor arising from normalisation condition
∫︀
𝒳 �̃�(x )𝑝(x , 𝜃) = 1, called a partition function, a

cumulant function, or a Massieu–Planck functional, while Θ ⊆ R𝑛 is supposed to be such open
set that the integral in (591) converges. (This definition can be also provided in measure space inde-
pendent terms of an mcb-algebra 𝒜, giving rise to ℳexp(𝒜).) Components of smooth diffeomorphism

(𝜃𝑖) : ℳexp(𝒳 ,f(𝒳 ), �̃�) ∋ 𝑝 ↦→ 𝜃(𝑝) ∈ Θ ⊆ R𝑛 (592)

are called exponential coordinates, while the components of smooth diffeomorphism

(𝜂𝑖) : ℳexp(𝒳 ,f(𝒳 ), �̃�) ∋ 𝑝 ↦→ 𝜂(𝑝) :=

(︂∫︁
𝒳
�̃�(x )𝑝(x )𝑓𝑖(x )

)︂
∈ Ξ ⊆ R𝑛 (593)

are called mixture coordinates. The study of geometric properties of this family provided an original
stimulus for development of information geometry [149, 152, 242, 15]. In particular, Chencov found
[149] that the finite dimensional exponential families are geodesic surfaces of ∇0-connections and admit
the generalised pythagorean equation (518) for the WGKL distance (290) [150]. Finite dimensional
exponential families are analysed in detail in [149, 152, 53, 123]. The infinite dimensional generalisation
of (590) is studied in [594, 593, 143, 335, 336].
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If dim𝒳 =: 𝑚 < ∞, then
∫︀
𝒳 �̃�(x )𝑘(x ) =

∑︀𝑚
𝑗=1 𝑘(x𝑗) for any 𝑘 : 𝒳 → R. In such case

ℳexp(𝒳 ,f(𝒳 ), �̃�) can be characterised in terms of the Gibbs–Jaynes [275, 344] procedure of max-
imisation of the Gibbs–Shannon entropy [275, 672, 673]

SGS(𝑝) := −
𝑚∑︁
𝑗=1

𝑝(x𝑗) log 𝑝(x𝑗) (594)

subject to constraints 𝐹 (𝑝) given by {︂ ∑︀𝑚
𝑗=1 𝑝(x𝑗)1 = 1,∑︀𝑚
𝑗=1 𝑝(x𝑗)𝑓𝑖(x𝑗) = 𝜂𝑖,

(595)

with 𝜂 := (𝜂𝑖) ∈ Ξ ⊆ R𝑛. The space of solutions of this variational problem,

𝑝(x , 𝜂) := arg max
𝑝∈𝐿1(𝒳 ,f(𝒳 ),�̃�)+

{︂
SGS(𝑝)+𝜃0

(︁∑︀𝑚
𝑗=1 𝑝(x𝑗)1 − 1

)︁
+
∑︀𝑛

𝑖=1 𝜃
𝑖
(︁∑︀𝑚

𝑗=1 𝑝(x𝑗)𝑓𝑖(x𝑗) − 𝜂𝑖

)︁}︂
, (596)

attained for all possible (𝜂𝑖), is given by the special case of the family (590),

𝑝(x , 𝜃) = e− log𝑍(𝜃)−
∑︀𝑛
𝑖=1 𝜃

𝑖𝑓𝑖(x ). (597)

In this case the function (591) takes the form

𝑍(𝜃1, . . . , 𝜃𝑛) =
∑︁
𝑗

e−
∑︀𝑛
𝑖=1 𝜃

𝑖𝑓𝑖(x𝑗), (598)

with the Lagrange multipliers (𝜃𝑖) ∈ Θ ⊆ R𝑛 determined by

𝜂𝑖 = − 𝜕

𝜕𝜃𝑖
log𝑍(𝜃1, . . . , 𝜃𝑛). (599)

The maximum value attained by SGS for a given (𝜂𝑖) (or, equivalently, for a given (𝜃𝑖)), reads

SGS(𝑝(𝜃)) = log𝑍(𝜃) +
𝑛∑︁
𝑖=1

𝜃𝑖𝜂𝑖. (600)

This way the Lagrange multipliers (𝜃𝑖) act as ‘potentials’ of the constraints (595): the greater the
value of 𝜃𝑖, the stronger the impact of the corresponding 𝑖-th constraint on the maximum value of the
entropy. If 𝜂𝑖 in (600) is substituted by (599), then (600) is called a (generalised) Gibbs–Helmholtz
equation. See [105, 341, 248, 249] for a detailed treatment of the above procedure including the
infinite dimensional case (it is a nontrivial generalisation). As stressed by Jaynes on many occasions
(see e.g. [344, 348, 350]), the procedure of maximisation of constrained absolute entropy has an
interpretative virtue allowing to justify the choice of an exponential model as an information model
that is maximally noncommital to any other information than this which is specified by the constraints
(595). The conceptual problem associated with this interpretation is to justify why it is SGS and not
some other lower semi-continuous concave functional on 𝐿1(𝒳 ,f(𝒳 ), �̃�)+ that should be maximised
under given constraints (see e.g. [723] for a discussion).

The analogous results can be obtained when the functions 𝑓𝑖 are replaced by self-adjoint linear
(not necessarily bounded) operators on a Hilbert space ℋ of arbitrary dimension, 𝑝 is replaced by
𝜌 ∈ G1(ℋ)+1 , and SGS is replaced by the von Neumann entropy

SvN(𝜌) := −tr(𝜌 log 𝜌), (601)

see [345, 340, 765, 65, 547, 339, 758] for details. While the properties of the noncommutative case with
dimℋ < ∞ are analogous to the commutative one with dim𝒳 < ∞, the treatments of dimℋ = ∞
case require several additional, and not necessary optimal, conditions. A generalisation of (601) to
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𝐿1(𝒩 , 𝜏) spaces for semi-finite 𝑊 *-algebras 𝒩 was proposed by Segal in [661], and was further studied
in [526, 641, 548, 556, 550]. It amounts to replacing the standard trace tr on B(ℋ) by a faithful normal
semi-finite trace 𝜏 on 𝒩 , and replacement of the Landau–von Neumann density operator 𝜌 ∈ B(ℋ)+⋆
by the Dye–Segal density 𝜌 ∈ 𝐿1(𝒩 , 𝜏) (see Section 2.2) .52 However, for all 𝑊 *-algebras 𝒩 of type
different from I𝑛, the problem of avoiding quantum states with infinite absolute entropy becomes
crucial: for any 𝜑 ∈ 𝐿1(𝒩 ), its open neighbourhood defined in terms of the metrical distance (160),
𝑑𝐿1(𝒩 )(𝜑, 𝜔) := 1

2 ||𝜑− 𝜔||𝐿1(𝒩 ), contains a dense set of states with infinite Araki distance with respect
to 𝜑, and a dense set of states with infinite Segal entropy (whenever 𝒩 is semi-finite), see [758]. A
suitable construction of quantum manifold that rules out those states was provided only recently by
Streater [700, 702, 703] (see Section 5.1 for more details, as well as [5, 479] for further developments
in this spirit).

An alternative approach, proposed by Haag, Hugenholtz and Winnink [295], is to consider quantum
states satisfying the KMS condition as a generalisation of the exponential quantum states with one
self-adjoint operator. These objects coincide for finite dimensional Hilbert spaces. Araki [34] proved
that for spin systems the KMS condition is equivalent with the maximum von Neumann entropy
condition (see also [626, 427] for earlier proof that in this case the KMS condition is implied by the
maximum von Neumann entropy procedure).

Finally, Jenčová and Petz [363, 364] proposed to define a quantum exponential family as a
quantum model

ℳexp(𝒩 , 𝜔) := {𝜔
∑︀𝑛
𝑖=1 𝜃

𝑖𝑥𝑖 | 𝜃 := (𝜃1, . . . , 𝜃𝑛) ∈ Θ ⊆ R𝑛, 𝑥1, . . . , 𝑥𝑛 ∈ 𝒩 sa} ⊆ 𝒩+
⋆1, (602)

where 𝜔 ∈ 𝒩+
⋆1 is an arbitrary prior (reference) quantum state, while 𝜔

∑︀𝑛
𝑖=1 𝜃

𝑖𝑥𝑖 is an Araki–Donald
perturbation (357). This definition follows earlier work by Neirotti and Raggio [532] (see also [642]),
and provides a noncommutative counterpart to the approaches of Good [285] and Jaynes [346, 347, 349],
who proposed to apply the WGKL distance minimisation with a fixed prior measure as a method of
statistical model construction (as opposed to the method of statistical inference) in the case when
(𝒳 ,f(𝒳 )) is not finite.

Regardless whether the model ℳexp(𝒳 ,f(𝒳 ), �̃�) is introduced by postulate or by the solution of
constrained maximisation problem (596), the Gibbs–Shannon entropy SGS : ℳexp(𝒳 ,f(𝒳 ), �̃�) → R
induces a function ΨL : Ξ → R defined by ΨL := SGS ∘ (𝜂𝑖)

−1. The function ΨL(𝜂) is a Legendre
dual of a function Ψ(𝜃) := − log𝑍(𝜃) with respect to a vector space duality (259). To simplify the
notation, we will write SGS(𝜂) ≡ ΨL(𝜂) := SGS ∘ (𝜂𝑖)

−1(𝜂). The Legendre transformations (257) and
(258) between these two functions are given by

(𝜂𝑖) = LΨ(𝜃𝑖) =

(︂
−𝜕 log𝑍(𝜃)

𝜕𝜃𝑖

)︂
, (603)

(𝜃𝑖) = L−1
Ψ (𝜂𝑖) =

(︂
𝜕SGS(𝜂)

𝜕𝜂𝑖

)︂
. (604)

The function Ψ determines the Brègman functional �̄�Ψ on (R𝑛,R𝑛), given by (267), which induces a
Brègman distance 𝐷Ψ(·, ·) := �̄�Ψ(𝜃(·), 𝜂(·)) on ℳexp(𝒳 ,f(𝒳 ), �̃�) given by (447), which turns out to
be equal to the WGKL distance (290).

Given arbitrary parametric statistical manifold ℳ(𝒜) and an arbitrary Brègman distance 𝐷Ψ on
ℳ(𝒜), a riemannian metric gΨ associated to 𝐷Ψ by means of (416) has two standard representations
in terms of two coordinate-dependent choices of basis in T𝑝ℳ(𝒜),

gΨ
𝑖𝑗(𝜃) := gΨ

𝜃(𝑝)

(︂
𝜕

𝜕𝜃𝑖
,
𝜕

𝜕𝜃𝑗

)︂
=
𝜕2Ψ(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
, (605)

gΨ𝑖𝑗(𝜂) := gΨ
𝜂(𝑝)

(︂
𝜕

𝜕𝜂𝑖
,
𝜕

𝜕𝜂𝑗

)︂
=
𝜕2ΨL(𝜂)

𝜕𝜂𝑖𝜕𝜂𝑗
. (606)

As shown in [261, 201, 601, 173],
52Further generalisation of (601) to weights was carried by Naudts in [528].
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i) the covariance matrix K,

K𝑖𝑗(𝑝) :=

∫︁
𝒳
�̃�(x )𝑝(x )

(︂
𝑓𝑖(x ) −

∫︁
𝒳
�̃�(x )𝑝(x )𝑓𝑖(x )

)︂(︂
𝑓𝑗(x ) −

∫︁
𝒳
�̃�(x )𝑝(x )𝑓𝑗(x )

)︂
, (607)

satisfies the information inequality

K ≥ (gFRJ)−1 (608)

(which means that the matrix K− (gFRJ)−1 is positive semi-definite) for any ℳ(𝒳 ,f(𝒳 ), �̃�) ⊆
𝐿1(𝒳 ,f(𝒳 ), �̃�)+1 ,

ii) the equality K = (gFRJ)−1 characterises the model ℳexp(𝒳 ,f(𝒳 ), �̃�) among other probabilistic
models in 𝐿1(𝒳 ,f(𝒳 ), �̃�)+01.

For exponential family ℳexp(𝒳 ,f(𝒳 ), �̃�), (607) takes the form

K𝑖𝑗(𝑝) =

∫︁
𝒳
�̃�(x )𝑝(x )(𝑓𝑖(x ) − 𝜂𝑖)(𝑓𝑗(x ) − 𝜂𝑗), (609)

while gΨ
𝑝 takes the form

gΨ𝑖𝑗(𝜃) = gΨ𝑖𝑗(𝜂) =
𝜕2SGS(𝜂)

𝜕𝜂𝑖𝜕𝜂𝑗
= −𝜕𝜃

𝑖

𝜕𝜂𝑗
= −𝜕𝜃

𝑗

𝜕𝜂𝑖
. (610)

Under these conditions, K = (gFRJ)−1, so one can identify:

gΨ
𝑖𝑗(𝜃) = K𝑖𝑗(𝜃) =

𝜕2 log𝑍(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
= −𝜕𝜂𝑖

𝜕𝜃𝑗
= −𝜕𝜂𝑗

𝜕𝜃𝑖
. (611)

Hence, K𝑖𝑗 and gΨ𝑖𝑗 are two equivalent coordinate dependent representations of a single FRJ metric
gFRJ.

The normal model is an example of exponential family given by

ℳnorm(𝒳 ,f(𝒳 ), �̃�) :=

{︂
𝑝(x , (𝑚, 𝑠)) =

1√
2π𝑠

e−
(x−𝑚)2

2𝑠2

⃒⃒⃒⃒
(𝑚, 𝑠) ∈ Θ ⊆ R× R+

}︂
, (612)

where dim𝒳 = 1. It can be obtained by the procedure of maximisation of SGS under constraints⎧⎨⎩
∫︀
𝒳 �̃�(x )𝑝(x ) = 1∫︀
𝒳 �̃�(x )𝑝(x )x = 𝑚∫︀
𝒳 �̃�(x )𝑝(x )(𝑥−𝑚)2 = 𝑠2.

(613)

It can be equipped with the dual pair of mixture ∇1-affine coordinates

(𝜂1, 𝜂2) =

(︂∫︁
𝒳
�̃�(x )𝑝(x , (𝑚, 𝑠))x ,

∫︁
𝒳
�̃�(x )𝑝(x , (𝑚, 𝑠))x 2

)︂
= (𝑚,𝑚2 + 𝑠2) (614)

and exponential ∇0-affine coordinates

(𝜃1, 𝜃2) =

(︂
𝑚

𝑠2
,− 1

2𝑠2

)︂
, (615)

while the scalar curvature of ∇𝛾 satisfies [431]

𝜅𝛾 = −2𝛾(1 − 𝛾), (616)

so the Ricci scalar curvature of the Levi-Civita connection reads 𝜅𝛾=1/2 = −1
2 [13, 15] (see also

[778, 777]). This means that the space of all normal probability densities is the Lobachevskĭı–Bolyai
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space [464, 465, 90] of constant negative (scalar and metrical) curvature. It follows that the model
ℳnorm(𝒳 ,f(𝒳 ), �̃�) can be identified with the symmetric space SL(2,R)/SO(2) [715] and that its
group of fractional isometric transformations is isomorphic to [235]

SU(1, 1)/Z2
∼= SL(2,R)/Z2

∼= SO↑(1, 2), (617)

that is, to ‘ortochronous’ subgroup of the Vogt–Lorentz group of transformations of the (2 + 1)-
dimensional Minkowski space-time. The 1-parameter subgroups of isometries of the Lie algebra
sl(2,R)/Z2, generated by the function exp(𝑡𝑢), with

𝑢 =

(︂
𝜆1 𝜆2
𝜆3 −𝜆1

)︂
∈ sl(2,R)/Z2, 𝜆1, 𝜆2, 𝜆3 ∈ R, (618)

and 𝑢2 = (𝜆21 + 𝜆2𝜆3)I are the groups of location transformation (for 𝜆1 = 𝜆3 = 0, 𝜆2 = 1), scale
transformation (for 𝜆2 = 𝜆3 = 0, 𝜆1 = 1), euclidean rotations (for 𝜆1 = 0, 𝜆2 = 1, 𝜆3 = −1) and
hyperbolic rotations (for 𝜆1 = 0, 𝜆2 = 𝜆3 = 1) [634]. Moreover, while the transformation SL(2,R)
does not leave the ℳnorm(𝒳 ,f(𝒳 ), �̃�) invariant, there exists a unique (up to a multiplicative constant
number) metric on this probabilistic manifold which is invariant under the action of SL(2,R), which is
given by the FRJ metric, and a unique scalar product on T𝑝(x ,(0,1))ℳnorm(𝒳 ,f(𝒳 ), �̃�) that is invariant
under the action of SO(2) [515]. The investigation of the information geometric properties of normal
model with dim𝒳 = 2 was provided in [647]. For an analysis of geometric properties of normal models
of with dim𝒳 ≥ 2, see [685, 776, 469, 26].

Acknowledgments

I would like to thank Ingemar Bengtsson, Paolo Gibilisco, Carlos Guedes, Anna Jenčová, Wojciech
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Sankhyā 8, 1. ↑ 27, 51.
[77] Birkhoff G., 1938, Dependent probabilities and spaces (𝐿), Proc. Nat. Acad. Sci. U.S.A. 24, 154.

www.ncbi.nlm.nih.gov/pmc/articles/PMC1077053/pdf/pnas01791-0050.pdf. ↑ 5.
[78] Birkhoff G., 1940, Lattice theory, American Mathematical Society, Providence (3rd rev. ed., 1967).

libgen.org:E25AFE588D80C627BD3013ABA587DC06. ↑ 4.
[79] Birkhoff G., Pierce R.S., 1956, Lattice-ordered rings, An. Acad. Brasil. Ciênc. 28, 41. ↑ 4.
[80] Birnbaum Z.W., Orlicz W., 1930, Über Approximation im Mittel, Studia Math. 2, 197.

matwbn.icm.edu.pl/ksiazki/sm/sm2/sm2117.pdf. ↑ 33.

91

http://dx.doi.org/10.2977/prims/1195191148
http://dx.doi.org/10.2977/prims/1195190105
http://dx.doi.org/10.2977/prims/1195183577
http://www.arxiv.org/pdf/1207.6736
http://www.arxiv.org/pdf/1108.3267
http://rgmia.org/papers/Csiszar/ACfDTFIRInt2.pdf
http://www.emis.de/journals/JCA/vol.4_no.1/j86.ps.gz
http://people.ok.ubc.ca/bauschke/Research/c04.ps
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002427753&IDDOC=171006
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077053/pdf/pnas01791-0050.pdf
http://libgen.org/get?open=0&md5=E25AFE588D80C627BD3013ABA587DC06
http://matwbn.icm.edu.pl/ksiazki/sm/sm2/sm2117.pdf


[81] Birnbaum Z.W., Orlicz W., 1931, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia
Math. 3, 1. matwbn.icm.edu.pl/ksiazki/sm/sm3/sm311.pdf. ↑ 69.

[82] Bishop R.L., Crittenden R.J., 1964, Geometry of manifolds, Academic Press, New York. ↑ 62.
[83] Blackwell D.A., 1951, Comparison of experiments, in: Neyman J. (ed.), Proceedings of the Second Berkeley Symposium on

Mathematical Statistics and Probability, University of California Press, Berkeley, p.93. euclid:bsmsp/1200500222. ↑ 22, 24.
[84] Blackwell D.A., 1953, Equivalent comparisons of experiments, Ann. Math. Statist. 24, 265. ↑ 24.
[85] Blackwell D.A., Girshick M.A., 1954, Theory of games and statistical decisions, Wiley, New York. ↑ 25.
[86] Boț R.I., 2010, Conjugate duality in convex optimization, Springer, Berlin. ↑ 32.
[87] Bogolyubov N.N., 1961, Kvazisrednie v zadachakh statisticheskŏı mekhaniki, D-871, Ob‘yedinyenny̆ı Institut Yadernykh
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Ser. Sovr. Probl. Mat. Fundam. Napravlen. 83, 133. ↑ 1, 3, 67, 75.

[508] Morse M., Transue W., 1950, Functionals 𝐹 bilinear over the product 𝐴 × 𝐵 of two pseudo-normed vector spaces, Ann.
Math. 51, 576. libgen.org:scimag/get.php?doi=10.2307/1969370. ↑ 3, 29, 69.

[509] Morse N., Sacksteder R., 1966, Statistical isomorphism, Ann. Math. Statist. 37, 203. ↑ 24, 25.
[510] Murata N., Takenouchi T., Kanamori T., Eguchi S., 2004, Information geometry of 𝑈-boost and Bregman divergence,

Neural Comput. 16, 1437. ↑ 67.
[511] Muratov M.A., 1978, Nekommutativnye prostranstva Orlicha, Dokl. Akad. Nauk UzSSR 1978:6, 11.

www.fuw.edu.pl/∼kostecki/scans/muratov1978.pdf. ↑ 73.
[512] Muratov M.A., 1979, Norma Lyuksemburga v prostranstve Orlicha izmerimykh operatorov, Dokl. Akad. Nauk UzSSR

1979:1, 5. www.fuw.edu.pl/∼kostecki/scans/muratov1979.pdf. ↑ 73.
[513] Muratov M.A., Chilin V.I., 2007, Algebry izmerimykh i lokal’no izmerimykh operatorov, Instytut matematyky NAN

Ukraïny, Kyïv. ↑ 17.
[514] Murray F.J., von Neumann J., 1936, On rings of operators, Ann. Math. 37, 116. ↑ 14.
[515] Murray M.K., Rice J.W., 1993, Differential geometry and statistics, Chapman and Hall, London. ↑ 65, 67, 89.
[516] Musielak J., 1983, Orlicz spaces and modular spaces, LNM 1034, Springer, Berlin.

libgen.org:9D2BBB211D18EA4387AA1D846E73344E. ↑ 69.
[517] Mussmann D., 1972, Vergleich von Experimenten im schwach dominierten Fall, Z. Wahrschein. Geb. 24, 295. ↑ 23.
[518] Mussmann D., 1979, Sufficiency and 𝑓-divergences, Studia Sci. Math. Hungar. 14, 37. ↑ 30.
[519] Nagaoka H., 1982, [Foundations of statistical geometry and applications to robust estimation], M.Sc. thesis, Tōkyō
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