
UQFC: Geometrizations of Statistical Models

Jeffrey Epstein

March 3, 2014

Smooth Geometries

As a wise Austrian once said, “Let’s start at the very beginning / A very good place to start / When you
read you begin with A-B-C / When you study smooth geometry you begin with smooth manifolds M and
put things on them.”

Riemannian Metrics

A Riemannian metric g is a smooth section of the (0, 2)-tensor bundle on M (i.e. g : M 3 p 7→ gp :
TpM × TpM → R) in which for all p ∈ M the element gp associated to p satisfies the following three
conditions for all elements u, v, w ∈ TpM of the tangent space at p and all λ1, λ2 ∈ R:

i) gp(u, v) = gp(v, u) (symmetry)
ii) v 6= 0→ gp(v, v) > 0 (positive definite)
iii) gp(λ1u+ λ2v, w) = λ1gp(u,w) + λ2gp(v, w) (bilinearity)

A Riemannian manifold or Riemannian geometry is a pair (M, g) for M a smooth manifold and g a Rie-
mannian metric. A Riemannian metric allows us to define lengths of curves onM. A curve inM is defined
as a smooth map c : R → M and a finite curve as a smooth map c : [0, 1] → M. Every curve c induces a
vecotr field ċ(t) = dc(t)/dt ∈ Tc(t)M. The length of a finite curve connecting points p = c(1) and q = c(0)
is defined as

dc(p, q) =

∫ 1

0

dt
√
gc(t) (ċ(t), ċ(t))

The Riemannian distance between points p and q inM with respect to a Riemannian metric g is defined to
be the length of the shortest finite curve connecting p and q:

dg(p, q) = inf
c
{dc(p, q)|c(0) = q, c(1) = p}

This is a metrical distance. Putting a Riemannian metric on a smooth manifold M turns it into a metric
space and allows us to take inner products (and hence norms) of elements of the tangent space at a single
point, but gives us no way to compare elements of the tangent spaces at different points.

Affine Connections

An affine connection ∇ is a map M 3 p 7→ ∇p : TpM× TpM→ TpM that obeys the following conditions
for all λ1, λ2 ∈ R, functions/scalar fields f, h :M→ R, and sections u, v, w ∈ TM of the tangent bundle on
M. We will use the notation ∇(u, v) = ∇uv:

i)∇u(fv + hw) = u(f)v + f∇uv + u(h)w + h∇uw (Linear and Leibnitz in the second argument, recall-
ing that sections of the tangent bundle are maps from scalar fields to scalar fields)
ii) ∇fu+hvw = f∇uw + h∇vw (Linear in the first argument)
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These conditions suggest that ∇uv is a directional derivative of a vector field v along another vector field u.
We call this the covariant derivative of v along u.

Parallel transport: Let u(t) ∈ Tc(t)M be a vector field defined along a curve c(t). If ∇ċu(t) = 0, we
say that u is parallelly transported along c. If this is the case, we define t∇c u ≡ t∇c(0),c(1) := u(t1) ∈ Tc(t1)M
to be the parallel transport of u = u(t0) ∈ Tc(t0) with respect to ∇. This is how we define what it means for
two elements of different tangent spaces to be equal, since all we can a priori require is that the null elements
of these spaces must be identified. A curve c(t) is called a ∇-geodesic iff ∇ċ(t)ċ(t) = 0.

The Riemann-Christoffel curvature tensor for an affine connection∇ is a map R∇ : TM×TM×TM→ TM.
The torsion tensor of an affine connection ∇ is a map T∇ : TM× TM → TM. An affine connection is
torsion-free or symmetric if T∇(u, v) = 0 for all u, v and flat if R∇(u, v, w) = 0 for all u, v, w.

An affine manifold or affine geometry is a pair (M,∇) for ∇ flat and torsion-free. Equipping a smooth
manifoldM with such a connection allows us to compare elements of the tangent spaces at different points,
but gives us no notion of distances between points on the manifold.

Metric-Affine Geometries

A triple (M, g,∇) where g is a Riemannian metric and ∇ is an affine connection is called a metric-affine
geometry. Equipped with both a metric and a connection on the manifold, we are able both to define
distances between points and to compare elements of the tangent spaces at different points. Note that the
metric and the connection are a priori independent of each other - we have defined the two objects separateley.

A metric-compatible connection is one that satisfies the equivalent conditions

∇ug(v, w) = 0

g(t∇c u, t
∇
c v) = g(u, v)∀u, v ∈ TM

g(∇uv, w) + g(v,∇uw) = u(g(v, w))

for all sections u, v, w ∈ TM of the tangent bundle on M and all curves c.

Every Riemannian manifold (M, g) defines a unique torsion-free metric-compatible affine connection called
the Levi-Civita connection, giving a unique metric-affine geometry (M, g,∇LC).

Norden-Sen Duals

A pair (∇,∇†) of affine connections over a smooth manifold M is called Norden-Sen dual with respect to a
Riemannian metric g iff

g(t∇c u, t
∇†
c v) = g(u, v)

for all vector fields u, v and all curves c. A quadruple (M, g,∇,∇†) is called a Norden-Sen manifold or
Norden-Sen geometry. We have the equality

R∇(u, v, w) = R∇
†
(u, v, w)

Eguchi Geometries

A Norden-Sen geometry (M, g,∇,∇†) with torsion-free connections is called an Eguchi Geometry. This
quadruple defines a distance D :M×M→ [0,∞], which is unique up to the third order term in its Taylor
expansion.

We can also go the other way. The directional derivative at a point p ∈ M in the direction v ∈ TpM
is defined as Dv|pF = d

dτ F (u + τv)|τ=0. Consider a triple-differentiable distance function D on M that
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satisfies Dv|pDv|pD(p, q)|q=p ∈ (0,∞) for all p ∈M and v ∈ TpM\{0}.

The directional derivative D(v)
p is defined as D(v)

p f(p) = d
dtf(p + vt)|t=0. We can apply this to a two-input

function such as a distance D(p, q) by fixing q as follows:

D(v)
p D(p, q)|p=q =

d

dt
D(q + vt, q)|t=0

We don’t have to do this fixing p = q, of course. If we don’t, we have

D(v)
p D(p, q) =

d

dt
D(p+ vt, q)|t=0

which is still a two-input function, and tells us how fast the distance between two points varies as we change
the first one in a particular direction (remember that the distance need not be symmetric).

Consider a distance D on a smooth manifold M that is triple-differentiable and satisfies the condition

D(v)
p D(v)

p D(p, q)|p=q ∈ (0,∞) ∀p ∈M ∀v ∈ TpM\{0}

This quantity is a function M→ R which tells us the second derivative of the distance between two points
as we move one away from the other.

Eguchi showed that given a smooth finite-dimensional manifold M and such a distance D (not necessarily
symmetric!), a Riemannian metric g and a dual pair of torsion-free affine connections (∇,∇†) on M are
defined by the Eguchi equations:

gp(u, v) = D(u)
p D(v)

q D(p, q)|p=q
gp((∇u)pv, w) = −D(u)

p D(v)
p D(w)

q D(p, q)|p=q
gp(v, (∇†u)pw) = −D(u)

q D(w)
q D(v)

p D(p, q)|p=q

These define a torsion-free Norden-Sen geometry (M, g,∇,∇†), which is an Eguchi geometry.

Proof of Eguchi Equations

Consider a smooth distance function (Eguchi calls this a contrast function) ρ : M×M → R such that
ρ(p, q) ≥ 0 for all p, q ∈M with equality iff p = q. Define

ρ(X1 . . . Xn|Y1 . . . Ym)(z) = (X1)p . . . (Xn)p(Y1)q . . . (Ym)qρ(p, q)|p,q=z

Then ρ(X1 . . . Xn|Y1 . . . Ym) is a map M→ R. However, via this definition we can also consider ρ itself to
be a map from pairs consisting of an n-tuple and an m-tuple of sections of the tangent bundle on M to
scalar fields. The following equality holds because ρ(x, y) has a minimum at x = y:

ρ(Y |·)(z) = Ypρ(p, q)|p,q=z = 0→ ρ(Y |·) = 0 ∀Y ∈ TM

Similarly, ρ(·|Y ) = 0 for all Y ∈ TM. Using this result, we have

0 = Xp [ρ(Y |·) + ρ(·|Y )] = XpYpρ(p, q) +XpYqρ(p, q) = ρ(XY |·) + ρ(X|Y )

yielding the relation

ρ(XY |·) = −ρ(X|Y )

Let’s consider a distance function such that ρ(XX|·) > 0 for all X 6= 0 and define a function from pairs of
sections of the tangent bundle on M to real-valued fields on M:

g(X,Y ) = −ρ(X|Y )
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g is symmetric:

g(X,Y )− g(Y,X) = ρ(Y |X)− ρ(X|Y ) = ρ(XY |·)− ρ(Y X|·) = ρ([X,Y ] |·) = 0

g is bilinear:

g(λX, Y ) = ρ(λX|Y ) = −λρ(X|Y ) = λg(X,Y )

g is positive definite:

g(X,X) = −ρ(X|X) = ρ(XX|·) > 0 ∀X 6= 0

by assumption. We’ve shown that g is a symmetric, bilinear, positive definite map from pairs of sections of
the tangent bundle onM to scalar fields onM. This is a Riemannian metric! Or is it? We’ve defined a map
from pairs of sections of the tangent bundle to scalar fields, but how do we know that the scalar fields agree
at points at which X and Y agree? Suppose (X ′, Y ′) are vector fields such that (X ′, Y ′)(z) = (X,Y )(z).
Then

g(X ′, Y ′)(z) = −ρ(X ′|Y ′)(z) = −X ′pY ′qρ(p, q)|p,q=z = −XpYqρ(p, q)|p,q=z = g(X,Y )(z)

So we’re safe, and this is indeed a Riemannian metric.

The connections are defined via the equations

g(∇XY, Z) = −ρ(XY |Z)

g(∇∗XY,Z = −ρ(Z|XY )

which are required to hold for all Z ∈ TM. They are bilinear by definition. Moreover, we have

g(∇fXY, Z) = −ρ((fX)Y |Z) = −fρ(XY |Z) = fg(∇XY,Z) = g(f∇XY,Z)

g(∇XfY, Z) = −ρ(XfY |Z) = −ρ((Xf)Y + fXY |Z) = −(Xf)ρ(Y |Z)− fρ(XY |Z)

= (Xf)g(Y,Z) + fg(∇XY,Z) = g((Xf)Y + f∇XY,Z)

which allows us to identify

∇fXY = f∇XY
∇XfY = (Xf)Y + f∇XY

The same relations hold for ∇∗, and these are precisely the defining properties of an affine connection, so ∇
and ∇∗ are indeed affine connections on M.

∇ and ∇∗ are also metric-compatible:

Xg(Y, Z) = −Xρ(Y |Z) = −ρ(XY |Z)− ρ(Y |XZ) = g(∇XY,Z) + g(∇∗XY,Z)

Using the symmetry of g:

Xg(Y,Z) =
1

2
X [g(Y, Z) + g(Z, Y )] =

1

2
[g(∇XY, Z) + g(∇∗XY, Z) + g(∇XZ, Y ) + g(∇∗XZ, Y )]

= g(
1

2
(∇X +∇∗X)Y,Z) + g(

1

2
(∇x +∇∗x)Z, Y ) = g(∇̄XY, Z) + g(∇̄XZ, Y )

which is the condition for metric compatibility! Now note that

g(∇XY −∇YX,Z) = −ρ(XY − Y X,Z) = g([X,Y ] , Z)

for all Z ∈ TM. This implies

∇XY −∇YX − [X,Y ] = T∇(X,Y ) = 0
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The same holds for ∇∗, so both connections are torsion-free. Therefore the quadruple (M, g,∇,∇∗) is an
Eguchi geometry. In addition, ∇̄ is torsion-free, and because there is a unique torsion-free metric compatible
affine connection defined by a Riemannian metric, ∇̄ is the Levi-Civita connection for g.

Consider the case of a symmetric distance ρ(p, q) = ρ(q, p). Then

ρ(A|B)(z) = ApBqρ(p, q)|p,q=z = ApBqρ(q, p)|q,p=z = AqBpρ(p, q)|p,q=z = ρ(B|A)(z)

Then

g(∇XY,Z) = −ρ(XY |Z) = −ρ(Z|XY ) = g(∇∗XY,Z) ∀Z ∈ TM

This implies ∇ = ∇∗ = ∇̄, so the symmetric distance case reduces to a the Riemannian geometry equipped
with the Levi-Civita connection. Notice what we (where we are Shinto Eguchi) have done here. We’ve
started with a smooth manifold and a possibly asymmetric distance function, and we’ve built a Riemannian
geometry on the manifold, which induces a symmetric distance function!

Statistical Models

A premeasurable space (χ,Ω(χ)) consists of a set χ and a σ-algebra Ω(χ) of subsets. A (σ-)algebra of subsets
is a collection of sets closed under complementation, finite (countable) unions, and finite intersections.

A countably additive measure on a premeasurable space is a function µ : Ω(χ)→ [0,∞] such that µ(∅) = 0
µ(∪i∈NEi) =

∑
i∈N µ(Ei). Define Meas+(χ,Ω(χ)) to be the set of all countably additive positive measures

on the premeasurable space (χ,Ω(χ)). A statistical model is a subset M(χ,Ω(χ)) ⊆ Meas+(χ,Ω(χ)).

Radon-Nikodym Derivatives

Given two measures µ and ν on a premeasurable set, we say that ν is absolutely continuous with respect to
µ if ν assigns measure zero to all sets assigned measure zero by µ. This means essentially that when we use
the measure ν to integrate over a set, there are no “jumps” in the integral compared to the integral using µ.
The Radon-Nikodym Theorem states that any complex measure λ absolutely continuous with respect to a
positive measure µ may be expressed as λ(E) =

∫
E
fµ for some L1(µ) function f , called the Radon-Nikodym

derivative dλ/dµ. Recall (or learn) that Lp(µ) is the space of functions f such that(∫
χ

|f |pµ
)1/p

<∞

These derivatives can be thought of as “measure densities” on the space χ. In the spirit of full disclosure,
I don’t understand how these integrals work. How what if the algebra is just {∅, χ} or something similarly
coarse?

We will assume that there is a countably additive measure µ̃ on our space (χ,Ω(χ)) so thatM(χ,Ω(χ)) may
be represented as a set of Radon-Nikodym derivatives, which are just L1(µ̃) functions on the set. We write

M(χ,Ω(χ)) ∼=M(χ,Ω(χ), µ̃) ⊆ L1(χ,Ω(χ), µ̃)+

Probabilistic models are simply statistical models all of whose elements are normalized to 1

M(χ,Ω(χ), µ̃) ⊆ S(χ,Ω(χ)µ̃) = {p ∈ L1(χ,Ω(χ), µ̃)+|
∫
χ

µ̃p = 1}

The full set S is known as a probability simplex.
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Finite Models

For finite sets χ with n elements and Ω(χ) = 2χ, Meas+(χ,Ω(χ)) is isomorphic to Rn. The finite probability
simplex is

S(χ, 2χ) = {(p1, . . . , pn) ∈ [0, 1]
n |

n∑
i=1

pi = 1}

Exponential Models

An important class of statistical models is the exponential family, defined as

M(χ,Ω(χ), µ̃) = {exp
(
− logZ(θ)− θifi(x)

)
|θ = (θ1, . . . , θn) ∈ Ω ⊆ Rn}

where the fi : χ→ R are a linearly independent set of functions all also linearly independent from f = 1. Z
is a normalization factor, sometimes called a partition function. Exponential coordinates are the maps

θi :Mexp(χ,Ω(χ), µ̃) 3 p 7→ θ(p) ∈ Θ ⊆ Rn

Many important classes of probability distributions are exponential families, such as normal and multivariate
normal distributions, Poisson distributions, and the complete set of probability distributions on a finite set.

Coarse Grainings

A coarse graining is a positive linear function

T? : L1(A2, µ2)→ L1(A1, µ1)

such that ‖f‖ = ‖T?(f)‖ for all f ∈ L1(A2, µ2)+. This condition may be equivalently stated∫
µ1T?(f) =

∫
µ2f

We only impose this condition on the positive cone L1(A2, µ2)+ because that’s what we care about, and
we want to be as general as possible. Finite coarse grainings between finite probability simplices S1 and S2

with sample spaces of the same size n correspond to n × n right stochastic matrices, which are matrices of
non-negative real entries with rows summing to one. In this representation, probability distributions are row
vectors and T? acts by right multiplication.

f-Distances

For any set X, a distance is a map D : X ×X → [0,∞] such that D(x, y) = 0 ↔ x = y. It is bounded if
it takes only finite values. It may be symmetric, and it is metrical if it is bounded, symmetric, and satisfies
the triangle inequality. A statistical distance is a distance on a statistical model M(A) ⊆ L1(A)+.

For a non-empty convex subset C of a vector space X, a function f : C → R is called convex if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

and strictly convex if the inequality is strict. Consider a function f : R+ → R convex on (0,∞) with
f(1) = 0 and strictly convex at 1. For such a function f , the f -divergence or f -distance is a map Df :
M(A)×M(A)→ [0,∞] defined as (now using Wikipedia’s language)

Df (P‖Q) =

∫
Ω

f

(
dP

dQ

)
dQ =

∫
Ω

f

(
p

q

)
qµ

where P and Q are probability distributions with P absolutely continuous with respect to Q. The second
equality follows if P and Q are both absolutely continuous with respect to some dominating measure µ.
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Here, p and q are the Radon-Nikodym derivatives of P and Q with respect to µ. The condition f(1) = 0
implies D(P‖P ) = 0.

The f -distance is non-negative, since by Jensen’s inequality

Df (P‖Q) =

∫
Ω

f

(
p

q

)
qµ ≥ f

(∫
Ω

p

q
qµ

)
= f(1) = 0

The f -distance is jointly convex in both variables, i.e

Df (λω1 + (1− λ)ω2, λφ1 + (1− λ)φ2) ≤ λDf (ω1, φ1) + (1− λ)Df (ω2, φ2)

for all λ ∈ [0, 1].

The f -distance is also monotonic with respect to coarse-graining:

Df (ω, φ) ≥ D(T?(ω), T?(φ))

An example of an f -distance is the total variation distance, given by f(x) = |x− 1|:

DTV(P‖Q) =

∫
Ω

f

(
p

q

)
qµ =

∫
Ω

∣∣∣∣p− qq
∣∣∣∣ qµ =

∫
Ω

|p− q|µ

The Kullback-Leibler distance can also be obtained this way using f(x) = x ln(x):

DKL(P‖Q) =

∫
Ω

f

(
p

q

)
qµ =

∫
Ω

p

q
ln

(
p

q

)
qµ =

∫
Ω

p ln

(
p

q

)
µ

Stepping away from the nirvanic peace of pure form, let’s see what the monotonicity with respect to coarse
graining means in the case of probability distributions. Let p and q be probability distributions in a statistical
model, and let κ = {κ(y|x) ≥ 0;x ∈ X, y ∈ Y } be an arbitrary transition probability distribution. Denote
by pκ and qκ the probability distributions on Y induced from p and q by the mapping κ. Then we have

Df (p‖q) =

∫
q(x)f

(
p(x)

q(x)

)
dx =

∫
q(x)

(∫
κ(y|x)dy

)
f

(
p(x)

q(x)

)
dx =

∫ ∫
q(x)κ(y|x)f

(
p(x)

q(x)

)
dxdy

=

∫ ∫
qκ(y)qκ(x|y)f

(
p(x)

q(x)

)
dxdy =

∫
qκ(y)

(∫
qκ(x|y)f

(
p(x)

q(x)

)
dx

)
dy

≥
∫
qκ(y)f

(∫
qκ(x|y)

p(x)

q(x)
dx

)
dy =

∫
qκ(y)f

(∫
κ(y|x)q(x)

qκ(y)

p(x)

q(x)
dx

)
dy

=

∫
qκ(y)f

(
1

qκ(y)

∫
κ(y|x)p(x)dx

)
dy =

∫
qκ(y)f

(
pκ(y)

qκ(y)

)
dy = Df (pκ‖qκ)

where I’ve used κ(y|x)q(x) = qκ(x|y)qκ(y) and Jensen’s inequality. What this means is that the f -distance
reflects our intuition that you ought not be able to distinguish more easily between probability distributions
by performing operations on the measurements.

Interlude: Information Theory

Mutual Information

The mutual information of two random variables X and Y with joint pdf p(x, y) and marginal pdfs p(x)
and p(y) is the Kullback-Leibler distance between the joint distribution p(x, y) and the product distribution
p(x)p(y):

I(X;Y ) = DKL(p(x, y)‖p(x)p(y)) =
∑

(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)
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Note that although DKL(p, q) is not symmetric in p and q, the mutual information I(X;Y ) is symmetric in
X and Y .

To illustrate this concept, let’s consider the case of finite sample spaces X and Y with joint probababil-
ities p(x, y). First, consider the case in which there is a one-to-one pairing between X and Y, so that
whenever xi is selected, so is yi. Then

I(X;Y ) =
∑
i

pi log
pi
p2
i

= −
∑
i

pi log pi = H(X) = H(Y )

which is the Shannon entropy of the individual distributions. Now consider the case in which the selection
of x is totally independent from the selection of y. In other words, p(x, y) = p(x)p(y). Then

I(X;Y ) =
∑
ij

pipj log
pipj
pipj

= 0

So in some sense the mutual information tells us how much we can learn about the outcome of experiments
governed by one probability distribution by looking at the results of another experiment governed by another
probability distribution.

Data Processing

Markov Chain: Random variables X,Y, Z form a Markov chain X → Y → Z if the conditional distri-
bution of Z depends only on Y and is conditionally independent of X, i.e., if we can write p(x, y, z) =
p(x)p(y|x)p(z|y).

Data Processing Inequality: If X → Y → Z then I(X;Y ) ≥ I(X;Z). In particular, if Z = g(Y ),
then X → Y → g(Y ) and I(X;Y ) ≥ I(X; g(Y )).

Sufficient Statistics: Consider two random variables X and Y with sample spaces X and Y and probability
distributions p(x; ξ) and q(y; ξ) drawn from some statistical model parametrized by ξ. Now consider a map
F : X → Y. F and p(x; ξ) together determine q(x; ξ). Defining r(x; ξ) = p(x; ξ)/q(F (x); ξ):

p(x; ξ) = q(y; ξ)p(x|y; ξ)→ p(x|y; ξ) =
p(x; ξ)

q(y; ξ)
= r(x; ξ)δ(y − F (x))

If for all events A ⊆ X and all y ∈ Y Pr(A|y; ξ) does not depend on ξ, or equivalently r(x; ξ) does not
depend on ξ, F is called a sufficient statistic for the model S parametrized by ξ. Roughly, this means that
the sample gives no more information about ξ than does the statistic. Let some statistic F be sufficient.
Then

p(x; ξ) = q(y; ξ)p(x|y; ξ) = q(y; ξ)r(x; ξ)δ(y − F (x)) = q(F (x); ξ)r(x; ξ) = q(F (x); ξ)r(x)

so the ξ-dependence of p is contained entirely in the distribution q of the RV Y . Therefore, if our goal is to
estimate ξ, we get no more information from knowing X than from knowing Y . In fact, the above condition
is both necessary and sufficient for sufficiency. This is known as the factorization theorem. Returning to the
data-processing inequality, we have I(Ξ;X) = I(Ξ;T (X)) for a sufficient statistic T .

Heading Back to Geometry

γ-Distances

A subset of the f -distances are the γ-distances, which are defined by

fγ(t) =


1
γ + 1

1−γ t−
1

γ(1−γ) t
γ γ ∈ (0, 1)

t log t− (t− 1) γ = 1
− log t+ (t− 1) γ = 0
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For γ ∈ (0, 1), the distance Dγ satisfies the generalized cosine equation

Dγ(ω, ψ) = Dγ(ω, φ) +Dγ(φ, ψ)− 1

γ(1− γ)

∫
(ωγ − φγ)(ψ1−γ − φ1−γ)

Generalized Pythagorean Theorem

Given a statistical model M and a submodel Q, define

PDQ (p) = arginfq∈Q{D(p, q)}

The generalized Pythagorean theorem states

D(q, PDQ (p)) +D(PDQ (p), p) = D(q, p) ∀(p, q) ∈ Q×M

This does not hold for all submodels Q and distances D, but does hold for, for example, D = DKL and Q
an exponential model such as Gaussians.

A Simpler Derivation of Eguchi

Consider a distance function D and Taylor expand:

D(P (θ)‖P (θ0) = D(P (θ0)‖P (θ0) + ∆θi∂iD(P (θ)‖P (θ0)|θ=θ0 + ∆θi∆θj∂i∂jD(P (θ)‖P (θ0)|θ=θ0 +O(∆θ3)

= ∆θi∆θj∂i∂jD(P (θ)‖P (θ0)|θ=θ0 +O(∆θ3)

:= ∆θi∆θjgij(θ0)

Fisher Metric

The Fisher metric on a statistical manifold is defined using this relation from the Kullback-Leibler distance.

gij(θ) =

∫
X
∂i (ln p(x; θ)) ∂j ln (p(x; θ)) p(x; θ)

This metric is monotonic with respect to mappings F : X → Y is the sense that gF (θ) ≤ g(θ), i.e. g − gF is
positive semidefinite. A necessary and sufficient condition for equality is that F be a sufficient statistic. The
Fisher metric also satisfies an additivity condition. Given p12(x1, x2; θ) = p1(x1; θ)p2(x2; θ) it is the case
that g12(θ) = g1(θ) + g2(θ).

α-Connections

An affine connection ∇(α) may be defined on a statistical manifold by

gp

(
(∇(α)

∂i
)p∂j , ∂k

)
=

∫ (
∂i∂j ln p(x; θ) +

1− α
2

∂i ln p(x; θ)∂j ln p(x; θ)

)
∂k ln p(x; θ)p(x; θ)

A nice relation is

∇(α) = (1− α)∇(0) + α∇(1) =
1 + α

2
∇(1) +

1− α
2
∇(−1)

The 0-connection is Riemannian with respect to the Fisher metric.

Cencov’s Theorem

We might wonder if the Fisher metric and the α-connection are special. In fact, they are. In particular, if
F is a sufficient statistic for S, then these objects are invariant under F . That is to say:

〈X,Y 〉p = 〈λ∗(X), λ∗(Y )〉′λ(p)

λ∗

(
∇(α)
X Y

)
= ∇′(α)

λ∗(X)λ∗(Y )
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for all X,Y ∈ T (S). Here, the Fisher connection is denoted by 〈·, ·〉. λ is a diffeomorphism from S to SF
and λ∗ : T (S)→ T (SF ) is defined by

(λ∗(X))λ(p) = (dλ)p(Xp)

Cencov’s theorem states that given a sequence {(gn,∇n)}∞n=1 defined on the statistical manifolds P(Xn), if
for all n,m, S ⊂ Pn and F : Xn → Xm for n ≥ m and F a sufficient statistic for S the induced metrics and
connections on S and SF are invariant, then there is some c > 0 and some α ∈ R such that gn = cgFisher

n

and ∇n = ∇(α)
n

Norden-Sen Again

Recall that we have defined a notion of Norden-Sen dual pairs (∇,∇∗) of affine connections with respect to
a metric g as pairs that obey the equality

Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇∗ZY 〉

for all X,Y, Z ∈ T (S). Theorem: fora ny statistical model S, the triple (GFisher,∇(α),∇(−α)) is a Norden-Sen
geometry.

Back to Pythagoras

Let p, q, r be points in a statistical manifold S such that p and q are connected by a ∇-geodesic γ1 and q
and r are connected by a ∇∗-geodesic γ2. If γ1 and γ2 are orthogonal with respect to the metric g, then we
have the Pythagorean relation

D(p‖r) = D(p‖q) +D(q‖r)

Note that this holds even if D is not a symmetric distance!

A corollary relies on the notion of auto-parallel submanifolds. Let S be a manifold and M a submani-
fold. M is called auto-parallel with respect to a connection ∇ if ∇XY ∈ T (M) for all X,Y ∈ T (M). Now
let p be a point in S and M a ∇∗-auto-parallel submanifold of S. Then a necessary and sufficient condition
for a point q ∈ M to satisfy D(p‖q) = minr∈M D(p‖r) is for the ∇-geodesic connection p and q to be
orthogonal to M at q. The point q is called the ∇-projection of p onto M .
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