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High-precision results are reported for the energy levels of 21S and 21P states of the beryllium atom. Calcu-
lations are performed using fully correlated Gaussian basis sets and taking into account the relativistic, quantum
electrodynamics (QED), and finite nuclear mass effects. Theoretical predictions for the ionization potential of
the beryllium ground state 75 192.699(7) cm−1 and the 21P → 21S transition energy 42 565.441(11) cm−1

are compared to the known but less accurate experimental values. The accuracy of the four-electron computa-
tions approaches that achieved for the three-electron atoms, which enables determination of the nuclear charge
radii and precision tests of QED.

PACS numbers: 31.30.J-, 31.15.ac, 32.10.Hq

Spectroscopic standards for the energy transitions of the
beryllium atom have been established many years ago (1962)
in the experiments by Johansson. In most cases the accuracy
of the wavelength measurements of 0.01-0.02 Å [1] has been
reached. The only more precise beryllium energy level deter-
mination comes from the experiment by Bozman et al. [2]
in which the transition energy of 21 978.925 cm−1 between
the ground and the 2 3P1 state accurate to about 0.01 cm−1

(0.002 Å) has been measured [3]. Seaton, through a fit to a
collection of excited states data, has determined the ionization
potential (IP) of the ground state to be 75 192.56(10) cm−1

[4]. Later, this quantity has been improved by Beigang et al.,
who obtained 75 192.64(6) cm−1 [5]. Contemporary high
precision calculations [6, 7] are in good agreement with the
rather old experimental IP values. Nevertheless, the precision
of the data available for beryllium is far from being satisfac-
tory compared to the exquisite accuracy of the modern atomic
spectroscopy. The level of the absolute precision achieved in
modern measurements for three-electron systems [8, 9] is as
many as four orders of magnitude higher than that obtained
in the case of beryllium. As it has been shown for two- and
three-electron atoms, the availability of such accurate data, in
connection with good understanding of the underlying atomic
theory, opens up access to such interesting applications like
the determination of the nuclear charge radius or precision
tests of the quantum electrodynamics (QED).

Remarkable advances in theoretical methods make it pos-
sible to approach the spectroscopic accuracy for the energies
and transition frequencies of few-electron atoms. This chal-
lenge requires precise treatment of the electron correlations as
well as inclusion of relativistic and quantum electrodynamic
effects. The concise approach, which accounts for all the ef-
fects beyond the nonrelativistic approximation, is based on the
expansion of the energy levels in the fine structure constant α
(see Eq. (1) below). This method has been successfully ap-
plied in recent years to light atomic and molecular systems
[10–13]. The frontiers in this field of research have been es-
tablished by the calculation of higher order (mα6) corrections
to helium energy levels [14] and ofmα7 corrections to helium
fine structure [15].

Up to now, the precision of theoretical predictions for the
beryllium states with the non-vanishing angular momentum
has been severely limited by the accuracy of the lowest-order
relativistic (mα4) and QED (mα5) corrections. The most ac-
curate calculations including the relativistic corrections was
performed 20 years ago by Chung and Zhu [16] at the full-
core plus correlation level of theory, whereas the QED ef-
fects have merely been approximated from hydrogenic for-
mulas [17, 18]. This approach has turned out to be unsatisfac-
tory for it has led to a significant discrepancy between theo-
retical predictions and experimental excitation energies. For
instance, the theoretical result [16] is by 3.45 cm−1 higher
than the experimental wavelength value 2 349.329(10) Å of
the 21P → 21S transition energy measured with 0.18 cm−1

uncertainty [1]. The fact that the theoretical excitation en-
ergy is higher than the experimental value may indicate that
correlation effects have not been incorporated satisfactorily.
Such a disagreement can only be resolved in an unequivocally
more accurate computation of nonrelativistic energies as well
as the relativistic and QED effects using the explicitly corre-
lated wave functions. Recent nonrelativistic calculations of
low-lying P - andD-states with the relative precision of an or-
der of 10−10-10−11 [19, 20] represent a step in this direction.

In this paper, we present the first complete and highly ac-
curate treatment of the leading relativistic (mα4) and QED
(mα5) effects for a four electron atomic P -state. Moreover,
we significantly improved numerical results for relativistic
and QED effects for the 21S state, which permitted us to push
the accuracy of the theoretical predictions of the 21P → 21S
transition energy beyond the experimental uncertainty. Addi-
tionally, in combination with the previously reported very ac-
curate data on beryllium cation [11], we obtained an improved
ionization potential with the accuracy an order of magnitude
higher than that of the available experimental values.

In our approach, we expand the total energy not only in the
fine structure constant α ≈ 1/137 but also in the ratio of the
reduced electron mass to the nuclear mass η = −µ/mN =
−m/(m+mN ) ≈ 1/16424. This way we reduce the isotope
dependence to the prefactors only. In terms of these two pa-
rameters, the energy levels can be represented as the following
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expansion

E = mα2
[
E(2,0) + η E(2,1)

]
+ mα4 E(4,0)

+mα5 E(5,0) + mα6 E(6,0) + . . . . (1)

Each dimensionless coefficient E(m,n) is calculated separately
as an expectation value of the corresponding operator with
the nonrelativistic wave function. The leading contribution
E(2,0) ≡ E0 is an eigenvalue of the Schrödinger equation with
the clamped nucleus Hamiltonian

H0Ψ = E0Ψ, H0 =
∑
a

p2a
2
−
∑
a

Z

ra
+
∑
a>b

1

rab
. (2)

The key to obtaining high-precision results is the use of a very
accurate trial wave function Ψ, which contains all the inter
particle distances explicitly incorporated. We express Ψ as a
linear combination of N four-electron basis functions ψi

Ψ =

N∑
i

ci ψi, ψi = A[φi(~r1, ~r2, ~r3, ~r4)χ] , (3)

where A is the antisymmetry projector, χ =
1
2 (↑1↓2 − ↓1↑2) (↑3↓4 − ↓3↑4) is the singlet spin func-
tion constructed using electron spinors. The spatial function
φ is the explicitly correlated Gaussian (ECG) function for S-
and P -state, respectively

φS = exp
[
−
∑
a

wa r
2
a −

∑
a<b

uab r
2
ab

]
, (4)

~φP = ~r1 exp
[
−
∑
a

wa r
2
a −

∑
a<b

uab r
2
ab

]
. (5)

The main advantage of these Gaussian functions is the avail-
ability of analytical forms of the integrals required for matrix
elements of the HamiltonianH0

f(n1, . . . , n10) =

∫
. . .

∫
d3r1
π

. . .
d3r4
π

rn1
1 . . . rn4

4 (6)

× rn5
12 . . . r

n10
34 exp

[
−
∑
a

αa r
2
a −

∑
a<b

βab r
2
ab

]
.

Among all the integrals represented by the above formula we
can distinguish two subsets used in our calculations. The first
subset contains the ”regular” integrals with the non-negative
even integers ni such that

∑
i ni ≤ Ω1, where the shell pa-

rameter Ω1 = 0, 2, 4, . . . . The second subset permits a sin-
gle odd index ni ≥ −1 for which

∑
i ni ≤ Ω1/r (Ω1/r =

−1, 1, 3, . . . ) and is related to the components of the Coulomb
potential. To systematize the use of the ECG basis sets we
re-derived the recurrence scheme for the generation of both
the classes of integrals from the master expression [21, 22].
An advantage of such approach is the possibility of a gradual
extension of calculation to the states with higher angular mo-
menta. The sets of integrals employed in a specific case can
be characterized using the Ω shell parameters. For instance,
the matrix elements of the nonrelativistic Hamiltonian require
integrals with Ω1 = 2, Ω1/r = −1 for S-states (Eq. (4) ), and

Ω1 = 4, Ω1/r = 1 for P -states (Eq. (5) ). If, additionally, gra-
dients with respect to the nonlinear parameters are to be used,
both shell parameters have to be increased by two.

To control the uncertainty of our results we performed the
calculations with several basis sets successively increasing
their size by a factor of two. From the analysis of con-
vergence we obtained the extrapolated nonrelativistic ener-
gies and mean values of the operators presented in Table I.
The largest wave functions optimized variationally were com-
posed of 4096 and 6144 terms for the S- and P -state, respec-
tively, leading to the nonrelativistic energies E(2,0)(21S) =
−14.667 356 494 9 and E(2,0)(21P ) = −14.473 451 33 4.
These upper bounds improve slightly those obtained by
Adamowicz et al. [7, 19].

The other coefficients of expansion (1) are calculated as
mean values with the nonrelativistic wave function Ψ. The
nonrelativistic finite mass correction is given by E(2,1) =
E(2,0) −

∑
a<b 〈~pa · ~pb〉. In order to calculate the leading rel-

ativistic corrections E(4,0) = 〈H(4,0)〉 we consider the Breit-
Pauli Hamiltonian [23], which for the states with vanishing
spin can be effectively replaced by the form

H(4,0) =
∑
a

[
−~p

4
a

8
+
π Z α

2
δ3(ra)

]
(7)

+
∑
a<b

[
π δ3(rab)−

1

2
pia

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

]
.

Since the ECG basis does not reproduce the cusps of the wave
function, a slow convergence becomes evident for relativistic
matrix elements of the Dirac δ and the kinetic energy opera-
tor p4a. To speed up the convergence, the singular operators
can be transformed into their equivalent forms, whose behav-
ior is less sensitive to the local properties of the wave func-
tion. For the Dirac δ expectation value, such a prescription
has been proposed by Drachman [24]. For example, from di-
rect calculation with the basis size of 4096 for S-state, we
get 〈δ(ra)〉 = 35.366 89 . . ., while using the Drachman regu-
larization approach we improve the convergence by three or-
ders of magnitude (see Table I). Regularization methods have
also been applied for the beryllium ground state in the for-
mer paper [6], nonetheless the present results are more ac-
curate by 2 orders of magnitude due to the better optimized
wave function. For P -states, the expectation values of the
relativistic and QED operators as well as of the Bethe log-
arithm have been unavailable in literature to date. Analo-
gous calculations of relativistic terms in the ECG basis have
been performed only for P -states of the four-body positron-
ium molecule [25]. Methods for evaluation of additional in-
tegrals “1/r2” and “1/(rarb)” of the form (6) required for
the regularized operators of the Breit-Pauli Hamiltonian have
been developed, resulting in computationally tractable recur-
sive expressions derived from corresponding master integrals.
These have been presented in the original paper only for three-
body systems [22].

The calculation of the leading QED corrections is the main
challenge of this work. It is particularly laborious because we
deal with the states of the non-vanishing angular momentum.
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TABLE I: Expectation values of various operators with nonrelativis-
tic wave function for 21S and 21P states of beryllium atom.

Operator 21S 21P

H0 −14.667 356 498(3) −14.473 451 37(4)
~pa · ~pb 0.460 224 112(8) 0.434 811 25(13)

p4a 2 165.630 1(9) 2 133.321 1(12)

δ(ra) 35.369 002 6(6) 34.897 914 6(8)

δ(rab) 1.605 305 33(9) 1.567 943 6(2)

pia
(
δij

rab
+
riab r

j
ab

r3
ab

)
pjb 1.783 648 19(15) 1.624 185 8(5)

P (r−3
ab ) −7.326 766(3) −7.097 15(8)

ln k0 5.750 46(2) 5.752 32(8)

The explicit form of the mα5 terms is given by [26, 27]

E(5,0) =
4Z

3

[
19

30
+ ln(α−2)− ln k0

] ∑
a

〈δ3(ra)〉 (8)

+

[
164

15
+

14

3
lnα

] ∑
a<b

〈δ3(rab)〉 −
7

6π

∑
a<b

〈
P

(
1

r3ab

)〉
.

This expression contains two highly nontrivial terms: the
Bethe logarithm ln k0 and the so-called Araki-Sucher distri-
bution P (r−3ab ). In ECG basis, the latter exhibits exception-
ally slow convergence when evaluated directly from its def-
inition. The regularization is in this case mandatory if one
aims at a high accuracy of the final results. For this purpose
we extended the original Drachman’s idea and obtained the
following regularized form for the distribution [28]〈

P

(
1

r3ab

)〉
=
∑
c

〈
~pc

ln rab
rab

~pc

〉
(9)

+

〈
4π (1 + γ) δ(rab) + 2 (E0 − V )

ln rab
rab

〉
.

As we can see, new classes of the integrals containing factors
of the form “ln r/r”, “ln r/r2”, “ln ra/(rarb)” arise. With the
master integral, such integrals can be expressed analytically in
terms of elementary and Clausen functions.

The evaluation of the Bethe logarithm is the most time con-
suming part of the calculations. Formulas for such calcula-
tions with the ECG functions have been presented in the for-
mer work devoted to lithium atom [29] and later on applied to
the beryllium ground state [6]

ln k0 =
1

D

∫ ∞
0

dt
f(t)− f0 − f2t2

t3
(10)

f(t) = −
〈
~P

ω

E0 −H0 − ω
~P

〉
, t =

1√
1 + 2ω

,

D = 2πZ
∑
a

〈
δ3(ra)

〉
, ~P =

∑
a

~pa ,

f0 =
〈
~P 2
〉
, f2 = −2 .

However, for the 21P state such calculations become more
sophisticated. Compared to the ground state, which through

the momentum operator is coupled only with the virtual 1P
states, the 21P state requires a complete set of the 1S, 1P e,
and 1D intermediate states. These three types of states
can be well represented in the bases φS , εijk rja r

k
b φS , and

((ria r
j
b + rja r

i
b)/2 − 1/3 δij rka r

k
b )φS , respectively. Evalua-

tion of f(t)/ω in the limit of ω = 0 is clearly established nu-
merically from the Thomas-Reiche-Kuhn sum rule for dipole
oscillator strengths 〈~P (H0 − E0)−1 ~P 〉 = 3Z/2. This value
is useful in judging the completeness of the virtual states and
estimation of uncertainties.

Because of principal difficulties, the mα6 corrections in
their full form were evaluated only for two electron atoms
[14]. Therefore, for the four-electron beryllium atom we use
the following approximate formula based on the hydrogen
atom theory [30]

E(6,0) ≈ π Z2

[
427

96
− 2 ln(2)

]∑
a

〈δ3(ra)〉. (11)

This approximation includes the dominating electron-nucleus
one-loop radiative correction and neglects the two-loop radia-
tive, electron-electron radiative, and the higher order relativis-
tic corrections. On the basis of the experience gained in he-
lium calculations [14], we estimate, considering higher charge
of the beryllium nucleus, that the neglected terms contribute
less than 20% to the overall mα6 correction.

TABLE II: Components of the 21P − 21S transition energy and the
ionization potential (IP) for 9Be atom in cm−1. CODATA [32] in-
verse fine structure constant α−1 = 137.035 999 074(44) and the
nuclear mass mN (9Be) = 9.012 182 20(43) u [31].

Operator 21P − 21S IP(21S)

mα2 42 557.255(6) 75 190.543(4)

mα2 η −2.930 72 −4.675 65
mα4 12.167(1) 7.414 0(8)

mα5 −1.003 3(14) −0.557 7(3)
mα6 −0.045(9) −0.025(5)
Total 42 565.441(11) 75 192.699(7)

Theory [16] 42 568.80

Theory [7] 75 192.667(19)

Theory [6] 75 192.510(80)

Experiment [1] 42 565.35(18)

Experiment [4] 75 192.50(10)

Experiment [5] 75 192.64(6)

Except for E(6,0), all the coefficients of the expansion (1)
are evaluated in complete, i.e. no approximation is introduced
nor any physical effect of given order is omitted. Therefore,
the uncertainties given in Table II refer to the incomplete-
ness of the basis set. On the basis of our former work [11]
on Be+, the higher order in α and η contributions, namely
mα2η2 and mα4η are estimated to be less than 0.001 cm−1

to both the transition energy and ionization potential, and thus
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they are negligible when compared to the present uncertainty
of 0.01 cm−1. We note in passing that in Table II for the val-
ues without the uncertainty all the quoted digits are certain.
In evaluation of the IP value we used the ground state energy
level of the beryllium cation E(Be+) = −14.325 836 7 a.u.
calculated with Hylleraas wave functions [11].

The accuracy of 0.011 cm−1 for the transition 21P − 21S
and 0.007 cm−1 for the ionization energy has been achieved
due to the recent progress made in two directions. The first
one, essential to reach this accuracy, is the improvement in
the optimization process of the nonrelativistic wave functions
leading to the overall increase in numerical precision. The
second direction is the complete treatment of the leading rel-
ativistic and QED effects. More specifically, the approach to
effectively calculate the many electron Bethe logarithm and
mean values of singular operators, like the Araki-Sucher term,
has been developed [6]. Particularly, an extension of the nu-
merical methods for relativistic and QED corrections on P -
states of a four-electron system is presented here.

The mα5 and mα6 terms involve the interaction of the
electrons with the vacuum fluctuations of electromagnetic
field, the electron-positron virtual pair creation, and the re-
tardation of the electron-electron interaction. Results of Ta-
ble II show clearly that taking into account such energeti-
cally subtle QED effects is unavoidable in to reach the agree-
ment between the experiment and the theory and that it en-
ables testing of QED. For example, the overall contribution of
the QED effects to the 21P − 21S transition energy amounts
to 1.048(9) cm−1 and is an order of magnitude higher than
the experimental uncertainty. Currently, the accuracy reached
by theory for the transition frequencies exceeds by an order
of magnitude that of the known measurements for beryllium
atom. At this level of accuracy we are able to resolve the
21P − 21S line discrepancy of 3.45 cm−1 between the ex-
periment [16] and theory in favor of the latter. Although, the
available semi-empirical results of the ionization energy [5]
agree well with the more accurate theoretical results obtained
here, we hope that the increased level of accuracy of the the-
oretical predictions will be a stimulus for new, more accurate

measurements.
Uncertainty of our results comes mainly from the neglect

of the higher order relativistic and QED corrections of the or-
der α6,7. Evaluation of these term sets the direction of our
future efforts. Also the numerical accuracy of the nonrela-
tivistic energy has to be improved to achieve further progress
in theoretical predictions.

The recursive method of evaluation of the integrals (6) em-
ployed in this work allows an application of the ECG func-
tions to the states with non-vanishing angular momentum.
It establishes a framework for a high accuracy studies of
the fine structure and the hyperfine splitting in the beryllium
atom. The isotope mass shifts can also be precisely calcu-
lated. However, an accurate experimental data are necessary
to enable an extraction of a nuclear-model-independent charge
radii from isotope shifts by combining high-accuracy mea-
surements with atomic theory. This is of special interest for
the halo nuclei (e.g. 11Be) for which analogous results ob-
tained recently from the 22P − 22S transition in beryllium
cation [10, 11] require a confirmation. Systematic extension
to transition energies involving D-states is mandatory to re-
solve other severe discrepancies between theory and measure-
ments pointed out by Chung and Zhu [16] like e.g. the largest
one of 7.38 cm−1 for the 31D−21S transition. To our knowl-
edge, no precise calculations of the Bethe logarithm with such
nontrivial angular momentum structures have been performed
for any few-electron systems so far (even for helium). The
methodology presented in this paper opens up a route towards
removing such obstacles and, what is more, is very promising
in applications to five- and six-electron systems.
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Poznań Supercomputing and Networking Center, and by
PL-Grid Infrastructure.

[1] L. Johansson, Ark. Fys. 23, 119 (1962).
[2] W. R. Bozman, C. H. Corliss, W. F. Meggers, and R. E. Trees,

J. Res. Natl. Bur. Stand. (U.S.) 50, 131 (1953).
[3] The factor 100~c can be used to convert cm−1 to energy units.
[4] M. J. Seaton, J. Phys. B 9, 3001 (1976).
[5] R. Beigang, D. Schmidt, and P. J. West, J. Phys. (Paris), Colloq.

44, C7-229 (1983).
[6] K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
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