Some Rotundities of Orlicz Spaces with Orlicz Norm

by
CHEN SHUTAO

Presented by W. ORLICZ on November 19, 1985

Summary. This paper deals with local uniform rotundity (LUR), weak local uniform rotundity (WLUR), and weak uniform rotundity (WUR) of Orlicz spaces equipped with Orlicz norm under the case of finite and atomless measure. It is proved here that (I) both LUR and WLUR coincide with that the Orlicz spaces are reflexive and rotund, (II) WUR coincides with UR. Finally, a sufficient condition for uniform rotundity in every direction (URED) is given.

1. Introduction. With Luxemburg norm, most rotundities of Orlicz spaces have been investigated [1-8]. But with Orlicz norm, no rotundity except R, UR and HR seemed to be discussed before. This paper considers some rotundities with Orlicz norm, one will find that the corresponding rotundities between the two equivalent norms are of much difference.

Let us introduce some definitions and notations first.
Let $(X,\|\cdot\|)$ be a Banach space. X is said to be (WLUR) LUR provided that for any x_{n}, x_{0} in X with $\left\|x_{n}\right\| \leqslant 1,\left\|x_{0}\right\| \leqslant 1(n=1,2, \ldots)$, $\lim _{n \rightarrow \infty}\left\|x_{n}+x_{0}\right\|=2$ implies $\left(x_{n}-x_{0} \xrightarrow{w} 0\right.$ as $\left.n \rightarrow \infty\right) \lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=0 . X$ is said to be (WUR) UR provided that x_{n}, y_{n} in X with $\left\|x_{n}\right\| \leqslant 1,\left\|y_{n}\right\| \leqslant 1$ and $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2$ implies $\left(x_{n}-y_{n} \xrightarrow{w} 0\right.$ as $\left.n \rightarrow \infty\right) \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 . \quad X$ is said to be URED provided that x_{n}, z in X with $\left\|x_{n}\right\|=1,\left\|x_{n}+z\right\| \leqslant 1$ $(n=1,2, \ldots)$ and $\operatorname{Lim}_{n \rightarrow \infty}\left\|x_{n}+\frac{1}{2} z\right\|=1$ implies $z=0$.

Throughout this paper, we denote by G a measurable space with finite atomless measure, $M(u), N(v)$ a pair of complementary N-functions and $p(u), q(v)$ their derivatives on the right, respectively. For a measurable function $u(t)$ defined on G, we introduce the modular of u by $R_{M}(u)=$ $=\int_{G} M(u(t)) d t$. The Orlicz space L_{M}^{*} generated by $M(u)$ is defined by $L_{M}^{*}=\left\{u(t): \exists a>0 . R_{M}(a u)<\infty\right\}$. The Orlicz norm and Luxemburg norm of an element u in L_{M}^{*} are defined, respectively, as follows

$$
\|u\|_{M}=\sup _{R_{N}(v) \leqslant 1} \int_{G} u(t) \cdot v(t) d t, \quad\|u\|_{(M)}=\inf \left\{\lambda>0: R_{M}(u / \lambda) \leqslant 1 .\right.
$$

Sometimes, we also use the following subspace of Orlicz space $L_{M}^{*}: E_{M}=$ $=\left\{u(t): \forall \lambda>0, R_{M}(\lambda u)<\infty\right\}$. We always express by $M \in \Delta_{2}$ that $M(u)$ satisfies condition Δ_{2} for large u, by $M \in \nabla_{2}$ that $N \in \Delta_{2}$.

Lemma 1. [9] For u in L_{M}^{*}, if there exists $k>0$ such that $\int_{G} N(p(k|u(t)|)) d t=1$, then

$$
\|u\|_{M}=\int_{G}|u(t)| p(k|u(t)|) d t=\frac{1}{k}\left(1+R_{M}(k u)\right)
$$

Lemma 2. [2] For any nonzero u in L_{M}^{*}, there exists $k_{0}>0$ such that

$$
\|u\|_{M}=\inf \frac{1}{k}\left(1+R_{M}(k u)\right)=\frac{1}{k_{0}}\left(1+R_{M}\left(k_{0} u\right)\right) .
$$

Lemma 3. [3] Suppose $M \in \Delta_{2}, x_{n}$ in L_{M}^{*} with $\left\|x_{n}\right\| \leqslant 1 \quad(n=1,2, \ldots)$, then (i) $\left\|x_{n}\right\|_{(M)} \rightarrow 1$ implies $R_{M}\left(x_{n}\right) \rightarrow 1$; (ii) $R_{M}\left(x_{n}\right) \rightarrow 0$ implies $\left\|x_{n}\right\|_{(M)} \rightarrow 0$.

Lemma 4. [4] Suppose $M \in \Delta_{2}, x_{0}, x_{n}$ in $L_{M}^{*}(n=1,2, \ldots)$. Then $R_{M}\left(x_{n}\right) \rightarrow R_{M}\left(x_{0}\right)$ and $x_{n}(t) \xrightarrow{\mu} x_{0}(t)$ (convergence in measure) implies $x_{n} \rightarrow x_{0}$ in norm.

We say $M(u)$ is strictly convex if $M(a u+(1-a) v)<a M(u)+(1-a) M(v)$ whenever $a \in(0,1)$ and $u \neq v$.

Lemma 5. Assume that $M(u)$ is strictly convex, that k_{n}, h_{n} are bounded and that x_{n}, y_{n} in L_{M}^{*} satisfies

$$
\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right) \leqslant 1, \quad\left\|y_{n}\right\|_{M}=\frac{1}{h_{n}}\left(1+R_{M}\left(h_{n} y_{n}\right)\right) \leqslant 1
$$

$n=1,2, \ldots$, then $\left\|x_{n}+y_{n}\right\|_{M} \rightarrow 2$ implies $k_{n} x_{n}(t)-h_{n} y_{n}(t) \xrightarrow{\mu} 0$.
Proof. Analogous as in Lemma 11 in [4].
Lemma 6. Assume $\left\{x_{n}\right\}$ in L卷 is norm bounded, $\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right)$ $(n=1,2, \ldots)$, then $k_{n} \rightarrow \infty$ implies $x_{n}(t) \longleftrightarrow 0$.

Proof. Note that the N-function $M(u)$ has the property $M(u) / u \rightarrow \infty$ as $u \rightarrow \infty$.

Lemma 7. The set $K=\left\{k:\|x\|_{M}=\frac{1}{k}\left(1+R_{M}(k x)\right), a \leqslant\|x\|_{M} \leqslant b\right\}$ is bounded for any $b \geqslant a>0$ if and only if $M \in \nabla_{2}$.

Proof. Sufficiency. Denote $u_{0}=M^{-1}\left(\frac{1}{2 \operatorname{mes} G}\right)$. Similarly as the proof of Theorem 4.2 in [9], it is easily verified that $M \in \nabla_{2}$ iff there exist $p>1$ and $l>1$ such that $M(l u) \geqslant p l M(u)$ for all $u \geqslant u_{0}$. For given $b \geqslant a>0$ and x in L_{M}^{*}, suppose k satisfies $a \leqslant\|x\|_{M}=\frac{1}{k}\left(1+R_{M}(k x)\right) \leqslant b$. Since $\|x\|_{(M)} \geqslant \frac{1}{2}\|x\|_{M} \geqslant \frac{1}{2} a$, by the definition of $\|\cdot\|_{(M)}$, we have $R_{M}\left(\frac{3}{a} x\right)>1$. Therefore

$$
\begin{aligned}
& \int_{\left.x(t) \mid \geqslant u_{0}\right)} M\left(\frac{3}{a} x(t)\right) \mathrm{dt}=R_{M}\left(\frac{3}{a} x\right)-\int_{G\left(\frac{3}{a}|x(t)|<u_{0}\right)} M\left(\frac{3}{a} x(t)\right) \mathrm{dt} \geqslant \\
& \geqslant R_{M}\left(\frac{3}{a} x\right)-M\left(u_{0}\right) \operatorname{mes} G=R_{M}\left(\frac{3}{a} x\right)-\frac{1}{2}>1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Now, if $k>\frac{3}{a} l$, then we can choose a natural number i such that $l^{i}<\frac{I}{3} a k \leqslant l^{i+1}$. By repeated utilizing the formula $M(l u) \geqslant p l M(u)\left(u \geqslant u_{0}\right)$, we get $M\left(l^{i} u\right) \geqslant p^{i} l^{i} M(u)\left(u \geqslant u_{0}\right)$. Hence,

$$
\begin{aligned}
b & \geqslant\|x\|_{M}=\frac{1}{k}\left(1+R_{M}(k x)\right) \geqslant \frac{1}{k} \int_{G\left(\frac{3}{a}|x(t)| \geqslant u_{0}\right)} M\left(\frac{1}{3} a k \frac{3}{a} x(t)\right) \mathrm{dt}> \\
>-\frac{1}{k} \int_{G\left(\frac{3}{a}|x(t)| \geqslant u_{0}\right)} M\left(l^{i} \frac{3}{a} x(t)\right) \mathrm{dt} & \geqslant \frac{1}{k} p^{i} l^{i} \int_{G\left(\frac{3}{a}|x(t)| \geqslant u_{0}\right)} M\left(\frac{3}{a} x(t)\right) \mathrm{dt}> \\
& >\frac{1}{k} p^{i} l^{i} \cdot \frac{1}{2} \geqslant p^{i} l^{i} /\left(\frac{6}{a} l^{i+1}\right)=\frac{a}{6 l} p^{i}
\end{aligned}
$$

Therefore, $i<\log _{p}(6 l b / a)$ implying $k \leqslant \frac{3}{a} l^{[1+\log ,(6 \mid b a)]}$.

Necessity. If $M \notin V_{2}$, then there exist $l_{n \uparrow n} \propto$ with $l_{1} \geqslant 2$ and $M\left(u_{1}\right)$ mes $G \geqslant$ $\geqslant \frac{1}{4}$ such that $M\left(l_{n} u_{n}\right)<\left(1+\frac{1}{n}\right) l_{n} M\left(u_{n}\right)(n=1,2, \ldots)$. For each $n=1,2, \ldots$,
select a subset G_{n} of G such that $M\left(u_{n}\right) \operatorname{mes} G_{n}=\frac{1}{4}$ and define $x_{n}(t)=$ $=u_{n} \chi_{G_{n}}(t)$ where $\chi_{G_{n}}(t)$ expresses the characteristic function of G_{n}, then

$$
\begin{aligned}
& \frac{1}{4}=R_{M}\left(x_{n}\right) \leqslant\left\|x_{n}\right\|_{(M)} \leqslant\left\|x_{n}\right\|_{M} \leqslant \frac{1}{l_{n}}\left(1+R_{M}\left(l_{n} x_{n}\right)\right)= \\
& =\frac{1}{l_{n}}+\frac{1}{l_{n}} M\left(l_{n} u_{n}\right) \text { mes } G_{n} \leqslant \frac{1}{l_{n}}+\frac{1}{l_{n}}\left(1+\frac{1}{n}\right) l_{n} M\left(u_{n}\right) \operatorname{mes} G_{n}= \\
& \\
& =\frac{1}{l_{n}}+\frac{1}{4}\left(1+\frac{1}{n}\right) \rightarrow \frac{1}{4}
\end{aligned}
$$

If $\left\{k_{n}\right\}$ satisfies $\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right)$, then $k_{n}>1$ and so

$$
\begin{aligned}
& \frac{1}{l_{n}}+\frac{1}{4}\left(1+\frac{1}{n}\right)>\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}+\frac{1}{k_{n}} M\left(k_{n} u_{n}\right) \operatorname{mes} G_{n} \geqslant \\
& \geqslant \frac{1}{k_{n}}+M\left(u_{n}\right) \operatorname{mes} G_{n}=\frac{1}{k_{n}}+\frac{1}{4}
\end{aligned}
$$

Let $n \rightarrow \infty$, we see $k_{n} \rightarrow \infty$ completing the proof.

2. Local rotundity.

Theorem 1. The following are equivalent
(i) $L_{\text {粦 }}$ is locally uniformly rotund,
(ii) L_{M}^{*} is weakly locally uniformly rotund,
(iii) $M \in \Delta_{2}, M \in V_{2}$ and $M(u)$ is strictly convex.

Proof. (i) \Rightarrow (ii) Trivial.
(ii) \Rightarrow (iii) Since $W L U R \Rightarrow \mathbf{R}$, by $[1,2], M(u)$ is strictly convex. If $M \notin \Delta_{2}$, there exists $x_{0} \in L_{M}^{*} \backslash E_{M}$. Define

$$
x_{n}(t)=\left\{\begin{array}{lll}
x_{0}(t), & \text { when } & \left|x_{0}(t)\right| \leqslant n \\
0, & \text { when } & \left|x_{0}(t)\right|>n
\end{array}\right.
$$

then $x_{n} \in E_{M}(n=1,2, \ldots)$ and $\left\|x_{n}\right\|_{M \uparrow n}\left\|x_{0}\right\|_{M}$, therefore

$$
\left\|\frac{x_{n}}{\left\|x_{n}\right\|_{M}}+\frac{x_{0}}{\left\|x_{0}\right\|_{M}}\right\|_{M} \geqslant\left(\frac{1}{\left\|x_{n}\right\|_{M}}+\frac{1}{\left\|x_{0}\right\|_{M}}\right)\left\|x_{n}\right\|_{M} \rightarrow 2
$$

On the other hand, since $x_{0} \notin E_{M}$, there exists $f \in\left(L_{M}^{*}\right)^{*}$ (the dual of L_{M}) such that $f\left(x_{0}\right) \neq 0$ and such that $f(u)=0$ for all u in E_{M}. Thus, $f\left(x_{0} /\left\|x_{0}\right\|_{M}-x_{n} /\left\|x_{n}\right\|_{M}\right)=f^{\prime}\left(x_{0}\right) /\left\|x_{0}\right\|_{M} \neq 0$ contradicting (ii).

If $M \notin V_{2}$, then there exist $a_{k} \uparrow \infty$ and a sequence $\left\{G_{n}\right\}$ of pairwise disjoin subsets of G such that $E \stackrel{\text { def }}{=} G \bigcup_{k=1}^{\infty} G_{k}$ is not a null set and such that

$$
N\left(\left(1+\frac{1}{k}\right) a_{k}\right)>2^{k} N\left(a_{k}\right) \quad \text { and } \quad N\left(a_{k}\right) \text { mes } G_{k}=1 / 2^{k}
$$

$k=1,2, \ldots$ It follows that for any $n \geqslant 1, R_{N}\left(a_{n} \chi_{G_{n}}\right)=1 / 2^{n}<1$ and $R_{N}\left(\left(1+\frac{1}{n}\right) a_{n} \chi_{G_{n}}\right)>2^{n} R_{N}\left(a_{n} \chi_{G_{n}}\right)=1$, hence, by the definition of $\|\cdot\|_{(N)}$, $\left\|a_{n} \chi_{G_{r}}\right\|_{(\mathrm{v})} \geqslant 1\left(1+\frac{1}{n}\right)$.

Denote $c=N^{-1}(1 /$ mes $E), c_{n}=N^{-1}\left(\left(1-\frac{1}{2^{n}}\right) /\right.$ mes $\left.E\right)$ and $v_{n}(t)=c_{n} \chi_{E}(t)+$ $+a_{n} \chi_{\mathcal{C}_{n}}(t)$, then $c_{n} \uparrow_{n} c, R_{N}\left(c \chi_{E}\right)=1$ implies $\left\|c \chi_{E}\right\|_{(v)}=1$ and

$$
R_{N}\left(v_{n}\right)=N\left(c_{n}\right) \text { mes } E+N\left(u_{n}\right) \text { mes } G_{n}=1-\frac{1}{2^{n}}+\frac{1}{2^{n}}=1
$$

Recall that $\left(E_{\mathrm{V}},\| \|_{(N)}\right)^{*}=\left(L_{M_{1}}^{*},\| \|_{M}\right)$ [9] and $c \chi_{E}, a_{n} \chi_{G_{n}} \in E_{N}$, there exist $x_{0}, x_{n} \in L_{1}^{*}$ with $\left\|x_{0}\right\|_{M}=\left\|x_{n}\right\|_{M}=1$ and $x_{0}(t)=x_{0}(t) \chi_{E}(t), x_{n}(t)=x_{n}(t) \chi_{G_{n}}(t)$ such that

$$
\begin{gathered}
1=\left\|c \chi_{E}\right\|_{(N)}=\int_{G} c \chi_{E}(t) x_{0}(t) d t=\int_{E} c \cdot x_{0}(t) \mathrm{dt} \\
1\left(1+\frac{1}{n}\right) \leqslant\left\|a_{n} \chi_{G_{n}}\right\|_{(N)}=\int_{G} a_{n} \chi_{G_{n}}(t) x_{n}(t) d t=\int_{G_{n}} a_{n} x_{n}(t) d t
\end{gathered}
$$

($n=1,2, \ldots$). Now, observing $R_{N}\left(v_{n}\right)=1$ and $\chi_{E} \in E_{N} \subset\left(L_{M}^{*}\right)^{*}$, we have

$$
\begin{aligned}
\left\|x_{0}+x_{n}\right\|_{M} \geqslant \int_{G}\left(x_{0}(t)+x_{n}(t)\right) v_{n}(t) \mathrm{dt}=c_{n} \int_{E} x_{0}(t) \mathrm{d} t & +a_{n} \int_{G_{n}} x_{n}(t) \mathrm{dt} \geqslant \\
& \geqslant c_{n} / c+1 /\left(1+\frac{1}{n}\right) \rightarrow 2
\end{aligned}
$$

and

$$
\chi_{E}\left(x_{0}-x_{n}\right)=\int_{G}\left(x_{0}(t)-x_{n}(t)\right) \chi_{E}(t) \mathrm{dt}=\int_{E} x_{0}(t) \mathrm{dt}=1 / c>0
$$

also contradicting (ii).
(iii) \Rightarrow (i) Suppose (iii) holds. For given $x_{0}, x_{n} \in L_{M}^{*}$ with $\left\|x_{0}\right\|_{M}=$ $=\left\|x_{n}\right\|_{M}=1 \quad(n=1,2, \ldots)$ and satisfying $\left\|x_{n}+x_{0}\right\| \rightarrow 2$, we have to show $\left\|x_{n}-x_{0}\right\|_{M} \rightarrow 0$ which reduces to that $\left\{x_{n}\right\}$ contains a subsequence convergent to x_{0} in norm, since above x_{0} and x_{n} are arbitrarily given.

For each $n=0,1,2, \ldots$, choose $k_{n}>1$ such that $1=\left\|x_{n}\right\|_{M}=$
$=\frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right)$. By Lemma 7, $\left\{k_{n}\right\}$ is bounded, therefore, from Lemma $5, k_{n} x_{n}(t)^{\mu} k_{0} x_{0}(t)$. If we are able to show that $\left\{k_{n}\right\}$ contains a subsequence $\left\{k_{n}\right\}$ convergent to k_{0}, then by the choice of $\left\{k_{n}\right\}$, $R_{M}\left(k_{m_{i}} x_{n_{i}}\right)=k_{n_{i}}-1 \rightarrow k_{0}-1=R_{M}\left(k_{0} x_{0}\right)$, it immediately follows by Lemma 4 that $\left\|k_{m_{i}} x_{m_{i}}-k_{0} x_{0}\right\|_{M} \rightarrow 0$ therefore $\left\{x_{n i}\right\}$ converges to x_{0} in norm, completing the proof.

For any $\varepsilon>0$, since $M \in \nabla_{2}$, by Lemma 3, there exist $a>0$ and $\varepsilon^{\prime}>0$ such that $R_{N}(v)<a$ implies $\|v\|_{(N)}<\varepsilon$, and that $R_{N}(v) \leqslant 1-a$ implies $\|v\|_{(N)}<1-2 \varepsilon^{\prime}$. Moreover, since $M \in \Delta_{2}$, by [9], there exists $\delta>0$ such that $\left\|x_{0} \chi_{F}\right\|_{M}<\min \left\{\varepsilon^{\prime}, \varepsilon k_{n} / k_{0}\right\}$ for all $n \geqslant 1$ whenever $F \subset G$ with mes $F<\delta$.

Without loss of generality, we may assume $k_{n} x_{n}(t) \xrightarrow{\text { ae }} k_{0} x_{0}(t)$, (since a sequence convergent in measure contains an a.e. convergent subsequence), therefore, there exists a subset G_{0} of G such that mes $G_{0}<\delta$ and that $\left\{k_{n} x_{n}(t)\right\}$ uniformly converges to $k_{0} x_{0}(t)$ on $G \backslash G_{0}$.

Since $\left\|x_{n}+x_{0}\right\|_{M} \rightarrow 2$, we can select v_{n} in L_{N}^{*} with $R_{N}\left(v_{n}\right) \leqslant 1(n=1,2, \ldots)$ such that

$$
\int_{G}\left[x_{n}(t)+x_{0}(t)\right] v_{n}(t) \mathrm{dt} \rightarrow 2 .
$$

It immediately follows that

$$
\int_{G} x_{n}(t) v_{n}(t) \mathrm{dt} \rightarrow 1, \quad \int_{G} x_{0}(t) v_{n}(t) \mathrm{dt} \rightarrow 1 \quad(n \rightarrow \infty) .
$$

Thus, there exists $N>0$ such that $\int_{G} x_{0}(t) v_{n}(t) d t>1-\varepsilon^{\prime}(n>N)$. Furthermore, by Hölder's inequality, when $n>N$, we have

$$
\begin{aligned}
1-\varepsilon^{\prime}<\int_{G} x_{0}(t) v_{n}(t) \mathrm{dt} & =\int_{G \backslash G_{0}} x_{0}(t) v_{n}(t) \mathrm{dt}+\int_{G_{0}} x_{0}(t) v_{n}(t) \mathrm{dt} \leqslant \\
& \leqslant\left\|x_{0}\right\|_{M}\left\|v_{n} \chi_{G \backslash G_{0}}\right\|_{(N)}+\left\|x_{0} \chi_{G_{0}}\right\|_{M}<\left\|v_{n} \chi_{G \backslash G_{0}}\right\|_{(N)}+\varepsilon^{\prime}
\end{aligned}
$$

Recalling the choice of a and ε^{\prime}, for all $n>N$, we have $R_{N}\left(v_{n} \chi_{G \backslash G_{0}}\right)>1-a$, therefore

$$
R_{N}\left(v_{n} \chi_{G_{0}}\right)=R_{N}\left(v_{n}\right)-R_{N}\left(v_{n} \chi_{G \backslash G_{0}}\right)<1-(1-a)=a
$$

which implies $\left\|v_{n} \chi_{G_{0}}\right\|_{(N)}<\varepsilon$. Hence, for all $n>N$,

$$
\begin{aligned}
\mid \int_{G} x_{n}(t) v_{n}(t) \mathrm{dt} & -1|=| \int_{G \backslash G_{0}}\left[x_{n}(t)-\frac{k_{0}}{k_{n}} x_{0}(t)\right] \dot{v}_{n}(t) \mathrm{dt}+ \\
& \left.+\int_{G} \frac{k_{0}}{k_{n}} x_{0}(t) v_{n}(t) \mathrm{dt}-1+\int_{G 0}\left[x_{n}(t)-\frac{k_{0}}{k_{n}} x_{0}(t)\right] v_{n}(t) \mathrm{dt} \right\rvert\, \geqslant
\end{aligned}
$$

$$
\left.\left.\begin{array}{r}
\geqslant \int_{G \mid G_{0}}\left[x_{n}(t)-\frac{k_{0}}{k_{n}} x_{0}(t)\right] \dot{v}_{n}(t) \mathrm{dt}
\end{array}+\frac{k_{0}}{k_{n}} \int_{G} x_{0}(t) v_{n}(t) \mathrm{dt}-1 \right\rvert\,-\right] \text { - } \quad \begin{aligned}
& v_{n} \chi_{G_{0}}\left\|_{(N)}-\frac{k_{0}}{k_{n}}\right\| x_{0} \chi_{G_{0}} \|_{M}
\end{aligned}
$$

Let $n \rightarrow \infty$, we obtain $\varlimsup_{n \rightarrow \infty}\left|k_{0} / k_{n}-1\right|-2 \varepsilon=0$ therefore $k_{n} \rightarrow k_{0}$ since ε is arbitrary.
3. Weak uniform rotundity. It is shown in [3] that L_{M}^{*} is UR if and only if the following two conditions are satisfied:
(I) $M \in \Delta_{2}$ and $M(u)$ is strictly convex,
(II) $M(u)$ is uniformly convex for large u, i.e., for any $\varepsilon>0$, there exist $u_{0}>0$ and $\delta>0$ such that $p((1+\varepsilon) u) \geqslant(1+\delta) p(u)$ for all $u \geqslant u_{0}$.

For WUR, we present
Theorem 2. L* is weakly uniformly rotund iff it is uniformly rotund.
Proof. By Theorem 1 and [3], conditions (I) and (II) $\Rightarrow \mathrm{UR} \Rightarrow \mathrm{WUR} \Rightarrow$ $\Rightarrow \mathrm{WLUR} \Rightarrow(\mathrm{I})$ and $M \in \mathrm{~V}_{2}$. It only remains to verify the necessity of condition (II).

Select $a>0$ and $A \subset G$ with mes $A<$ mes G such that $N(p(a))$ mes $A=$ $=\frac{1}{2}$. If (II) does not hold, then there exist $\varepsilon>0$ and $u_{n}>0$ such that

$$
p\left((1+\varepsilon) u_{n}\right)<\left(1+\frac{1}{n}\right) p\left(u_{n}\right), \quad N\left(p\left(u_{n}\right)\right) \operatorname{mes}(G \backslash A) \geqslant \frac{1}{2}
$$

$(\mathrm{n}=1,2, \ldots)$. Hence, for each $n=1,2, \ldots$, we may choose $G_{n} \subset G \backslash A$ such that $N\left(p\left(u_{n}\right)\right)$ mes $G_{n}=\frac{1}{2}$. Denote

$$
\begin{aligned}
& k_{n}=(1+\varepsilon) u_{n} p\left((1+\varepsilon) u_{n}\right) \text { mes } G_{n}+a p(a) \text { mes } A \\
& h_{n}=u_{n} p\left(u_{n}\right) \text { mes } G_{n}+a p(a) \operatorname{mes} A
\end{aligned}
$$

and define

$$
\begin{aligned}
& x_{n}(t)=\frac{1}{k_{n}}(1+\varepsilon) u_{n} \chi_{G_{n}}(t)+\frac{1}{k_{n}} a \chi_{A}(t), \\
& y_{n}(t)=\frac{1}{h_{n}} u_{n} \chi_{G_{n}}(t)+\frac{1}{h_{n}} a \chi_{A}(t),
\end{aligned}
$$

$n=1,2, \ldots$. We estimate the norm of x_{n}, y_{n} and $\frac{1}{2}\left(x_{n}+y_{n}\right)$. Since

$$
\begin{aligned}
\int_{\sigma} N\left(p\left(k_{n} x_{n}(t)\right)\right) \mathrm{dt} \geqslant \int_{\sigma} N\left(p\left(h_{n} y_{n}(t)\right)\right) \mathrm{dt} & =N\left(p\left(u_{n}\right)\right) \operatorname{mes} G_{n}+ \\
& +N(p(a)) \operatorname{mes} A=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

by Lemma 1 , the definition of k_{n}, h_{n} and Young's inequality,

$$
\left\|y_{n}\right\|_{M}=\int_{G} y_{n}(t) p\left(h_{n} y_{n}(t)\right) \mathrm{d} t=\frac{u_{n}}{h_{n}} p\left(u_{n}\right) \text { mes } G_{n}+\frac{a}{h_{n}} p(a) \text { mes } A=1
$$

and

$$
\begin{array}{r}
\left.\left.\left\|x_{n}\right\|_{M} \leqslant \frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right) \leqslant \frac{1}{k_{n}} \right\rvert\, \int_{G} N\left(p\left(k_{n} x_{n}(t)\right)\right) \mathrm{d} t+\int_{G} M\left(k_{n} x_{n}(t)\right) d t\right]= \\
=\frac{1}{k_{n}} \int_{G} k_{n} x_{n}(t) p\left(k_{n} x_{n}(t)\right) \mathrm{d} t= \\
=\frac{1}{k_{n}}(1+\varepsilon) u_{n} p\left((1+\varepsilon) u_{n}\right) \operatorname{mes} G_{n}+\frac{1}{k_{n}} a p(a) \operatorname{mes} A=1,
\end{array}
$$

$n=1,2, \ldots$. Since $M \in \nabla_{2}$, there exists $k>2$ such that $N(2 v) \leqslant k N(v)$ for all $v \geqslant p\left(u_{1}\right)>0$. Combine the convexity of $N(v)$, we have

$$
\begin{aligned}
& N\left(p\left(\frac{k_{n} h_{n}}{k_{n}+h_{n}}\left(\frac{1+\varepsilon}{k_{n}}+\frac{1}{h_{n}}\right) u_{n}\right)\right)=N\left(p\left(\left(1+\frac{\varepsilon h_{n}}{k_{n}+h_{n}}\right) u_{n}\right)\right) \leqslant \\
& \leqslant N\left(p\left((1+\varepsilon) u_{n}\right)\right)<N\left(\left(1+\frac{1}{n}\right) p\left(u_{n}\right)\right) \leqslant\left(1-\frac{1}{n}\right) N\left(p\left(u_{n}\right)\right)+ \\
&+ \frac{1}{n} N\left(2 p\left(u_{n}\right)\right)<N\left(p\left(u_{n}\right)\right)+\frac{k}{n} N\left(p\left(u_{n}\right)\right)=\left(1+\frac{k}{n}\right) N\left(p\left(u_{n}\right)\right)
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \int_{G} N\left(p\left(\frac{2 k_{n} h_{n}}{k_{n}+h_{n}} \frac{x_{n}(t)+y_{n}(t)}{2}\right)\right) \mathrm{dt}= \\
&= N\left(p\left(\frac{k_{n} h_{n}}{k_{n}+h_{n}}\left(\frac{1+\varepsilon}{k_{n}}+\frac{1}{h_{n}}\right) u_{n}\right)\right) \operatorname{mes} G_{n}+ \\
&+N\left(p\left(\frac{k_{n} h_{n}}{k_{n}+h_{n}}\left(\frac{a}{k_{n}}+\frac{a}{h_{n}}\right)\right)\right) \operatorname{mes} A< \\
&<\left(1+\frac{k}{n}\right)\left[N\left(p\left(u_{n}\right)\right) \operatorname{mes} G_{n}+N(p(a)) \operatorname{mes} A\right]=1+\frac{k}{n}
\end{aligned}
$$

It follows that

$$
\int_{G} N\left(\frac{1}{1+\underline{k}} p\left(\frac{2 k_{n} h_{n}}{k_{n}+h_{n}} \frac{x_{n}(t)+y_{n}(t)}{2}\right)\right) \mathrm{dt} \leqslant 1
$$

hence, by the definition of k_{n}, h_{n} and $\|\cdot\|_{M}$

$$
\begin{gathered}
\left\|\frac{x_{n}+y_{n}}{2}\right\|_{M} \geqslant \int_{G} \frac{x_{n}(t)+y_{n}(t)}{2} \frac{1}{1+\frac{k}{n}} p\left(\frac{2 k_{n} h_{n}}{k_{n}+h_{n}} \frac{x_{n}(t)+y_{n}(t)}{2}\right) \mathrm{dt} \geqslant \\
\left.\geqslant \frac{1}{1+\frac{k}{n}} \frac{(1+\varepsilon) h_{n}+k_{n}}{2 k_{n} h_{n}} u_{n} p\left(u_{n}\right) \operatorname{mes} G_{n}+\frac{h_{n}+k_{n}}{2 k_{n} h_{n}} a p(a) \operatorname{mes} A\right)= \\
=\frac{1}{2\left(1+\frac{k}{n}\right)}\left\{\left[\frac{1+\varepsilon}{k_{n}} u_{n} p\left(u_{n}\right) \operatorname{mes} G_{n}+\frac{a}{k_{n}} p(a) \operatorname{mes} A\right]+\right. \\
\left.+\left[\frac{1}{h_{n}} u_{n} p\left(u_{n}\right) \operatorname{mes} G_{n}+\frac{a}{h_{n}} p(a) \operatorname{mes} A\right]\right\} \geqslant \\
\geqslant \frac{1}{2\left(1+\frac{k}{n}\right)}\left\{\left[\frac{1+\varepsilon}{\left(1+\frac{1}{n}\right) k_{n}} u_{n} p\left((1+\varepsilon) u_{n}\right) \operatorname{mes} G_{n}+\right.\right. \\
\left.\left.+\frac{a p(a)}{\left(1+\frac{1}{n}\right) k_{n}} \operatorname{mes} A\right]+\frac{1}{1+\frac{1}{n}}\right\}=\frac{1}{\left(1+\frac{k}{n}\right)\left(1+\frac{1}{n}\right)}
\end{gathered}
$$

This shows that $\left\|\frac{1}{2}\left(x_{n}+y_{n}\right)\right\|_{M} \rightarrow 1$ as $n \rightarrow \infty$.
Finally, observe $\frac{\chi_{A}(t)}{a \cdot \operatorname{mes} A} \in E_{N} \subset\left(L_{M}^{*}\right)^{*}$ and

$$
\int_{G}\left[y_{n}(t)-x_{n}(t)\right] \frac{\chi_{A}(t)}{a \cdot \operatorname{mes} A} \mathrm{dt}=\frac{1}{h_{n}}-\frac{1}{k_{n}}
$$

to show that $\left\{y_{n}-x_{n}\right\}$ does not weakly converge to zero finishing the proof, it is sufficient to verify that $\frac{1}{h_{n}}-\frac{1}{k_{n}}$ does not converge to zero. We may reduce this to showing that $\left\{k_{n}\right\}$ is bounded since

$$
k_{n}-h_{n}=\left[(1+\varepsilon) u_{n} p\left((1+\varepsilon) u_{n}\right)-u_{n} p\left(u_{n}\right)\right] \text { mes } G_{n} \geqslant
$$

$$
\geqslant \varepsilon u_{n} p\left(u_{n}\right) \text { mes } G_{n}>\varepsilon N\left(p\left(u_{n}\right)\right) \text { mes } G_{n}=\frac{1}{2} \varepsilon,
$$

$n=1,2, \ldots$ From the inequalities in [9], for every $n=1,2, \ldots$, $u_{n} p\left(u_{n}\right)$ mes $G_{n} \leqslant q\left(p\left(u_{n}\right)\right) p\left(u_{n}\right)$ mes $G_{n} \leqslant N\left(2 p\left(u_{n}\right)\right)$ mes $G_{n} \leqslant$

$$
\leqslant k N\left(p\left(u_{n}\right)\right) \operatorname{mes} G_{n}=\frac{1}{2} k
$$

hence

$$
k_{n} \leqslant(1+\varepsilon)\left(1+\frac{1}{n}\right) u_{n} p\left(u_{n}\right) \text { mes } G_{n}+a p(a) \text { mes } A \leqslant(1+\varepsilon) k+
$$

completing the proof.

4. Uniform rotundity in every direction.

Theorem 3. If $M \in \Delta_{2}$ and $M(u)$ is strictly convex, then L_{M}^{*} is uniformly rotund in every direction.

Proof. Suppose that $M \in \Delta_{2}$ and that $M(u)$ is strictly convex. For given z, x_{n} in L_{M}^{*} with $\left\|x_{n}\right\|_{M}=1,\left\|x_{n}+z\right\|_{M} \leqslant 1 \quad(n=1,2, \ldots)$ and $\| x_{n}+$ $+\frac{1}{2} z \|_{M} \rightarrow 1$, we need to show $z=0$.

Assume $z \neq 0$.
First, we show that $\left\{x_{n}\right\}$ contains a subsequence convergent to $a z$ in measure for some real a. If $\left\{x_{n}\right\}$ or $\left\{x_{n}+z\right\}$ contains a subsequence convergent to zero in measure, then the statement is true while we take $a=0$ or -1 . If not, then $\left\{k_{n}, h_{n}\right\}$ is bounded where $\left\{k_{n}, h_{n}\right\}$ satisfies

$$
1=\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}\left(1+R_{M}\left(k_{n} x_{n}\right)\right), \quad 1 \geqslant\left\|x_{n}+z\right\|_{M}=\frac{1}{h_{n}}\left(1+R_{M}\left(h_{n}\left(x_{n}+z\right)\right)\right)
$$

$(n=1,2, \ldots)$, therefore, by Lemma $5, k_{n} x_{n}(t)-h_{n}\left(x_{n}(t)+z(t)\right) \stackrel{\mu}{\hookrightarrow} 0$. Without loss of generality, we may assume that $k_{n} \rightarrow k_{0}$ and that $h_{n} \rightarrow h_{0}$. Hence, $x_{n}(t) \stackrel{\mu}{k_{0}-h_{0}} z(t)\left(z \neq 0\right.$ implies $\left.k_{0} \neq h_{0}\right)$.

Secondly, we may assume $x_{n}(t) \xrightarrow{\mu} a z(t) \neq 0$ (otherwise, we consider $x_{n}+z$ instead of x_{n} below), therefore, $R_{M}(a z)>0$. It follows by $M \in \Delta_{2}$ that there exist $\beta>0$ and $\delta>0$ such that $\int_{\sigma_{e}} M(a z(t)) d t>\beta$ and $\left\|a z \chi_{e}\right\|_{M}<\frac{\beta}{2}$ for all $e \subset G$ satisfying mes $e<\delta$. Since a sequence convergent ir measure contains an a.e. convergent subsequence, we may assume $x_{n}(t) \xrightarrow{a \cdot e} a z(t)$, therefore, there exists a subset G_{0} of G with mes $G_{0}<\delta$ such that $\left\{x_{n}(t)\right\}$ uniformly converges to $a z(t)$ on $G \backslash G_{0}$ and that $a z(t)$ is bounded on $G \backslash G_{0}$. Knowing that $k_{n}>1$, we see

$$
\begin{aligned}
& 1=\left\|x_{n}\right\|_{M}=\frac{1}{k_{n}}\left[1+\int_{G} M\left(k_{n} x_{n}(t)\right) \mathrm{dt}+\int_{G_{0}} M\left(k_{n} x_{n}(t)\right) \mathrm{dt}\right] \geqslant \\
& \\
& \geqslant\left\|x_{n} \chi_{G_{0}}\right\|_{M}+\frac{1}{k_{n}} \int_{G G_{0}} M\left(k_{n} x_{n}(t)\right) \mathrm{dt} \geqslant\left\|x_{n} \chi_{G_{0}}\right\|_{M}+\int_{G C_{0}} M\left(x_{n}(t)\right) \mathrm{dt},
\end{aligned}
$$

$(n=1,2, \ldots)$. Let $n \rightarrow \infty$, we get $\overline{\operatorname{Lim}_{n \rightarrow \infty}}\left\|x_{n} \chi_{G_{0}}\right\|_{M} \leqslant 1-\int_{G G_{0}} M(a z(t)) \mathrm{dt}<1-\beta$.
Finally, since $\left\|x_{n}+\frac{1}{2} z\right\|_{M} \rightarrow 1$, there exists v_{n} in L_{N}^{*} with $R_{N}\left(v_{n}\right) \leqslant 1$ $(n=1,2, \ldots)$ such that $\int_{G}\left[x_{n}(t)+\frac{1}{2} z(t)\right] v_{n}(t) \mathrm{dt} \rightarrow 1$. This immediately implies that $\int_{G} x_{n}(t) v_{n}(t) \mathrm{dt} \rightarrow 1$ and that $\int_{G}\left[x_{n}(t)+z(t)\right] v_{n}(t) \mathrm{dt} \rightarrow 1$ therefore $\int_{G} z(t) t_{n}(t) \mathrm{dt} \rightarrow 0$. Since

$$
\int_{G} x_{n}(t) v_{n}(t) \mathrm{dt} \leqslant \int_{G \mid G_{0}} x_{n}(t) v_{n}(t) \mathrm{dt}+\left\|x_{n} \chi_{G_{0}}\right\|_{M}
$$

and
$\underset{n \rightarrow \infty}{\operatorname{Lim}}\left\|x_{n} \chi_{G_{0}}\right\|_{M}<1-\beta$ and $x_{n}(t)^{u c} a z(t)$ on $G \backslash G_{0}$, let $n \rightarrow \infty$, we obtain

$$
\operatorname{Lim}_{n \rightarrow \infty} \int_{G_{G_{0}}} a z(t) v_{n}(t) \mathrm{dt}=\operatorname{Lim}_{n \rightarrow \infty} \int_{G G_{0}} x_{n}(t) v_{n}(t) \mathrm{dt}>1-(1-\beta)=\beta,
$$

Therefore

$$
0=\operatorname{Lim}_{n \rightarrow \infty} \int_{G} z(t) v_{n}(t) \mathrm{dt} \geqslant \operatorname{Lim}_{n \rightarrow \infty} \int_{G G_{0}} z(t) v_{n}(t) \mathrm{dt}-\left\|z \chi_{G_{0}}\right\|_{M}>\frac{\beta}{\alpha}-\frac{\beta}{2 \alpha}
$$

This contradiction completes the proof.
Question. In the proof of Theorem 3. $M \in \Delta_{2}$ is once used to indicate $\operatorname{Lim}_{\text {mese } \rightarrow 0}\left\|z \chi_{\mathbf{e}}\right\|_{M}=0$. Since URED $\Rightarrow \mathrm{R}$, it is necessary in Theorem 3 that
$M(u)$ is strictly convex. The question here is whether or not the assertion in Theorem 3 still holds withouw condition $M \in \Delta_{2}$ which is not necessary as far as I know.
department of mathematics harbin teachers university, harbin, (China)

REFERENCES

[1] H. W. Milnes, Convexity of Orlicz spaces, Pacific J. Math., 7 (1957), 1451-1486.
[2] W. Congxin. Z. Shanzhong, Ch. Junao, Formulae of Orlicz norm and the condition of rotundity on Orlicz spaces (Chinese), Journal of Harbin Institute of Technology, 2 (1978), 1-12.
[3] A. Kamińska, On uniform convexity of Orlicz spaces, Indag. Math., 44 (1) (1982), 27-36.
[4] Ch. Shutao. W. Yuwen. H-property of Orlicz spaces, (Chinese), Ann. Math., [to appear].
[5] A. Kamińska, The criteria for local uniform rotundity of Orlicz spaces, Studia Math., 79 (1984), 201-215.
[6] Ch. Shutao, W. Yuwen, The condition of locally uniformly convex Orlicz spaces (Chinese), Chinese J. Math., 5 (1) (1985), 9-14, (also see Journal of Harbin Teachers University, 2 (1983), 40-48).
[7] A. Kamińska, W. Kurc, Weak uniform rotundity in Orlicz spaces, Comment. Math. Univ. Carol., [to appear].
[8] W. Tingfu, Ch. Shutao, K-uniform rotundity of Orlicz spaces (Chinese), [to appear].
[9] M. A. Krasnoselskij, Ya. B. Rutickij, Convex functions and Orlicz spaces, Groningen, 1961.

Чен Шутао, Некоторые округлостн пространства Орлича с нормой Орлича

Настоящая работа посвящена характеризации локально равномерной, слабо локально равномерной, слабо равнояерной и равномерной в произвольном направлении округлостям промеранств Орлича с нормой Орлича. Доказывается, что локально равномерная и слабо локально равномерная округлости совпадают с тем, что пространство является рефлексивным и скруглым, и слабо равномерная округлость совпадает с равномерной округлостью. Наконец, даны некоторые достаточные условия для равномерной округлости в произвольном направлении.

