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Basic distinction

Two layers of logic: structural vs epistemic
(as stressed by Jaynes and Hintikka):

deductive inference:
I e.g. first order logic
I premises: formulas that are truth valued (certain)
I inference: turns certain premises to certain conclusions

inductive inference:
I e.g. probability theory + Bayes–Laplace rule
I premises: formulas that are probability valued (plausible)
I inference: turns plausible premises into most plausible conclusions

Can we extend Lawvere’s views on logic with the above distinction?
“In sheaf theory you do algebra vertically and topology horizontally”.
If: algebra ↔ logic, and topology ↔ logic, can the first be deductive,
and other inductive?
I will discuss the relevance of this structural claim in GR and QT, when
approached via algebraico-geometric/category-theoretic perspective.
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1. Toposes and general relativity
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Toposes in a nutshell

C : a small category
SetC

op
: a category of presheaves over C

J: a Grothendieck topology on C
sheafification functor: SetC

op
→ ShJ(C ) = a Grothendieck topos

T : an elementary (Lawvere–Tierney) topos := a category that has all limits,
exponentials, and a subobject classifier Ω.
inner logic: higher order intuitionistic type theory
Ω has a Heyting algebra structure
one can formulate synthetic (structural) theories of algebraic, geometric,
analytic,... objects in this type theory (or its subtheory), and then study
various topos models
there are many possible Lawvere–Tierney topologies j on T , corresponding (if
shjT is representable as ShJ(C )) to different Grothendieck topologies (C , J)

different sheafifications (and thus topos topology) can be seen as representing
different epistemic criteria complementing the synthetic/structural side of a
theory
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Toposes in a nutshell

Key insight: Yoneda lemma: one can embed C into SetC
op

fully and
faithfully by a family of functors HomC (−,A) : C → SetC

op
, indexed by

A ∈ Ob(C )

The type theory of a topos can be seen naively as a ’relative’ set theory,
with formulas x ∈A B understood, in SetC

op
as

x ∈ Nat(HomC (A,−),HomC (B,−)) ∼= HomC (A,B).
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SDG in a nutshell

Synthetic theory of differential geometry, with intuitionistic proofs...
...represented in models that are sheafifications of SetC

∞
, where C∞ is a

category of (commutative) C∞-algebras with smooth algebra
homeomorphisms (“well adapted models”)
motivation #1: the spectral duality between the category Man of smooth
manifolds and C∞ has limitations:
1) C∞ is not cartesian closed, so the space of all smooth maps between two

smooth manifolds is not a smooth manifold,
2) pullbacks of smooth manifolds are not smooth manifolds (in general),
3) jets and germs of smooth functions can be shown to be functors, but are

not representable
motivation #2: give exact sense to existence of infinitesimal objects s.t.
d 6= 0 and d2 = 0.
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SDG in a nutshell
start from a commutative unital ring R, D := {x ∈ R | x2 = 0} ⊂ R, D 6= {0}
Kock–Lawvere axiom: ∀g : D → R ∃!b : D → R ∀d ∈ D g(d) = g(0) + d · b.

R

R

D

g

Higher order Taylor series: Dn := {x ∈ R | xn+1 = 0} ⊂ R
The space of k-jets in n variables:
Dk(n) := {(x1, . . . , xn) ∈ Rn | xi1 · . . . · xik+1 = 0} for any k-tuple (i1, . . . , ik+1)

Even more generally: Weil algebras:
R[X1, . . . ,Xn]/(p1(X1, . . . ,Xn), . . . , pm(X1, . . . ,Xn))

E.g. D := SpecR(R[X ]/[X 2]) = {d ∈ R | d2 = 0}
Kock–Lawvere: α : R[X ]/(X 2) 3 (a, b) 7→ [d 7→ a + d · b] ∈ RD should be an
isomorphism
Generalised Kock–Lawvere axiom: for any Weil algebra W the R-algebra
homomorphism α : W → RSpecR (W ) is an isomorphism.
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SDG in a nutshell

The generalised K–L axiom makes every jet representable.
There are two other objects of infinitesimals:

4 := {x ∈ R|¬(x ∈ Inv R)} = {x ∈ R|¬¬x = 0}

44 :=
⋃
n>0

(
−1

n
,
1
n

)
= {x ∈ R|¬(x#0)},

D(n) ⊂ Dn ⊂ Dk(n) ⊂ Dn
k ⊂ D(W ) ⊂ 4n ⊂ 44n.

where
x#y := ∃n ∈ N − 1

n
< x − y <

1
n

Inv R := {x ∈ R|∃y ∈ R xy = 1}.

There are also some models in which one can consider also the object I of invertible
infinitesimals:

I := {x ∈ R|x ∈ 44∧ x ∈ Inv R} =
⋂
n>0

(−1
n
,
1
n

)− {0}.

Hence, I ⊂ 44 ⊃ 4 and I ∩4 = ∅.
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SDG in a nutshell
An interpretation of these objects in well adapted models is:

smooth real line R = Y (`C∞(R)) = s(R)
point x = Y (`(C∞(R)/(x))) = s({∗}) = {x ∈ R|x = 0}

first-order infinitesimals D = Y (`(C∞(R)/(x2))) = {x ∈ R|x2 = 0}
kth-order infinitesimals Dk = Y (`(C∞(R)/(xk+1))) = {x ∈ R|xk+1 = 0}

infinitesimals 44 = Y (`C∞0 (R)) = {x ∈ R|∀n ∈ N − 1
n+1 < x < 1

n+1}
The symbol Y denotes the Yoneda functor Hom(−, `A) =: Y (`A), while s denotes the
functor s : Man∞ → SetC

∞

When modelled in SetC
∞
, each point x ∈ M becomes a functor that can be

considered at different stages
If modelled at the stage {∗}, it corresponds to a global sheaf functor, and standard
manifold picture, with no ’hidden structure’ is restored.
In order to have models of invertible infinitesimals ( = Robinson’s nonstandard
analysis’ infinitesimals), a forcing inside topos has to be made.
It requires subsequently stronger conditions imposed on the underlying site (C , J) to
have: jet representability, germ representability, germ representability with invertible
infinitesimals.
Local coordinate systems and implementation of rudimentary integration require to
impose topological (not purely algebraic) conditions on Grothendieck topology:
hence “measureability (epistemic potency of a theory) depends on the horizontal
structure”.
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General relativity in a nutshell

(M, g), where M is a smooth manifold,
g is a bilinear symmetric 2-form field over M that has infinitesimally a form of
a Minkowski metric diag(−1,+1,+1,+1)

∇g = 0 (Levi–Civita connection)
Einstein equations are a set of PDEs: Rij(x)− 1

2gij(x)(R(x)− 2Λ) = κTij(x).
General problem of observables in GR (“hole argument”): they are
diffeomorphism invariant, so e.g. g(x) has no observable meaning, and
observables are essentially global.
Fixing the global coordinate system = fixing the global gauge (there is still a
local lorentzian gauge to be fixed in each point independently). But how?
Bergmann–Komar [’56-’64] observables: a proposal to fix global coordinate
system (x1, ..., x4) as constructed from 4 linearly independent scalars
constructed from g and its derivatives (more specifically, Weyl tensor).
However, this does not work for spacetimes with symmetry.
Typical approach: assume four global scalar fields (φ1, . . . , φ4) of some
effectively noninteracting matter content and use it to define (and fix)
x1(φ1, . . . , φ4), . . . , x4(φ1, . . . , φ4).
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GR in SDG

Guts’95,Guts–Grinkevich’96,...: formulation and investigation of the
solutions
Conceptual problem left open: what is the “physical meaning” of stages
different from terminal (global sheaf)?
RPK’05: Consider the stage as a specification of observer’s context of
observation, with different stages corresponding to different observers.
Consider the stage dependence of points as a generalisation of a global
gauge fixing x1(φ1, . . . , φ4), . . . , x4(φ1, . . . , φ4).
Hence, we can think of the stage as fixing of the global frame of
observation (diffeomorphism) performed in terms of the inner degrees of
freedom of an observer, who substantialises the space in terms of his
own subjective parameters, available to him at his stage.
The terminal stage of {∗} is a global view.
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Einstein algebras
Geroch’72: Pass from M to C∞(M), generalise the latter to a commutative
R-algebra, define g and ∇ on it, impose algebraic form of Einstein equations,
consider it to be an algebraic generalisation of GR, and study representations.
Heller’92:

I Slightly different definition of Einstein algebra (a commutative R-algebra C with a
scalar product g on a module of C-derivations s.t. g has a lorentzian signature,
∇g = 0, and algebraic form of Einstein equations holds).

I Introduced Sikorski representation of Einstein algebras, substantially different from
C∞(M), and demonstrated that this allows to include space-time singularities of
certain kind as a part of representation, substantiating the merits of Einstein-algebraic
generalisation of GR.

I Introduced sheafs of Einstein algebras over a Sikorski representation of a single
Einstein/Lorentz algebra, which allows to include more general classes of singularities
(studied in more details in Heller–Sasin’95).

Lorentz algebra := Einstein algebra without assuming Einstein equations.
Heller–Sasin’95 (implicitly) and Rosentock–Barrett–Weatherall’15 (explicitly):
an Einstein/Lorentz algebra homomorphism is defined as an R-algebra
homomorphism φ s.t. the corresponding metric are equal under a push
forward along φ.
RPK’19: Given a category LA of Lorentz algebras, we can consider topos
SetLA. Its sheafifications with respect to different subcanonical Grothendieck
topologies will be called lorentzian toposes.
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2. Information geometry and quantum theory
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What are the state spaces?

Pascal–Fermat ’1654: probabilities, Huygens ’1657: expectations
XXth century probability theory = “measure theory with a soul” [M.Kac]:
sets of (normalised) measures p ∈ L1(X , µ) or p ∈ L1(A), or integrals p ∈ L
categorically equivalent formulations:
(X , µ) - localisable measure spaces [Borel, Steinhaus, ..., Kolmorogov, Segal],
A - maharanisable Dedekind complete boolean algebras [Carathéodory, Kappos],
L - Banach preduals of proper abstract L∞ spaces [Daniell, Riesz, Stone, Le Cam]

in quantum theory one starts from ’pure’ states ψ understood as vectors in a
complex Hilbert space H
generally, a ‘state’ ρ = a linear operator on H that is trace class, i.e.
T (H)+ := {ρ ∈ B(H) | trH(|ρ|) <∞, ρ ≥ 0}, where:
B(H) = bounded linear operators on H,
(i.e., linear maps x : dom(x)→H, s.t. dom(x) ⊆ H and
∃λ ∈ R+ ∀ψ ∈ dom(x) ||xψ||H ≤ λ||ψ||H)),
trH(x) = trace of x :=

∑
i 〈ψi , xψi 〉H ∈ [0,∞]
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Probability theory:
Underlying structure: measure space (X , µ)

Main spaces: Probabilistic models:

M(X , µ) ⊆ L1(X , µ)+ := {p : X → R |
∫
X
µ|p| <∞, p ≥ 0}

e.g. Gaussian models: {p(x , (m, s)) = 1√
2πs

e−
(x−m)2

2s2 | (m, s) ∈ Θ ⊆ R× R+}.
Observables (estimators): functions f : X → R

Quantum mechanics:
Underlying structure: Hilbert space H
Main spaces: Spaces of density matrices:

M(H) ⊆ T (H)+ := {ρ ∈ B(H) | trH(|ρ|) <∞, ρ ≥ 0}

e.g. Gibbs states: {e−βH | β ∈ ]0,∞[}, for a fixed self-adjoint H.

Observables: self-adjoint operators x : H → H
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W ∗-algebras and integration

A W ∗-algebra N :
I a (noncommutative) algebra over C with unit I,
I with ∗ operation s.t. (xy)∗ = y∗x∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x , (λx)∗ = λ∗x∗,
I that is also a Banach space,
I with ·, +, ∗ continuous in the norm topology (implied by the condition ||x∗x || = ||x ||2),
I such that there exists a Banach space N? satisfying the Banach space duality:

(N?)? ∼= N ,
Special cases:

I if N is commutative
then ∃ a measure space (X , µ) s.t. N ∼= L∞(X , µ) and N?

∼= L1(X , µ)
I if N is “type I factor”

then ∃ a Hilbert space H s.t. N ∼= B(H) and N?
∼= T (H).

Hence, the element φ ∈ (N?)+ provides a joint generalisation of probability density
and of density operator.

By means of embedding of N? into N ?, it is also an integral on N .

Hence, the subsets of N+
? can be considered as generic quantum state spaces.
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Objects = spaces of noncommutative integrals

Key fact: The above setting allows to develop full-fledged integration theory
on noncommutative W ∗-algebras, which generalises integration theory on
measure spaces (with partial integration, conditional expectations, Lp(N )
spaces, etc...).
Key fact #2: The noncommutative measure theory, focused on measures on
the orthomodular lattices of projection operators (in any W∗-algebra) is not
equivalent, and has essentially less structure (e.g. it does not even allow to
construct noncommutative Lp spaces).
Hence, in noncommutative case Huygens wins with Fermat–Pascal:
expectation/integral is more fundamental than probability measure.
Key fact #3: Non-type I W ∗-algebras are indispensable generalisation of the
ordinary quantum mechanics in several important cases, e.g. the maximum
entropy states in thermodynamical limit, required for an exact derivation of
Hawking and Unruh effects.
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Troubles with deduction and spectrality
Quantum logic: [von Neumann’32, Birkhoff–von Neumann’36, Mackey’57, Gleason’57,
Piron’64, Kochen–Specker’65,...]

main structure: orthomodular orthocomplemented posets or lattices
main advantage: direct generalisation of the structure of
Borel–Steinhaus–Kolmogorov probability theory
main disadvantages:

I no-go for tensor products [Randall–Foulis’81, Aerts’81]
I noncommutative integration theory is strictly more general
I several internal ambiguities

(semantic: see Redei’01; structural: e.g. at least 5 different negation hooks)

Spectral paradigm:
no direct generalisation of algebraic spectral duality (Gel’fand) to
noncommutative case
noncommutative integration perspective: expectations � measures/pure
states
operational/convex theoretic perspective: estimation of density matrix ρ is
based on probability measures trH(ρE (X , µ)), where E (X , µ) is semi-spectral
measure, that does not determine uniquely any projectors

Conclusion: a shift from deductive quantum logic of projectors/measures to
quantum inductive inference of noncommutative integrals.
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Topos theoretic approach

Isham–Butterfield’98+, Isham–Doering’06+,...: topos of presheaves over
commutative subalgebras of a fixed W∗-algebra, with inclusions as morphisms
main advantage: allows to show that the Kochen–Specker theorem is
equivalent to nonexistence of a global cross section of a spectral presheaf in
such topos
allows to rephrase some of the structure of quantum theory inside topos, in a
such a way that Heyting algebra structure gains more fundamental role than
quantum logics (OML’s/OMP’s)
yet, all of the the key troubles of quantum logic and spectral paradigm
remain:

I topos is a cartesian closed category, while ⊗ of quantum theory is
noncartesian monoidal ⇒ no account for naturality of tensorial structure
(and thus such things like entanglement, teleportation,...)

(this is addressed by an alternative approach by Abramsky–Coecke’04+: taking
symmetric monoidal category as a departure point (valid only in finite dimensions),
with no topos structure and no quantum logic)

I algebraic geometry of topos is commutative, while generic quantum
probability theory is a noncommutative integration theory
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What are the morphisms?

commutative probability theory:
Bayes’1763–Laplace’1774 rule
Kolmogorov’1933: conditional expectations various people soon after:
markovian ( = normalised positive linear) maps
quantum theory:
von Neumann’1932–Lüders’55 ’projective state reduction’ rule
Moy–Nakamura–Turumaru’54: conditional expectations
Stinespring’55: completely positive maps (“quantum markovian”)
all those mappings can be viewed as inductive inference, e.g. change
state due to change of information
first categorical formulation with markov maps explicitly considered as
categorical morphisms: Chencov’1965 & Morse–Sacksteder’1966.
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Chencov’s programme of categorical geometrostatistics

Independent discoveries that ’Fisher information matrix’ is a riemannian
metric tensor on the space of probabilities (a.k.a. “statistical manifold”):
Hotelling’29 (unpublished), Rao’45, Jeffreys’46.
Chencov’64: introduced an affine connection on statistical manifold
Chencov’65: paper “Categories of mathematical statistics”
(as a reference for category theory: Russian ’61 translation of Godement’s
‘Topologie algébrique et théorie des faisceaux’ !)
Chencov’68: generalised pythagorean theorem for relative entropies
Chencov’69: characterisation of all riemannian–affine geometries that are
monotone under markovian morphisms
Morozova–Chencov’85,’89, Petz’94: characterisation of riemannian geometries
of quantum state spaces that are monotone under quantum markovian
morphisms
Jenčová’03: characterisaton of monotone quantum affine connections
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Chencov’s programme of categorical geometrostatistics

Chencov’72: monography summarising ’64-’72 work.

On the first page of introduction:

“The system of all statistical decision rules of all thinkable statistical
problems taken together with a natural operation of composition forms an
algebraic category. This category gives birth to a homogeneous geometry of
families of probabilistic laws, in which the families play the role of ‘figures’,
while decision laws describe ‘movements’. Two families are congruent if and
only if, when they are having the same statistical properties. The subject of
this monography most exactly could be described by a notion
‘geometrostatistics’.”
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Main ’postchencovian’ plot twists in information geometry

CP maps are limited as morphisms, because they pressume no correlations (e.g., a
tensor product) contained in initial states of the global system, which is the opposite
of the generic case in algebraic QFT [Reeh–Schlieder’61]

Various probabilistic updating rules (Bayes–Laplace, Jeffrey,...) are special cases of
constrained relative entropy maximisation [Williams’80,...]

The same is for von Neumann–Lüders rule [Hellmann–Kamiński–RPK’14] and partial
trace [Munk-Nielsen’15], which together accounts for everything in CP maps that is
neither an unitary evolution nor a tensor product (thus, the ’purely inferential’ layer).

A Taylor expansion of large class of relative entropies induces a riemannian metric
and two torsion-free affine connections [Ingarden et al’82, Eguchi’83,...]

In particular, for markov monotone [Csiszár’63–Morimoto’63, Kosaki’82–Petz’85]
relative entropies one regains precisely Chencov-type geometries, both in
probabilistic and quantum case [Eguchi’83, Lesniewski–Ruskai’99]

It turned out that information geometry has essentially two different layers: one
associated with monotonicity under markov maps (as above), another associated
with generalised pythagorean theorem: Brègman [’67] relative entropies, and
resulting dually flat/hessian geometries.

Structural conclusion: Start from Brègman relative entropies, with entropic
projections as morphisms, and their Taylor expansion as local geometric structure.
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Quantum information divergences/relative negentropies

Quantum information divergence D :M(H)×M(H)→ [0,∞]
s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]

D1/2(ρ, σ) := 2
∣∣∣∣√ρ−√σ∣∣∣∣2

G2(H)
= 4trH(12ρ+ 1

2σ −
√
ρ
√
σ)

(Hilbert–Schmidt norm2)

DL1(N )(ρ, σ) := 1
2 ||ρ− σ||T (H) = 1

2trH|ρ− σ| (L1/trace norm)

Dγ(ρ, σ) := 1
γ(1−γ)trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1}

[Hasegawa’93]
Dα,z(ρ, σ) := 1

1−α log trH(ρα/zσ(1−α)/z)z ; α, z ∈ R
[Audenauert–Datta’14]
Df(ρ, σ) := trH(

√
ρ f(LρR

−1
σ )
√
ρ); f operator convex, f(1) = 0

[Kosaki’82,Petz’85]
for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.
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Entropic paradigm: absolute and relative

Gibbs’1902, Elsasser’37, Jaynes’57, Ingarden–Urbanik’62,...:

constrained maximisation of absolute entropy
(e.g., S(ρ) = −D(ρ, ψ) with a fixed prior ψ = I/ dimH)
as a method of model construction:

ρ(constraints) := arg sup{S(ω) | constraints(ω)}

selecting a specific class of modelsM with elements parametrised by
allowed values of constraints’ parameters and maximally noninformative
with respective to anything else

Kullback’59, Good’63, Hobson’69,...:

minimisation of D(ρ, ψ) as a method of state transformation
(estimation, learning, updating,...) from ψ onto a set that satisfies
given constraints.

Ryszard Paweł Kostecki (KCIK/UG) Two layers of inference 25 / 42



Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.
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Quantum measurement, bayesianity, and maximum relative entropy

Williams’80, Warmuth’05, Caticha&Giffin’06:

the Bayes–Laplace rule:

p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

is a special case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ; D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of
p 7→ arg infq∈Q {D1(p, q)} = PD0

Q (p), where D0(p, q) = D1(q, p).

Lüders’ rules [Lüders’55]:

ρ 7→ ρnew :=
∑

i

PiρPi (‘weak’) ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02:

Lüders’ rules should be considered as rules of inference (conditioning) that are
quantum analogues of the Bayes–Laplace rule
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Quantum bayesian inference from quantum entropic projections

RPK’13’14, F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of ρ 7→ arg infσ∈Q {D1(ρ, σ)}
with

Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}
2 strong Lüders’ rule derived from ρ 7→ arg infσ∈Q {D1(ρ, σ)} with

Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}
under the limit p2, . . . , pn → 0.

3 hence, weak and strong Lüders’ rules are special cases of quantum
entropic projection PD0

Q based on relative entropy
D0(σ, ρ) = D1(ρ, σ).

Bayes–Laplace and Lüders’ conditionings are special cases of entropic
projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.
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Quantum measurements from quantum entropic projections

Hence: the rule of maximisation of relative entropy (entropic projection
on the subspace of constraints) can be considered as a nonlinear
generalisation of the dynamics describing elementary “quantum
measurement”.
F.Hellmann–W.Kamiński–RPK’14: also quantum analogue of Jeffreys’
rule follows
M.Munk–Nielsen’15: partial trace is also entropic projection (for strictly
positive states)
more measurements and more general results:
RPK&M.Munk–Nielsen’19 (under construction)
these results are for D0 and/or D1; however there are many more D...
how general measurements can be derived from entropic projections,
allowing both D and Q to vary?
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Generalised pythagorean equation

The choice of the set Q for which the entropic projection PD
Q exists and is

unique depends very strongly on the structure of D: the choice of principle of
inference (D) determines the accepted data types (Q).
We need some principle constraining D that would guarantee existence,
uniqueness, and good composition properties of D-projections.
We say that D satisfies a generalised pythagorean equation at Q iff
[Chencov’68]

D(φ, ψ) = D(φ,PD
Q(ψ)) + D(PD

Q(ψ), ψ) ∀(φ, ψ) ∈ Q×M.

Thus, information divergence decomposes additively under a projection onto a
suitable subspace, hence we have a nonlinear, yet additive (!), decomposition:
data = signal + noise
Example 1: If Q forms an affine subset of G2(H)+ under ρ 7→ √ρ, then:∣∣∣∣∣∣x −P

D1/2
Q (z)

∣∣∣∣∣∣2
G2(H)

+
∣∣∣∣∣∣PD1/2
Q (z)− z

∣∣∣∣∣∣2
G2(H)

= ||x − z ||2G2(H).

Example 2: If Q := {φ ∈ G1(H)+
1 | φ(h) = const}, then [Donald’90]

D1(φ, ψh) + D1(ψh, ψ) = D1(φ, ψ) ∀(φ, ψ) ∈ Q×G1(H)+
1 .
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Brègman relative negentropies DΨ

Brègman’67:
Let f : Rn → ]−∞,∞] be convex and proper
(efd(f ) := {x ∈ Rn | f (x) 6=∞} 6= ∅). Then:

Df (y , x) := f (y)− f (x)−
n∑

i=1

(y − x)i [(gradf )(x)]i

Jones–Byrne’90: Df is characterised
by the generalised pythagorean
equation
Bauschke–Borwein–Combettes’01:
generalisation of Df from Rn to
arbitrary reflexive Banach space X
under some additional conditions on f
RPK’17: generalisation to D̃f defined
over probabilistic, quantum, JBW, and
other more general state spaces M via
D̃f := Df (`(·), `(·)), where ` : M → X
is generally a nonlinear map
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Categories of brègmannian entropic projections
Cvx(`, f ):

I objects: `-closed `-convex subsets of M, including empty set
I morphisms: P

D̃f
Q , including empty arrows

I composition: P
D̃f
Q2
◦PD̃f

Q1
= P

D̃f
Q1∩Q2

Aff(`, f ): as above, but Q restricted to `-affine `-closed sets: the
category of generalised pythagorean theorem
Cvx⊆(`, f ), Aff⊆(`, f ): as two above, respectively, but with
composition rule restricted to Q2 ⊆ Q1 (inclusion of convex/affine sets, in some

analogy to Isham–Butterfield inclusion of commutative algebras)

RPK’17: specific examples of above categories (in particular: a class of

categories associated naturally with noncommutative Orlicz spaces over semi-finite

W∗-algebras and nonassociative Lp spaces over semi-finite JBW-algebras)

The above categories provide the foundation of the nonmarkovian
version of categorical geometrostatistics.
Two natural directions to follow:
1) semantics via adjunctions and monads/comonads
2) localisation via toposes
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Adjointness in (deductive) foundations

Lawvere’63,’69:
I C: a category of deductive systems:
I objects: formulas,
I arrows: proofs/deductions.
I D: a category of geometric structures
I

D

syntax
(formalisation)

��

a

C

semantics
(interpretation/model)

JJ

examples:
I C := typed λ-calculi with surjective pairing, D := category of cartesian closed

categories; C ∼= D (Lambek’68,...)
I C := extensional Martin-Löf theories, D := category of locally cartesian closed

categories; C ∼= D (Seely’84,...)
I C := intuitionistic higher order type theories, D := category of toposes with canonical

subobjects and strict logical morphisms preserving canonical subobjects; adjointness
(Lambek’74, Volger’75, Fourman’77,...)
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Early categorical settings for inductive inference

Chencov’65, Morse–Sacksteder’66:
I objects: spaces of probability densities (subsets of L1 spaces)
I morphisms: Markov (i.e. linear, positive, and normalisation preserving) maps

quantum generalisation (implicit: many authors in late 60s/early 70s):
I objects: spaces of density matrices/normal states on W∗-algebras

(subsets of noncommutative L1 spaces)
I morphisms: completely positive trace preserving linear maps

in both probabilistic and quantum case this setting was used by
Chencov and others to characterise such classes of geometric structures
(riemannian metrics, affine connections) on objects of these categories
that are monotonically decreasing under morphisms
important observations:

1 inductive inference categories are inherently geometric, with geometric
properties encoding specific prescription of ‘optimal’ methods of model
construction and inductive inference (“Jaynes–Chencov principle”)

2 for each specific method/category of inductive inference, there are
different optimal experimental designs that can be analysed with it (e.g.
χ2 test makes no sense for a small sample size, the Bayes–Laplace rule is
inapplicable to data given by average values, etc...)
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Epistemic adjointness [RPK’12,’16]

Postulate, ver.1: given the category IndInf of inductive inferences,
the optimal category ExpDes of experimental designs corresponding to
IndInf should be such that there exist two adjoint functors:

IndInf

syntax
(predictive verification)

��

a

ExpDes

semantics
(model construction)

KK

i.e., the method of model construction should be the most effective
solution of the problem provided by the given predictive verification.
Postulate, ver.2: Given the category IndInf, the admissible family of
possible experimental design categories and the corresponding adjoint
functors should be given by specifying a comonad on IndInf.
Dually, given ExpDes, a monad on it describes a range of admissible
inductive inference settings applicable optimally to it.
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Resource theoretic perspective [RPK’16]

Embedding:= a full and faithful functor F : C → D.
I it is extensive iff F (C) is a subcategory of D
I it is intensive iff ∃!G such that F a G and the unit of adjunction is a natural

isomorphism.
I an intensive embedding can be seen as a translation from more

coarse-grained/concrete to more refined/abstract description
I it gives rise to a comonad E on D

Let us also introduce a monad T on D, representing the allowed (free)
operations on D.
Assuming that D is equipped with a terminal object 1, an object x in D will
be called a free resource iff ∃ an element f of T such that f : 1→ x .
Taking D to be given by an inductive inference category IndInf, we define a
categorical resource theory as a triple (IndInf,E ,T ), where:

I epistemic comonad E on IndInf provides specification of compatible experimental
designs, via the corresponding syntax/semantics adjointness (the choice between
Eilenberg–Moore and Kleisli constructions in this case depends on whether one wants
to be maximally restrictive or maximally inclusive w.r.t. the range of admitted ExpDes)

I action monad T on IndInf provides specification of free operations and free resources

one can consider a lax morphism of free operations monad T from inductive
inference category D to experimental design category C along the (nonunique)
right adjoint functor representing the experimental design comonad E
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Entropic model construction as a functor [RPK’16,’17,’19]

Cvx(`, f ) as a model of IndInf
ExpDes: a category with data sets of configuration parameters as
objects, with arrows given by data sets describing registration
parameters of experimental operations, and composition representing
allowed compositions of experimental operations.
F :ExpDes→IndInf provides an idealisation of finite data sets:
mapping sets in Ob(ExpDes) into the `-closures of their `-convex
envelopes, and mapping sets in Arr(ExpDes) into entropic projections
onto `-closures of the `-convex envelopes of these sets.
The adjoint functor: given by forgetting everything except the convex
sets used as constraints.
Taken together, they determine and epistemic comonad E on Cvx(`, f ).
The action monad on Cvx(`, f ) is specified differently, using so-called
Brègman monotone operations, which provide an implementation of
Mielnik’s [’69,’73] idea of nonlinear transmitters [details: RPK’17]

Ryszard Paweł Kostecki (KCIK/UG) Two layers of inference 37 / 42



Smooth quantum information geometries
Taylor expansion of D induces a generalisation of a riemannian geometry onM(N ).

M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth} is a
C∞-manifold

Jenčová’05: a general construction of smooth manifold structure on the space of all
strictly positive states over arbitrary W ∗-algebra, with tangent spaces given by
noncommutative Orlicz spaces.

Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth divergence D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection
∇̄ = (∇D +∇D†)/2.
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Hessian geometries = dually flat Norden–Sen geometries

If (M, g,∇,∇†) is a Norden–Sen geometry with flat ∇ and ∇†, then:
1 there exists a unique pair of functions Φ :M→ R, ΦL :M→ R such that g is their

hessian metric,

g(ρ) =
∑
i,j

∂2Φ(ρ(θ))

∂θi∂θj dθi ⊗ dθj ,

g(ρ) =
∑
i,j

∂2ΦL(ρ(η))

∂ηi∂ηj dηi ⊗ dηj ,

where: {θi} is a coordinate system s.t. Γ∇ijk(ρ(θ)) = 0 ∀ρ ∈M,

{ηi} is a coordinate system s.t. Γ∇
†

ijk (ρ(η)) = 0 ∀ρ ∈M,
and ΦL is a Fenchel conjugate of Φ.

2 the Eguchi equations applied to the Brègman divergence

DΦ(ρ, σ) := Φ(ρ) + ΦL(σ)−
∑

i

θi (ρ)ηi (σ)

yield (g,∇,∇†) above.
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Smooth generalised pythagorean theorem

Let (M, g,∇,∇†) be a hessian geometry. Then for any Q ⊆M which is:

∇†-autoparallel := ∇†uv ∈ TQ ∀u, v ∈ TQ;
∇†-convex := ∀ρ1, ρ2 ∈ Q ∃! ∇†-geodesics in Q
connecting ρ1 and ρ2;

there exists a unique projection

M3 ρ 7→ P
DΦ
Q (ρ) := arg inf

σ∈Q
{DΦ(σ, ρ)} ∈ Q.

it is equal to a unique projection of ρ onto Q along a
∇-geodesic that is g-orthogonal at Q.
it satisfies a generalised pythagorean equation

DΦ(ω,PDΦ
Q (ρ))+DΦ(PDΦ

Q (ρ), ρ) = DΦ(ω, ρ) ∀(ω, ρ) ∈ Q×M.

Hence, for Brègman divergences DΦ the local entropic projections are equivalent with
geodesic projections.
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Troubles with generality ⇒ localisation via topos models
Arbitrary/general (effective) state spaces are not dually flat
Pure states are not faithful and belong only to a boundary of C∞ manifold
In such cases as critical points (corresponding to phase transitions) the curvature
scalar diverges, corresponding to a singularity of a manifold
Equations on general form on metric tensor on a manifold represent specific
renormalisation constraints [Mitchell’67, Jaynes’85’93, Favretti’07]. This can be
interpreted as [RPK’16] “information gravity from renormalisation” (an information
geometric ‘conceptual analogue’ of Sakharov’69+ induced gravity)

Proposed solution [RPK’19]:
In analogy to a shift from special relativity to general relativity, we can shift to a
postulate that hessianity/dual flatness holds infinitesimally (in the same way as
Minkowski flatness in GR), or locally [SDG teaches: that’s an important difference!]:
localisation of ’ideal’ inference = 1) locally the default inductive inferences
correspond to geodesic falls, 2) infinitesimally, metric has always a hessian form.
Define hessian algebra as a commutative R-algebra C with a scalar product g and
two affine connections ∇ and ∇̄ on a module TM of C -derivations s.t. g has
positive signature, ∇̄g = 0, ∇g = D, D is completely symmetric third rank tensor
on TM, ∇ and (∇̄ − D/2) are torsion-free and flat.
Consider the category HA of hessian algebras with hessian algebra homomorphisms,
analogously to category LA of Lorentz algebras, and the topos SetHA.
Study sheafifications of SetHA, with different subcanonical Grothendieck topologies,
encoding different compatibility conditions between local descriptions.
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Basic distinction
Two layers of logic: structural vs epistemic (as stressed by Jaynes and Hintikka):

deductive inference:
I e.g. first order logic
I premises: formulas that are truth valued (certain)
I inference: turns certain premises to certain conclusions

inductive inference:
I e.g. probability theory + Bayes–Laplace rule
I premises: formulas that are probability valued (plausible)
I inference: turns plausible premises into most plausible conclusions

Can we extend Lawvere’s views on logic with the above distinction?
“In sheaf theory you do algebra vertically and topology horizontally”.
If: algebra ↔ logic, and topology ↔ logic, can the first be deductive, and other
inductive?

Three cases:
GR and toposes:
1) stage-variation in SDG models as (epistemic) observer’s changes of global gauge fixing
2) Einstein/lorentzian toposes

QT and categorical brègmannian (nonlinear) geometrostatistics:
1) global approach: vertically: noncommutative reflexive Banach spaces, horizontally:

inductive inference on the spaces of noncommutative integrals,
2) local approach: dually flat localisation via hessian toposes

Resource theories and adjointness: epistemic comonads and action monads
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