Finite Dimensional Orlicz Spaces

by
Ryszard GRZAŚLEWICZ
Presented by W. ORLICZ on January 2, 1985

Summary. The problem of description of the unit balls of the n-dimensional Orlicz and Musielak-Orlicz spaces in the spade of all compact convex subset of R^{n} is studied. For $n=2$ every compact symmetric body is the unit ball of some Orlicz space. This result cannot be extended to arbitrary $n \geqslant 3$. The unit ball of the n-dimensional Musielak-Orlicz space is stable.

It is well-known that to every compact centrally symmetric convex set with non-empty interior there corresponds a norm defined by the Minkowski functional. Consider a finite dimensional Orlicz space. More precisely, let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a convex function with $\varphi(0)=0$. By l_{n}^{φ} we denote the space of sequences $\left(x_{k}\right) \in \mathbf{R}^{n}$ endowed with the Luxemburg norm

$$
\left\|\left(x_{k}\right)\right\|_{\varphi}=\inf \left\{\alpha: \sum_{k=1}^{n} \varphi\left(\left|x_{k} / \alpha\right|\right) \leqslant 1 .\right.
$$

We refer the reader to [3] for basic facts about Orlicz spaces. There is a natural question, whether each compact symmetric convex subset of \mathbf{R}^{n} with non-empty interior can be a unit ball $B\left(l_{n}^{\varphi}\right)$ of some n-dimensional Orlicz space l_{n}^{φ}. In this note we discuss the above question. An answer is affirmative if $n=2$ and negative if $n \geqslant 3$.

The condition $\left\|\left(x_{k}\right)\right\|_{\varphi}=\left\|\left(\left|x_{k}\right|\right)\right\|_{\varphi}$ geometrically means that $B\left(l_{n}^{\varphi}\right)$ is symmetric with respect to each hyperplane $\left\{x_{k}: x_{k_{0}}=0\right\}, k_{0}=1,2, \ldots, n$. The convex set $Q \subset \mathbf{R}^{n}$ such that $\left(x_{k}\right) \in Q$ if and only if $\left(\left|x_{\pi(i)}\right|\right) \in Q$ for all permutations π of $1,2, \ldots, n$ will be called symmetric. Obviously the unit ball $B\left(l_{n}^{\varphi}\right)$ of l_{n}^{φ} is a symmetric convex subset of \mathbf{R}^{n}.

Because l_{n}^{φ} is an Orlicz space defined on the atomic measure space with mass of atoms equal to one, the domain of φ may be restricted to $[0,1]$ if it is assumed that $\left\|e_{i}\right\|_{\varphi}=1$.

Theorem 1. Every compact symmetric convex subset of \mathbf{R}^{2} with non-empty interior is a unit ball of some Orlicz space l_{2}^{φ}.

Proof. Let Q be a compact symmetric convex subset of \mathbb{R}^{2} with non-empty interior. We denote by $\|\cdot\|$ the Minkowski functional of Q. We may and do assume that $\left\|e_{i}\right\|=1$. We define a function $f:[0,1] \rightarrow[0,1]$ by

$$
f(x)=\max \{z:\|(x, z)\|=1\} .
$$

Note that if $x<1$ then there exists exactly one $z \geqslant 0$ with $\|(x, z)\|=1$. The function f is concave and decreasing and $f(0)=1,\|(f(x), x)\|=1$. Let $x_{0}>0$ be such that $\left\|\left(x_{0}, x_{0}\right)\right\|=1$. We have $0 \leqslant f(1) \leqslant f\left(x_{0}\right)=x_{0} \leqslant 1$. If $x_{0}<1$ then $0 \geqslant f_{-}^{\prime}\left(x_{0}\right) \geqslant-1 \geqslant f_{+}^{\prime}\left(x_{0}\right)$, since f^{-1} exists in some neighbourhood of x_{0} (and $f^{-1}=f$).

If $x_{0}=1$, then $l_{2}^{\varphi}=l_{2}^{\infty}$. In this case Q is a unit ball of an Orlicz space generated by a function

$$
\varphi(t)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leqslant t \leqslant 1 \\
+\infty & \text { for } & t>1
\end{array}\right.
$$

Now assume that $x_{0}<1$. Define

$$
\varphi(t)=\left\{\begin{array}{llc}
(1-f(t)) / 2\left(1-x_{0}\right) & \text { if } & 0 \leqslant t \leqslant x_{0} \\
\frac{1}{2}+\left(t-x_{0}\right) / 2\left(1-x_{0}\right) & \text { if } & x_{0}<t
\end{array}\right.
$$

The function φ is convex. Indeed, the restricted functions $\left.\varphi\right|_{\left[0, x_{0}\right]}$ and $\left.\varphi\right|_{\left(x_{0}, \infty\right)}$ are convex. We only need to show that

$$
\varphi_{-}^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0_{-}} \frac{\varphi\left(x_{0}+h\right)-\varphi\left(x_{0}\right)}{h} \leqslant \frac{1}{2\left(1-x_{0}\right)}=\varphi_{+}^{\prime}\left(x_{0}\right)
$$

The end of the above equality holds since $0 \geqslant f_{-}^{\prime}\left(x_{0}\right) \geqslant-1$.
We claim that $B\left(l_{2}^{\varphi}\right)=Q$. Let $0 \leqslant x \leqslant y \leqslant 1$ be such that $\|(x, y)\|=1$. To prove our claim it is sufficient to show that $\|(x, y)\|_{\varphi}=1$. We have

$$
\|(x, y)\|_{\varphi}=\inf \left\{\alpha: \varphi\left(\frac{x}{\alpha}\right)+\varphi\left(\frac{y}{\alpha}\right) \leqslant 1\right\}=\inf A
$$

where $A=\{\alpha: x / \alpha \leqslant f(y / \alpha)\}$.
Obviously $1 \in A$. Suppose that some $\alpha_{0}<1$ belongs to A. Then $\|\left(y / \alpha_{0}\right.$, $\left.x / \alpha_{0}\right) \| \leqslant 1$, but this contradices with $\|(x, y)\|=1$. Therefore $\|(x, y)\|_{\varphi}=$ $=\inf A=1$. This completes the proof of Theorem.

Remark 1. Instead of φ in the proof of Theorem 1 we can use the following Orlicz functions

$$
\begin{aligned}
& \varphi_{1}(t)=\left\{\begin{array}{lll}
t / 2 x_{0} & \text { if } & 0 \leqslant t \leqslant x_{0} \\
1-f(t) / 2 x_{0} & \text { if } & x_{0} \leqslant t \leqslant 1 \\
+\infty & \text { if } & t>1
\end{array}\right. \\
& \varphi_{2}(t)=\left\{\begin{array}{lll}
h(t) & \text { if } & 0 \leqslant t \leqslant x_{0} \\
1-h(f(x)) & \text { if } & x_{0}<t \leqslant 1
\end{array}\right.
\end{aligned}
$$

where we choose a function h in such a way that φ_{2} is convex. Obviously $h\left(x_{0}\right)$ must be equal to $1 / 2$.

Therefore \mathbb{R}^{2} the same Orlicz space can be generated by two distinct Orlicz functions. For instance the Euclidean norm in R^{2} is generated by φ, φ_{1} where $f(t)=\sqrt{1-t^{2}}$ and by $\varphi_{3}=t^{2}$ etc. Note that from the confrom the construction presented in the proof of Theorem 1 follows that the space l_{2}^{1} is generated by exactly one Orlicz function (because $x_{0}=1 / 2$).

It should be pointed out that in the two dimensional case there exists strict convex Orlicz space generated by no strict convex Orlicz function (cf. [5], [6], [1], [2]).

Remark 2. There exists a compact symmetric convex subset of \mathbf{R}^{3}, which is a unit ball of no Orlicz space l_{3}^{φ}. For example let

$$
Q=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3},\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)\right\}
$$

Indeed, suppose that there exists an Orlicz function such that $Q=B\left(l_{3}^{\varphi}\right)$. Since intersection Q with the plane $\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbf{R}^{3}: x_{1}, x_{2} \in \mathbf{R}\right\}$ give l_{2}^{1}-ball. Thus $\varphi(0)=0, \quad \varphi(1 / 2)=1 / 2$ and $\varphi(1)=1$, so $\varphi(t)=t$ for $t \in[0,1]$. Therefore $l_{3}^{\varphi}=l_{3}^{1}$, but $Q \neq B\left(l_{3}^{1}\right)$.

We will need the following fact.
lemma. Let H denote subset of the unit interval $(0,1)$ such that
(i) $1 / 2 \in H$,
(ii) $a \in H$ implies $(1-a) \in H$,
(iii) $a \in H$ implies $(1-a) / 2 \in H$.

Then H is dense in $(0,1)$.
Proof. Applaing (ii) and (iii) we obtain
(iv) $a \in H$ implies $a / 2 \in H$.

Suppose that $k / 2^{n} \in H, k=1,2,3, \ldots, 2^{n}-1, n \in \mathbf{N}$. It is sufficient to show that $l / 2^{n+1} \in H$ for all $l=1, \ldots, 2^{n+1}-1$. If $l \in 2^{n}$, then $l / 2^{n} \in H$ and by (iv) $l / 2^{n+1} \in H$. If $2^{n}<l<2^{n+1}$, then $\left(2^{n+1}-l\right) / 2^{n+1} \in H$ and by (ii) $l / 2^{n+1} \in H$.

Proposition. The sections of the unit ball $B\left(l_{3}\right)$ by the planes $\left\{\left(x_{1}, x_{2}, 0\right) \in\right.$ $\left.\in \mathbf{R}^{3}: x_{1}, x_{2} \in \mathbf{R}\right\}$ and $\left\{\left(x_{1}, x_{1}, x_{2}\right) \in \mathbf{R}^{3} \quad x_{1}, x_{2} \in \mathbf{R}\right\}$ uniquely determines the Orlicz function φ.

Proof. Let $\|\cdot\|_{\varphi}$ be the Luxemburg norm of l_{3}. We can and do assume that $\left\|e_{1}\right\|_{\varphi}=1$. Let $x_{0}>0$ be such that $\left\|\left(x_{0}, x_{0}, 0\right)\right\|=1$. We define functions $f:[0,1] \rightarrow[0,1], g:\left[0, x_{0}\right] \rightarrow[0,1]$ by

$$
\begin{aligned}
f(x) & =\max \left\{z:\|(x, z, 0)\|_{\varphi}=1\right\} \\
g(x) & =\max \left\{z:\|(x, x, z)\|_{\varphi}=1\right\} .
\end{aligned}
$$

It should be pointed out that the functions f and g can be defined in the case if only plane sections of $B\left(l_{3}\right)$ presented in statement of Proposition are known.

Put $y_{1}=\max \{x: f(x)=1\}, y_{2}=\max \{x: g(x)=1\}$. Because f and g are concave and decreasing, the restricted functions $f_{1}=\left.f\right|_{[y, 1,1]}$ and $g_{1}=$ $=\left.g\right|_{\left[\text {[2 }_{2}, 1\right]}$ are strictly decreasing. Therefore f_{1}^{-1} and g_{1}^{-1} exist.

Since φ is increasing, convex and $\varphi([0,1]) \subset[0,1]$ it is sufficient to find a set B such that $H=\{\varphi(x): x \in B\}$ is a dense subset of $(0,1)$. Note that if $\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|=1$ and $0 \leqslant x_{i}<1 \quad i=1,2,3$, then $\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)+$ $+\varphi\left(x_{3}\right)=1$. Thus if $x, f(x), g(x) \in(0,1)$, then $\varphi(x)+\varphi(f(x))=1$ and $\varphi(x)+\varphi(x)+\varphi(g(x))=1$. Therefore if the value $b=\varphi(y)$ is known, then we can determine $\varphi\left(f_{1}^{-1}(y)\right)=1-\varphi(y)$, and analogously $\varphi\left(g_{1}^{-1}(y)\right)=[1-$ $-\varphi(y)] / 2$. Let B be a set such that
(a) $x_{0} \in H$
(b) $x \in B$ implies $f_{1}^{-1}(x) \in B$
(c) $x \in B$ implies $g_{1}^{-1}(x) \in B$.

Then $\varphi\left(x_{0}\right)=1 / 2 \in H$ and $b \in H$ implies $(1-b) \in H$ (by (b)) and $(1-b) / 2$ H (by (c)). Invoking the Lemma we conclude H is dense in $(0,1)$. Therefore φ is uniquely determined by the functions f and g.

Remark 3. Above Proposition can be written for arbitrary $l_{n}^{\varphi}, n \geqslant 3$ and l.

Problem. Characterize all $B\left(l_{n}^{p}\right)$ in the space of compact symmetric convex subsets of $\mathbf{R}^{n}(n \geqslant 3)$.

The case of Musielak-Orlicz spaces. Consider more general class of spaces: Musielak-Orlicz spaces. In the 2 -dimensional case the unit ball of the Musielak-Orlicz space generated by φ_{1}, φ_{2} is a set

$$
B=\left\{(x, y) \in \mathbf{R}^{2}: \varphi_{1}(|x|)+\varphi_{2}(|y|) \leqslant 1\right.
$$

where φ_{i} are convex functions with $\varphi_{i}(0)=0, i=1,2$. Obviously the unit
ball of each Musielak-Orlicz space is centrally symmetric convex body. It is also symmetric with respect to x and y-axes when we consider the plane.

Theorem 2. Every compact convex set $B \subset \mathbf{R}^{2}$ with int $B \neq \emptyset$ such that $(x, y) \in B$ implies $(\pm x, \pm y) \in B$ is a unit ball of some 2-dimensional Musielak--Orlicz space.

Proof. Let B be a subset of \mathbf{R}^{2} satisfying the assumption of the Theorem. We denote by $\|\cdot\|$ the norm corresponding to B. Let $a, b>0$ be such that $\|(a, 0)\|=\|(0, b)\|=1$. Put

$$
\begin{gathered}
\varphi_{1}(t)=\frac{t}{a} \\
\varphi_{2}(t)= \begin{cases}1-\max \{z:\|(a z, t)\|=1\} & \text { if } 0 \leqslant t \leqslant b \\
+\infty & \text { if } t \geqslant b\end{cases}
\end{gathered}
$$

It is not hard to see that φ_{i} are convex functions with $\varphi_{i}(0)=0$, $=1,2$, and the unit ball of the Musielak-Orlicz space generated by φ_{1}, φ_{2} coincides with B.

Remark 4. There exists a compact symmetric convex subset of \mathbf{R}^{3} which is the unit ball of no Musielak-Orlicz space. For example the set Q from Remark 2. Indeed, suppose, to get a contradiction, that Q is the unit ball of a 3-dimensional Musielak-Orlicz space generated by convex functions $\varphi_{1}, \varphi_{2}, \varphi_{3}$ i.e.

$$
Q=\left\{(x, y, z) \in \mathbf{R}^{3} \varphi_{1}(|x|)+\varphi_{2}(|y|)+\varphi_{3}(|z|) \leqslant 1\right\} .
$$

Because $(1,0,0),(0,1,0),(0,0,1) \in B$ we have $\varphi_{i}(1) \leqslant 1$. Because $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)$ belong to the unit sphere we obtain

$$
\begin{aligned}
& \varphi_{1}\left(\frac{1}{2}\right)+\varphi_{2}\left(\frac{1}{2}\right)=1 \\
& \varphi_{1}\left(\frac{1}{2}\right)+\varphi_{3}\left(\frac{1}{2}\right)=1 \\
& \varphi_{2}\binom{1}{2}+\varphi_{3}\left(\frac{1}{2}\right)=1
\end{aligned}
$$

After solving the above three equations we obtain $\varphi_{i}\left(\frac{1}{2}\right)=\frac{1}{2} i=1,2,3$.
Thus we have $\varphi_{i}(t)=t$ for $t \in[0,1]$, since φ_{i} are convex. This contradicts with

$$
\varphi_{1}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \in Q
$$

and

$$
\varphi_{1}(1 / 2)+\varphi_{2}(1 / 2)+\varphi_{3}(1 / 2)=3 / 2>1 .
$$

The problem of description of all the unit balls of Musielak-Orlicz spaces in the space of compact convex subset of $R^{n}(n \geqslant 3)$ remains open.

The affine structure of the unit ball. For a point x a convex compact set B we define a face generated by x in B as follows

$$
F_{x}=\{y \in B \text { : there exist } z \in B \quad \text { and } \quad \alpha \in(0,1]
$$

such that $x=\alpha y+(1-\alpha) z\}$
Note that $x \in \operatorname{ext} B$ if and only if $\operatorname{dim} F_{x}=0$.
Remark 5. Let $\varphi_{i}: \mathbf{R} \rightarrow[0, \infty)$ be convex functions s.t. $\varphi_{i}(t)=0$ iff $t=0$ Let U_{i} be maximal open subsets of \mathbf{R} such that φ_{i} is linear on each connected component of $U_{i}, i=1,2, \ldots, n$. Denote by ${I_{n}^{\left(\varphi_{i}\right)}}^{\text {the }} n$ dimensional Musielak-Orlicz space generated by φ_{i}. Let $x \in l_{n}^{\left(\varphi_{i}\right)}$ with $\|x\|=1$. We have $\operatorname{dim} F_{x}=\operatorname{dim} \operatorname{lin} Y$, where $Y=\left\{y: x \pm y \in B\left(l_{n}^{\left(\varphi_{i}\right)}\right)\right.$. By convexity of φ_{i} for $z \in Y$

$$
1=\sum_{i=1}^{n} \varphi_{i}\left(x_{i}\right)=\sum_{i=1}^{n} \frac{1}{2}\left[\varphi_{i}\left(x_{i}-z_{i}\right)+\varphi_{i}\left(x_{i}+z_{i}\right)\right]=1
$$

so

$$
\varphi_{i}\left(x_{i}\right)=\frac{1}{2}\left[\varphi_{i}\left(x_{j}-z_{i}\right)+\varphi_{i}\left(x_{i}+z_{i}\right)\right] \quad \text { for } \quad i=1,2, \ldots, n .
$$

Therefore if $x_{i} \notin U_{i}$ then $z_{i}=0$, i.e. $z \in Y$ and $i \in J(x)=\left\{i: x_{i} \in U_{i}\right\}$ implies $z_{i}=0$. Hence

$$
\operatorname{dim} F_{x}=\left\{\begin{array}{lll}
0 & \text { if } & k=0 \quad \text { and }
\end{array}\|x\|=1\right.
$$

where $k=\operatorname{card} J(x)$.
The m-skeleton of a convex set B is the set of all $x \in B$ such that $\operatorname{dim} F_{x} \leqslant m$. We recall that a convex compact set B in an Euclidean space is said to be stable if all m-skeletions of B are closed (see [4]).

Theorem 3. The unit ball of $l_{n}^{(\varphi i)}$ is stable.
Proof. Fix $m \leqslant n$. Let a sequence $\left\{x^{k}\right\}_{k=1}^{n}$ with $\operatorname{dim} F_{x^{k}} \leqslant n$ converges
to x^{0}. We need to show that $\operatorname{dim} F_{x^{0}} \leqslant m$. Suppose, to get a contradiction, that $\operatorname{dim} F_{x^{0}}=m^{\prime}>m$. Then card $J\left(x^{0}\right)=m^{\prime}+1$ and there exists K such that x_{i}^{k} and x_{i}^{0} belong to the same component of U_{i} for all $k \geqslant K$ and all $i \in J\left(x^{0}\right)$ (since U_{i} are open). By Remark 5 it follows that $\operatorname{dim} F_{x^{m}} \geqslant m^{\prime}>m$ for all $k \geqslant K$. This contradiction ends the proof.

The author wishes to thank Dr. Henryk Hudzik for his helpful remarks.
institute of mathematics technical university of wroclaw. wb wyspianskiego 27 . $50-370$ Wroctaw
(INSTYTUT MATEMATYKI POLITECHNIKA WROCLAWSKA)

REFERENCES

[1] H. Hudzik, Strict Convexity of Musielak-Orlicz Spaces with Luxemburg's Norm, Bull. Pol. Ac.: Math., 29 (1981), 235-247.
[2] A. Kamińska, Rotundity of Orlicz-Musielak Sequence Spaces, ibid., 137-144.
[3] W. A. Luxemburg, Banach function spaces, Thesis, Delf, 1955.
[4] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann., 229 (1977), 193-200.
[5] K. Sundaresan, On the strict and uniform convexity of certain Banach spaces, Pacific J. Math., 15 (1965), 1083-1086.
[6] B. Turret, Rotundity of Orlicz spaces, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 29 (1976), $462-469$

Р. Гжонслевич, Конечномерные пространства Орлича

В работе рассматривается проблема изображения шара n-мерного пространства Орлича и Муселяка-Орлича в пространстве всех компактных выпуклых множеств в R^{n}. Для $n=2$ симметрическое компактное выпуклое множество является шаром определенного пространства Орлича. Дается пример на то, что не существует такого изображения для $n \geqslant 3$. Доказывается, что шар n-мерного пространства Муселяка Орлича является стабильным.

