BULLETIN OF THE POLISH ACADEMY OF SCIENCES MATHEMATICS Vol. 33, No. 5-6, 1985

FUNCTIONAL ANALYSIS

Finite Dimensional Orlicz Spaces

by

Ryszard GRZĄŚLEWICZ

Presented by W. ORLICZ on January 2, 1985

Summary. The problem of description of the unit balls of the *n*-dimensional Orlicz and Musielak-Orlicz spaces in the space of all compact convex subset of \mathbb{R}^n is studied. For n = 2 every compact symmetric body is the unit ball of some Orlicz space. This result cannot be extended to arbitrary $n \ge 3$. The unit ball of the *n*-dimensional Musielak-Orlicz space is stable.

It is well-known that to every compact centrally symmetric convex set with non-empty interior there corresponds a norm defined by the Minkowski functional. Consider a finite dimensional Orlicz space. More precisely, let $\varphi: [0, \infty) \rightarrow [0, \infty)$ be a convex function with $\varphi(0) = 0$. By l_n^{φ} we denote the space of sequences $(x_k) \in \mathbb{R}^n$ endowed with the Luxemburg norm

$$\|(x_k)\|_{\varphi} = \inf \left\{ \alpha : \sum_{k=1}^n \varphi(|x_k/\alpha|) \leq 1 \right\}.$$

We refer the reader to [3] for basic facts about Orlicz spaces. There is a natural question, whether each compact symmetric convex subset of \mathbb{R}^n with non-empty interior can be a unit ball $B(l_n^{\varphi})$ of some *n*-dimensional Orlicz space l_n^{φ} . In this note we discuss the above question. An answer is affirmative if n = 2 and negative if $n \ge 3$.

The condition $||(x_k)||_{\varphi} = ||(|x_k|)||_{\varphi}$ geometrically means that $B(l_{\varphi}^n)$ is symmetric with respect to each hyperplane $\{x_k: x_{k_0} = 0\}, k_0 = 1, 2, ..., n$. The convex set $Q \in \mathbb{R}^n$ such that $(x_k) \in Q$ if and only if $(|x_{\pi(i)}|) \in Q$ for all permutations π of 1, 2, ..., n will be called symmetric. Obviously the unit ball $B(l_{\varphi}^n)$ of l_{φ}^n is a symmetric convex subset of \mathbb{R}^n .

Because l_n^{φ} is an Orlicz space defined on the atomic measure space with mass of atoms equal to one, the domain of φ may be restricted to [0, 1] if it is assumed that $||e_i||_{\varphi} = 1$.

R. Grzaślewicz

THEOREM 1. Every compact symmetric convex subset of \mathbb{R}^2 with non-empty interior is a unit ball of some Orlicz space l_2° .

Proof. Let Q be a compact symmetric convex subset of \mathbb{R}^2 with non-empty interior. We denote by $\|\cdot\|$ the Minkowski functional of Q. We may and do assume that $\|e_i\| = 1$. We define a function $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) = \max \{z : || (x, z) || = 1\}.$$

Note that if x < 1 then there exists exactly one $z \ge 0$ with ||(x, z)|| = 1. The function f is concave and decreasing and f(0) = 1, ||(f(x), x)|| = 1. Let $x_0 > 0$ be such that $||(x_0, x_0)|| = 1$. We have $0 \le f(1) \le f(x_0) = x_0 \le 1$. If $x_0 < 1$ then $0 \ge f'_-(x_0) \ge -1 \ge f'_+(x_0)$, since f^{-1} exists in some neighbourhood of x_0 (and $f^{-1} = f$).

If $x_0 = 1$, then $l_2^{\omega} = l_2^{\omega}$. In this case Q is a unit ball of an Orlicz space generated by a function

$$\varphi(t) = \begin{cases} 0 & \text{for } 0 \le t \le 1 \\ +\infty & \text{for } t > 1 \end{cases}$$

Now assume that $x_0 < 1$. Define

$$\varphi(t) = \begin{cases} (1-f(t))/2 (1-x_0) & \text{if } 0 \leq t \leq x_0 \\ \frac{1}{2} + (t-x_0)/2 (1-x_0) & \text{if } x_0 < t . \end{cases}$$

The function φ is convex. Indeed, the restricted functions $\varphi|_{[0,x_0]}$ and $\varphi|_{(x_0,\infty)}$ are convex. We only need to show that

$$\varphi'_{-}(x_{0}) = \lim_{h \to 0_{-}} \frac{\varphi(x_{0}+h) - \varphi(x_{0})}{h} \leq \frac{1}{2(1-x_{0})} = \varphi'_{+}(x_{0})$$

The end of the above equality holds since $0 \ge f'_{-}(x_0) \ge -1$.

We claim that $B(l_2^{\varphi}) = Q$. Let $0 \le x \le y \le 1$ be such that ||(x, y)|| = 1. To prove our claim it is sufficient to show that $||(x, y)||_{\varphi} = 1$. We have

$$\|(x, y)\|_{\varphi} = \inf \left\{ \alpha : \varphi\left(\frac{x}{\alpha}\right) + \varphi\left(\frac{y}{\alpha}\right) \le 1 \right\} = \inf A$$

where $A = \{\alpha : x/\alpha \leq f(y/\alpha)\}.$

Obviously $1 \in A$. Suppose that some $\alpha_0 < 1$ belongs to A. Then $||(y/\alpha_0, x/\alpha_0)|| \le 1$, but this contradices with ||(x, y)|| = 1. Therefore $||(x, y)||_{\varphi} = \inf A = 1$. This completes the proof of Theorem.

REMARK 1. Instead of φ in the proof of Theorem 1 we can use the following Orlicz functions

Finite Dimensional Orlicz Spaces

$$p_{1}(t) = \begin{cases} t/2x_{0} & \text{if } 0 \leq t \leq x_{0} \\ 1 - f(t)/2x_{0} & \text{if } x_{0} \leq t \leq 1 \\ +\infty & \text{if } t > 1 \end{cases}$$

Dr

$$\varphi_{2}(t) = \begin{cases} h(t) & \text{if } 0 \leq t \leq x_{0} \\ 1 - h(f(x)) & \text{if } x_{0} < t \leq 1 \end{cases}$$

where we choose a function h in such a way that φ_2 is convex. Obviously $h(x_0)$ must be equal to 1/2.

Therefore \mathbb{R}^2 the same Orlicz space can be generated by two distinct Orlicz functions. For instance the Euclidean norm in \mathbb{R}^2 is generated by φ , φ_1 where $f(t) = \sqrt{1-t^2}$ and by $\varphi_3 = t^2$ etc. Note that from the confrom the construction presented in the proof of Theorem 1 follows that the space l_2^1 is generated by exactly one Orlicz function (because $x_0 = 1/2$).

It should be pointed out that in the two dimensional case there exists strict convex Orlicz space generated by no strict convex Orlicz function (cf. [5], [6], [1], [2]).

REMARK 2. There exists a compact symmetric convex subset of \mathbb{R}^3 , which is a unit ball of no Orlicz space l_3° . For example let

$$Q = \operatorname{conv}\left\{\pm e_1, \pm e_2, \pm e_3, \left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)\right\}.$$

Indeed, suppose that there exists an Orlicz function such that $Q = B(l_3^{\varphi})$. Since intersection Q with the plane $\{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$ give l_2^1 -ball. Thus $\varphi(0) = 0$, $\varphi(1/2) = 1/2$ and $\varphi(1) = 1$, so $\varphi(t) = t$ for $t \in [0, 1]$. Therefore $l_3^{\varphi} = l_3^1$, but $Q \neq B(l_3^1)$.

We will need the following fact.

LEMMA. Let H denote subset of the unit interval (0, 1) such that

- (i) $1/2 \in H$,
- (ii) $a \in H$ implies $(1-a) \in H$,
- (iii) $a \in H$ implies $(1-a)/2 \in H$.
- Then H is dense in (0, 1).

Proof. Applaing (ii) and (iii) we obtain

(iv) $a \in H$ implies $a/2 \in H$.

Suppose that $k/2^n \in H$, $k = 1, 2, 3, ..., 2^n - 1$, $n \in \mathbb{N}$. It is sufficient to show that $l/2^{n+1} \in H$ for all $l = 1, ..., 2^{n+1} - 1$. If $l \in 2^n$, then $l/2^n \in H$ and by (iv) $l/2^{n+1} \in H$. If $2^n < l < 2^{n+1}$, then $(2^{n+1} - l)/2^{n+1} \in H$ and by (ii) $l/2^{n+1} \in H$.

PROPOSITION. The sections of the unit ball $B(l_3^{\varphi})$ by the planes $\{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$ and $\{(x_1, x_1, x_2) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$ uniquely determines the Orlicz function φ .

Proof. Let $\|\cdot\|_{\varphi}$ be the Luxemburg norm of l_3^{φ} . We can and do assume that $\|e_1\|_{\varphi} = 1$. Let $x_0 > 0$ be such that $\|(x_0, x_0, 0)\| = 1$. We define functions $f:[0, 1] \rightarrow [0, 1], g:[0, x_0] \rightarrow [0, 1]$ by

$$f(x) = \max \{ z : || (x, z, 0) ||_{\varphi} = 1 \}$$

$$g(x) = \max \{ z : || (x, x, z) ||_{\varphi} = 1 \}.$$

It should be pointed out that the functions f and g can be defined in the case if only plane sections of $B(l_3^{\varphi})$ presented in statement of Proposition are known.

Put $y_1 = \max \{x: f(x) = 1\}$, $y_2 = \max \{x: g(x) = 1\}$. Because f and g are concave and decreasing, the restricted functions $f_1 = f|_{[y_1,1]}$ and $g_1 = g|_{[y_2,1]}$ are strictly decreasing. Therefore f_1^{-1} and g_1^{-1} exist.

Since φ is increasing, convex and $\varphi([0,1]) \in [0,1]$ it is sufficient to find a set B such that $H = \{\varphi(x): x \in B\}$ is a dense subset of (0,1). Note that if $||(x_1, x_2, x_3)|| = 1$ and $0 \le x_i < 1$ i = 1, 2, 3, then $\varphi(x_1) + \varphi(x_2) + \varphi(x_3) = 1$. Thus if $x, f(x), g(x) \in (0, 1)$, then $\varphi(x) + \varphi(f(x)) = 1$ and $\varphi(x) + \varphi(x) + \varphi(g(x)) = 1$. Therefore if the value $b = \varphi(y)$ is known, then we can determine $\varphi(f_1^{-1}(y)) = 1 - \varphi(y)$, and analogously $\varphi(g_1^{-1}(y)) = [1 - -\varphi(y)]/2$. Let B be a set such that

(a)
$$x_0 \in H$$

(b) $x \in B$ implies $f_1^{-1}(x) \in B$

(c) $x \in B$ implies $g_1^{-1}(x) \in B$.

Then $\varphi(x_0) = 1/2 \in H$ and $b \in H$ implies $(1-b) \in H$ (by (b)) and (1-b)/2H (by (c)). Invoking the Lemma we conclude H is dense in (0, 1). Therefore φ is uniquely determined by the functions f and g.

REMARK 3. Above Proposition can be written for arbitrary l_n^{φ} , $n \ge 3$ and l^{φ} .

PROBLEM. Characterize all $B(l_n^{\varphi})$ in the space of compact symmetric convex subsets of \mathbb{R}^n $(n \ge 3)$.

The case of Musielak-Orlicz spaces. Consider more general class of spaces: Musielak-Orlicz spaces. In the 2-dimensional case the unit ball of the Musielak-Orlicz space generated by φ_1, φ_2 is a set

$$B = \{(x, y) \in \mathbb{R}^2 : \varphi_1(|x|) + \varphi_2(|y|) \le 1$$

where φ_i are convex functions with $\varphi_i(0) = 0$, i = 1, 2. Obviously the unit

ball of each Musielak-Orlicz space is centrally symmetric convex body. It is also symmetric with respect to x and y — axes when we consider the plane.

THEOREM 2. Every compact convex set $B \in \mathbb{R}^2$ with int $B \neq \emptyset$ such that $(x, y) \in B$ implies $(\pm x, \pm y) \in B$ is a unit ball of some 2-dimensional Musielak-Orlicz space.

Proof. Let B be a subset of \mathbb{R}^2 satisfying the assumption of the Theorem. We denote by $\|\cdot\|$ the norm corresponding to B. Let a, b > 0 be such that $\|(a, 0)\| = \|(0, b)\| = 1$. Put

$$\varphi_1(t) = \frac{t}{a}$$

$$\varphi_2(t) = \begin{cases} 1 - \max\{z : \| (az, t) \| = 1\} & \text{if } 0 \le t \le b \\ +\infty & \text{if } t \ge b. \end{cases}$$

It is not hard to see that φ_i are convex functions with $\varphi_i(0) = 0$, i = 1, 2, and the unit ball of the Musielak-Orlicz space generated by φ_1, φ_2 coincides with B.

REMARK 4. There exists a compact symmetric convex subset of \mathbb{R}^3 which is the unit ball of no Musielak-Orlicz space. For example the set Q from Remark 2. Indeed, suppose, to get a contradiction, that Q is the unit ball of a 3-dimensional Musielak-Orlicz space generated by convex functions $\varphi_1, \varphi_2, \varphi_3$ i.e.

$$Q = \{(x, y, z) \in \mathbb{R}^3 \ \varphi_1(|x|) + \varphi_2(|y|) + \varphi_3(|z|) \leq 1\}.$$

Because (1, 0, 0), (0, 1, 0), $(0, 0, 1) \in B$ we have $\varphi_i(1) \leq 1$. Because $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ belong to the unit sphere we obtain

2,
$$\sigma$$
, 2), $(\sigma$, 2, 2) belong to the unit sphere we

$$\varphi_1\left(\frac{1}{2}\right) + \varphi_2\left(\frac{1}{2}\right) = 1$$

$$\varphi_1\left(\frac{1}{2}\right) + \varphi_3\left(\frac{1}{2}\right) = 1$$

$$\varphi_2\left(\frac{1}{2}\right) + \varphi_3\left(\frac{1}{2}\right) = 1$$

After solving the above three equations we obtain $\varphi_i\left(\frac{1}{2}\right) = \frac{1}{2}$ i = 1, 2, 3. Thus we have $\varphi_i(t) = t$ for $t \in [0, 1]$, since φ_i are convex. This contradicts with

$$\varphi_1\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \in Q$$

and

$$\varphi_1(1/2) + \varphi_2(1/2) + \varphi_3(1/2) = 3/2 > 1.$$

The problem of description of all the unit balls of Musielak-Orlicz spaces in the space of compact convex subset of R^n $(n \ge 3)$ remains open.

The affine structure of the unit ball. For a point x a convex compact set B we define a face generated by x in B as follows

$$F_x = \{ y \in B : \text{there exist } z \in B \text{ and } \alpha \in (0, 1] \}$$

such that $x = \alpha y + (1 - \alpha) z$.

Note that $x \in \text{ext } B$ if and only if dim $F_x = 0$.

REMARK 5. Let $\varphi_i : \mathbf{R} \to [0, \infty)$ be convex functions s.t. $\varphi_i(t) = 0$ iff t = 0. Let U_i be maximal open subsets of **R** such that φ_i is linear on each connected component of U_i , i = 1, 2, ..., n. Denote by $l_n^{(\varphi_i)}$ the *n* dimensional Musielak-Orlicz space generated by φ_i . Let $x \in l_n^{(\varphi_i)}$ with ||x|| = 1. We have dim $F_x = \dim \lim Y$, where $Y = \{y : x \pm y \in B(l_n^{(\varphi_i)})$. By convexity of φ_i for $z \in Y$

$$1 = \sum_{i=1}^{n} \varphi_i(x_i) = \sum_{i=1}^{n} \frac{1}{2} \left[\varphi_i(x_i - z_i) + \varphi_i(x_i + z_i) \right] = 1$$

SO

$$\varphi_i(x_i) = \frac{1}{2} \left[\varphi_i(x_j - z_i) + \varphi_i(x_i + z_i) \right] \text{ for } i = 1, 2, ..., n.$$

Therefore if $x_i \notin U_i$ then $z_i = 0$, i.e. $z \in Y$ and $i \in J(x) = \{i: x_i \in U_i\}$ implies $z_i = 0$. Hence

$$\dim F_x = \begin{cases} 0 & \text{if } k = 0 \quad \text{and} \quad ||x|| = 1\\ k - 1 & \text{if } k \ge 1 \quad \text{and} \quad ||x|| = 1\\ n & \text{if } \quad ||x|| < 1 \end{cases}$$

where $k = \operatorname{card} J(x)$.

The *m*-skeleton of a convex set *B* is the set of all $x \in B$ such that dim $F_x \leq m$. We recall that a convex compact set *B* in an Euclidean space is said to be stable if all *m*-skeletions of *B* are closed (see [4]).

THEOREM 3. The unit ball of $l_n^{(\phi i)}$ is stable.

Proof. Fix $m \leq n$. Let a sequence $\{x^k\}_{k=1}^n$ with dim $F_{x^k} \leq n$ converges

282

to x^0 . We need to show that dim $F_{x^0} \leq m$. Suppose, to get a contradiction, that dim $F_{x^0} = m' > m$. Then card $J(x^0) = m' + 1$ and there exists K such that x_i^k and x_i^0 belong to the same component of U_i for all $k \geq K$ and all $i \in J(x^0)$ (since U_i are open). By Remark 5 it follows that dim $F_{x^m} \geq m' > m$ for all $k \geq K$. This contradiction ends the proof.

The author wishes to thank Dr. Henryk Hudzik for his helpful remarks.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF WROCŁAW, WB WYSPIAŃSKIEGO 27, 50-370 WROCŁAW

(INSTYTUT MATEMATYKI POLITECHNIKA WROCŁAWSKA)

REFERENCES

[1] H. Hudzik, Strict Convexity of Musielak-Orlicz Spaces with Luxemburg's Norm, Bull. Pol. Ac.: Math., 29 (1981), 235-247.

[2] A. Kamińska, Rotundity of Orlicz-Musielak Sequence Spaces, ibid., 137-144.

[3] W. A. Luxemburg, Banach function spaces, Thesis, Delf, 1955.

[4] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann., 229 (1977), 193-200.

[5] K. Sundaresan, On the strict and uniform convexity of certain Banach spaces, Pacific J. Math., 15 (1965), 1083-1086.

[6] B. Turret, Rotundity of Orlicz spaces, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 29 (1976), 462-469

Р. Гжонслевич, Конечномерные пространства Орлича

В работе рассматривается проблема изображения шара *n*-мерного пространства Орлича и Муселяка-Орлича в пространстве всех компактных выпуклых множеств в \mathbb{R}^n . Для n = 2 симметрическое компактное выпуклое множество является шаром определенного пространства Орлича. Дается пример на то, что не существует такого изображения для $n \ge 3$. Доказывается, что шар *n*-мерного пространства Муселяка-Орлича является стабильным.