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Abstract

The dissociation energy of molecular hydrogen is determined theoretically with a

careful estimation of error bars by including nonadiabatic, relativistic, and quantum

electrodynamics (QED) corrections. The relativistic and QED corrections were obtained

at the adiabatic level of theory by including all contributions of the order α2 and α3 as

well as the major (one-loop) α4 term, where α is the fine structure constant. The com-

puted α0, α2, α3, and α4 components of the dissociation energy of the H2 isotopomer

are 36118.7978(2), −0.5319(3), −0.1948(2), and −0.0016(8) cm−1, respectively, while
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their sum amounts to 36118.0695(10) cm−1, where the total uncertainty includes the

estimated size (±0.0004 cm−1) of the neglected relativistic nonadiabatic/recoil correc-

tions. The obtained theoretical value of the dissociation energy is in excellent agree-

ment with the most recent experimental determination 36118.0696(4) cm−1 [J. Liu et

al., J. Chem. Phys. 130, 174306 (2009)]. This agreement would have been impossible

without inclusion of several subtle QED contributions which have not been considered

thus far for molecules. A similarly good agreement is observed for the leading vibra-

tional and rotational energy differences. For the D2 molecule we observe, however, a

small disagreement between our value 36748.3633(9) cm−1 and the experimental result

36748.343(10) cm−1 obtained in a somewhat older and less precise experiment [Y. P.

Zhang et al., Phys. Rev. Lett. 92, 203003 (2004)]. The reason of this discrepancy is not

known.
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1 Introduction

Theoretical determination of the dissociation energy D0 of the simplest, prototypical chemi-

cal bond in the hydrogen molecule has a long history. It started in 1927, very shortly after the

discovery of quantum mechanics, by the work of Heitler and London1 who approximately

solved the Schrödinger equation for two electrons in the Coulomb field of two protons and

found that this system is stable against the dissociation to two hydrogen atoms. The ap-

proximate dissociation energy they obtained represented only about 60% of the observed

value but it could be argued that by virtue of the variational principle this was only a lower

bound and, consequently, that the new quantum theory satisfactorily explained the hitherto

puzzling stability of chemical bond between electrically neutral atoms. A few years later

James and Coolidge2,3 computed a much better, 13-term wave function depending explicitly

on the interelectron distance and found that D0 = 4.454±0.013 eV — a value within error

bars of the experimental value 4.46±0.04 eV available at that time? (obtained from the heat

of dissociation) and within about 0.5% of the present day value of 4.478 eV. This was an

amazing achievement for a computation carried out and checked by, as the authors of Ref. 2

put it, “an experienced computer".

When the electronic computers became available Kolos and Wolniewicz4 extended the

work of James and Coolidge to much longer wave function expansions (up to about 100

terms) and developed methods and codes to account for the coupling of the electronic and

nuclear motion and for the effects of relativity. The theoretical dissociation energy obtained

by Kolos and Wolniewicz D0 = 36117.4 cm−1 5,6 could be confronted with the most ac-

curate experimental determination from Herzberg and Monfils amounting to 36113.6±0.3

cm−1.7 Since by virtue of the variational principle the theoretical result can be viewed as a

lower bound, both these values can be correct only if quantum mechanics fails to describe

the dissociation of the H-H bond with quantitative accuracy. Fortunately, new experimen-

tal determinations from Herzberg8 (36116.3 cm−1 < D0 < 36118.3 cm−1) and Stwalley9

(D0 = 36118.6± 0.5 cm−1) resolved this difficulty in favor of theory. This development

3



demonstrated that the Schrödinger equation when solved accurately and corrected for small

effects of relativity can predict the molecular energy levels with very high precision and,

therefore, it laid foundation for the current faith in the quantitative predictive power of quan-

tum chemistry.

Further theoretical10–12 and experimental13–15 work has reduced the discrepancy be-

tween theory and experiment to several hundredths of cm−1. Very recently Liu et al.16

described a hybrid, experimental-theoretical determination of D0 based on several transi-

tion frequency measurements16–19 and theoretical calculations of the energy levels of the

H+
2 ion.20–23 The dissociation energy D0 = 36118.06962 cm−1 determined in this way16

has been reported with uncertainty of ±0.00037 cm−1 — almost two orders of magnitude

smaller than that of the previous most accurate determination D0 = 36118.062±0.010 cm−1

of Zhang et al.15 The best available theoretical predictions of 36118.049 cm−1 from Ko-

los and Rychlewski11 and 36118.069 cm−1 from Wolniewicz12 are significantly less precise

and have been reported without any error bar estimates. Both of these predictions involve an

incomplete treatment of α3 QED corrections24 so it is not clear if the perfect agreement be-

tween the experiment and Wolniewicz’s calculation is not fortuitous. In fact, Wolniewicz has

concluded his paper12 with the remark that the main uncertainty in his dissociation energy is

due to the neglected QED effects. Specifically, he has neglected the α3 contributions result-

ing from two-photon exchanges between electrons, the so called Araki-Sucher effect,25,26

and used a simple approximation of the Bethe logarithm27,28 which was shown to be rather

inaccurate when applied to H+
2 .29

In this communication we present a complete calculation of the α3 QED contribution to

D0 and give an approximate value of the next α4 term in the fine-structure constant expansion

of D0. We have also recomputed the nonrelativistic and α2 relativistic parts of D0 paying

special attention to an estimation of the error bars for all evaluated contributions. We hope

that this estimation will enable a more meaningful comparison of theoretical predictions with

the newest experimental result.16
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2 Method

For molecules with light nuclei the most convenient theoretical framework for description

of molecular properties is the expansion in powers of the fine-structure constant α (in our

calculations we assumed that α=1/137.0359997, cf. Ref. ? ). Specifically the molecular or

atomic energy levels needed to compute D0 can be obtained from the expansion

E = E(0) +α
2E(2) +α

3E(3) +α
4E(4) + · · · (1)

where E(0) is the nonrelativistic energy, i.e., an eigenvalue of the Schrödinger equation for

the electrons and nuclei (with the center-of-mass motion separated out), α2E(2) is the ex-

pectation value of the Breit-Pauli Hamiltonian24 with the nonrelativistic wave function (as-

suming the molecular center of mass at rest), α3E(3) is the leading QED correction24–26 and

α4E(4) collects all relativistic and QED corrections proportional to α4 30,31 (when expressed

in atomic units).

2.1 Nonrelativistic energy

The nonrelativistic approximation D(0)
0 to D0 can be obtained variationally by minimization

of the expectation value of the complete four-particle Hamiltonian with an appropriate trial

function.32,33 To have a better error control and to generate wave functions and potentials

needed in QED calculations we adopted however a step-wise approach and computed D0 as

the sum

D(0)
0 = DBO

0 +δDad
0 +δDna

0 , (2)

where DBO
0 is the result of standard Born-Oppenheimer calculation, δDad

0 is the adiabatic

(diagonal Born-Oppenheimer) correction34,35 and δDna
0 is a (very small) nonadiabatic cor-

rection defined essentially as the difference between D(0)
0 and the sum of DBO

0 and δDad
0 .

The Born-Oppenheimer potential V (R) needed in the computation of DBO
0 , δDad

0 , δDna
0 ,

5



and of the relativistic/QED corrections was represented in the following form:

V (R) = e−βR2−γR
(

R−1 +
16

∑
n=0

bnRn
)

+
( 2

∑
n=0

anRn +a3R
5
2

)
e−2R−

26

∑
n=6

fn(ηR)
Cn

Rn , (3)

where R is the internuclear distance, C6, . . . ,C26 are van der Waals coefficients fixing the

large R asymptotics of V (R), and fn(x) = 1− e−x(1 + x + x2/2! + · · ·+ xn/n!) is the Tang-

Toennies damping function.36 The asymptotic coefficients C6, C8, C10, C11, . . . ,C26 (C7,

C9 vanish) were taken from the work of Mitroy and Ovsiannikov37 with the full 13 digit

accuracy (we recomputed the five leading coefficients C6, C8, C10, C11, and C12 obtaining

the same results as the ones reported in Ref. 37). Accurate values of the asymptotic Cn

coefficients are available also for n > 2637? but we found that their inclusion in the last

term of Eq. (3) did not lead to further improvement of the fit [with the fixed form of the

short-part of V (R)]. It should be noted that the values of C24, C25, and C26 reported later by

Ovsiannikov and Mitroy? with a smaller number of digits cannot be used in our fit.

The three nonlinear parameters β , γ , η and 19 linear ones a2, a3, b0, . . . ,b16 were ob-

tained by least square fitting the r.h.s. of Eq. (3) to the energies computed by Sims and

Hagstrom38 for 47 internuclear distances R ranging from 0.4 to 6.0 bohr. In the vicinity of

the minimum of the potential well these energies have an error of the order of 10−6 cm−1 38

while for R = 6.0, where the basis set used by Sims and Hagstrom is least adequate, the error

is smaller than 2×10−5 cm−1.39 For four distances, R = 0.1,0.3,8.0, and 10.0 bohr, outside

the range covered by Sims and Hagstrom, we used values obtained by Cencek39 using a

1200-term fully optimized Gaussian geminal basis set. These values have an error smaller

than 2×10−5 cm−1.39 The linear parameters a0, a1 were constrained by the relations:

a0 = EHe−2EH−b0 + γ

a1 = 2a0 + γb0−b1 +β − γ2

2
+

26

∑
n=6

Cnηn+1

(n+1)!

(4)
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required to assure the right behavior of V (R) at small distances:

V (R) =
1
R

+EHe−2EH +O(R2) , (5)

EHe =−2.903724377034119 and EH =−0.5 being atomic energies of helium and hydrogen

(assuming infinite nuclear mass). The error of our fit is 5×10−5 cm−1 at the bottom of the

potential well and is even smaller at larger distances. The fit parameters obtained by us are

listed in Table 1. A code generating V (R) is available upon request.

The dissociation energy DBO
0 computed using the analytic Born-Oppenheimer potential

generated in this way is 36112.59273 cm−1 (using the conversion factor 1 hartree = 219

474.631 37 cm−1 ? ). We estimate that the error of this value is 0.00010 cm−1. Since the

potential points have substantially smaller inaccuracies and since the numerical integration

of the radial Schrödinger equation with an analytic potential does not introduce a significant

error, most of the uncertainty of DBO
0 results from the fitting procedure.

Accurate values of the adiabatic δDad
0 =5.77111 cm−1 and the nonadiabatic δDna

0 =0.43391

cm−1 corrections to DBO
0 were recently computed by two of us40 using a perturbation method

formulated in Ref. 41 (the proton mass mp=1836.15267247 me was assumed? in obtaining

these numbers). The computation of the adiabatic correction reported in Refs. 40,41 was car-

ried out using a novel, very stable numerical procedure41 avoiding entirely the cumbersome

differentiation of the electronic wave function. With basis sets ranging from 600 to 1800

fully optimized Gaussian geminals the accuracy of at least five significant figures for δDad
0

was achieved. Therefore we can assume that the error of δDad
0 is smaller than 0.00010 cm−1.

Also all four figures of the nonadiabatic correction δDna
0 appear to be converged with regard

to the extension of the basis set. However, the fourth and higher order effects neglected in

the perturbation procedure of Ref. 40 may be of the order of 0.0001-0.0002 cm−1. In fact

the value δDna
0 = 0.43391 cm−1 differs from the earlier, methodologically very different,

calculation of Wolniewicz by 0.0002 cm−1. Therefore we assign the uncertainty of 0.00020

cm−1 to the value δDna
0 = 0.43391 cm−1.
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Adding DBO
0 , δDad

0 , and δDna
0 we find that the nonrelativistic dissociation energy amounts

to D(0)
0 = 36118.7978(2) cm−1, where the uncertainty (given in the parentheses as the error in

the last digit) is calculated by quadratically adding the errors of summed contributions. Our

result for D(0)
0 is consistent with the value 36118.79774(1) cm−1 obtained very recently42

using 10000 extensively optimized Gaussians (and more than a year of massively parallel

computing). The accuracy achieved in Ref. 42, however impressive, is not relevant for our

purposes since the experimental uncertainty of D0 and, even more so, the uncertainty of the

relativistic and QED contributions to D0 are two orders of magnitude larger than the error of

the large-scale variational calculations of Ref. 42.

2.2 Lowest-order relativistic contribution

The lowest-order, α2 relativistic correction to the nonrelativistic energy is expressed by the

expectation value of the Breit-Pauli Hamiltonian43,44 over the nonrelativistic wave function

ψ . When the electrons and nuclei are in their singlet states and when the terms containing

the proton charge radius and the so-called recoil terms,45,46 (of the order of (me/mp)n α2,

n = 1,2,3) are neglected this correction is given by the sum of four terms

E(2) =−1
4
〈
p4

1
〉

+ 2π
〈
δ (r1a)

〉
+ π

〈
δ (r12)

〉
− 1

2

〈
p1

1
r12

p2 + p1 · r12
1

r3
12

r12 ·p2

〉
(6)

referred to successively as the mass-velocity, 1-electron Darwin, 2-electron Darwin, and

Breit contributions (the contact spin-spin interaction is included in the 2-electron Darwin

term). In Eq. (6) pi is the momentum operator for the ith electron, r1a is the vector pointing

from nucleus a to electron 1, r12 is the vector pointing from electron 2 to electron 1, and δ (r)

is the three-dimensional Dirac distribution. We made use of the fact that the wave function

ψ employed to compute the expectation values is symmetric in the spatial electronic and

nuclear coordinates. When computing the expectation values in Eq. (6) we used the adia-

batic function ψad = χ(R)ψel(r1,r2;R), where ψel(r1,r2;R) is the electronic wave function

depending parametrically on the vector R joining the nuclei and χ(R) is the solution of the
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radial Schrödinger equation with the potential V (R) plus the adiabatic correction to V (R).41

With this approximation for ψ the expectation values in Eq. (6) are obtained by averaging

the R dependent electronic expectation values, e.g., 2π
〈
ψel|δ (r1a)|ψel

〉
≡ D1(R) with the

weight function given by the square of χ(R). This adiabatic procedure is justified since, as

discussed in Sec. III, the neglected cross relativistic-nonadiabatic terms can be expected to

be of the order of (me/mp)α2, and therefore, three orders of magnitude smaller than the rel-

ativistic correction of Eq. (6). The R dependent electronic expectation values corresponding

to the four successive terms in Eq. (6) will be denoted by us as P(R), D1(R), D2(R) and

B(R). These radial functions were computed by Wolniewicz47 using the basis of Kolos and

Wolniewicz.48 They were tabulated47 for 55 internuclear distances ranging from R=0.2 to

R=12.0 bohr in the form of functions εk(R) related to ours by ε1(R) = P(R), ε2 = B(R),

ε4(R) = D1(R)−D2(R), ε5(R) = 2D2(R).

We recomputed these radial functions using extensively optimized sets of Gaussian gem-

inals and paying special attention49 to larger internuclear separations. We also computed the

constants determining the asymptotic behavior of P(R), D1(R) and B(R) at large R. The first

three constants (at 1/R6, 1/R8, and 1/R10), fixing P(R) and D1(R) at large R were already

reported in Ref. 49 [D2(R) vanishes exponentially at large R].

For the Breit correction B(R) we considered only the first two terms in the asymptotic

expansion B(R) = W4 R−4 +W6 R−6 + · · · . The constants W4 and W6 are given by the expres-

sions50,51

W4 =−2
〈
φ0

∣∣z1az2b R0 pz1 pz2
∣∣φ0

〉
(7)

and

W6 =−9
〈
φ0

∣∣(Q0
2
)

1az2b R0(z1a pz1 + pz1z1a)pz2
∣∣φ0

〉
− 12

5
〈
φ0

∣∣z1az2b R0
[
2r2

1a pz1− z1a(r1a ·p1)
]
pz2

∣∣φ0
〉
,

(8)

where φ0 is the product of atomic wave functions, R0 = (Ha +Hb−Ea−Eb)−1 is the reduced

resolvent for two noninteracting hydrogen atoms, z1a, z2b, pz1, and pz2 are the z components
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of the vectors r1a, r2b, p1, and p2, and finally (Q0
2)1a = 1

2(3z2
1a − r2

1a) is the quadrupole

moment operator. We computed W4 and W6 using spd part of the Dunning’s one-electron

Gaussian basis set of the sextuple-zeta quality with double augmentation, d-aug-cc-pV6Z.52

The SCF atomic orbitals and all the necessary integrals were taken from the DALTON suite of

codes.53 The values of both coefficients were calculated using the sum-over-states technique

with a code written especially for this purpose. All excited states resulting form the chosen

basis set were included in the summation defining R0. We found that W4 = 0.4627(7) and

W6 = 3.995(7) atomic units. The proposed error bars were determined by observing changes

of the W4 and W6 values obtained with d-aug-cc-pVXZ bases, X=T, Q, 5, 6, and by making a

comparison with the results computed using the alternative form of Eqs. (7) and (8) in which

the linear momentum operators are replaced by operators corresponding to the Cartesian

coordinates.50,51

Except for large distances, R > 10 bohr, our values of P(R) and D1(R) agree very well

with those of Wolniewicz so we used Wolniewicz’s values (available for larger number of

distances) in computing the averages 〈P(R)〉 and 〈D1(R)〉. For R > 10.0 bohr we used our

values which appear to agree somewhat better with the exact asymptotics. For R > 12.0

we applied the three-term (undamped) asymptotic expansion with the constants (at 1/R6,

1/R8, and 1/R10) published earlier by three of us.49 By observing the basis set convergence

patterns and by comparing our values of P(R) and D1(R) with those published by Wolniewicz

we estimate that the computed dissociation energy contributions due to the mass-velocity and

1-electron Darwin terms, amounting to 4.4273 cm−1 and −4.9082 cm−1, respectively, have

the uncertainty of 0.0002 cm−1 each.

For the 2-electron Darwin term we found that our values of D2(R), computed with a

basis set of 1200 fully optimized Gaussian geminals, are slightly different than those of

Wolniewicz.47 The observed basis set convergence pattern and independent calculations of

Cencek39 suggest that our values, listed in Table 2, are more accurate (especially at smaller

values of R), and we used them to calculate 〈D2(R)〉. We estimate that the dissociation energy

contribution −α2 〈D2(R)〉=−0.5932 cm−1 computed using these values has an uncertainty
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of 0.0001 cm−1.

For R ≤ 5.0 bohr our values of B(R) agree very well with those of Wolniewicz and we

used the latter in calculating B(R). For R > 5.0 bohr, however, the Wolniewicz’s values

appear to be less accurate, deviating significantly form the correct asymptotics at large R.

Therefore for R > 5.0 bohr we used the analytic fit

B(R) = e−bR(A0 +A1R+A2R2 +A3R3 +A4R4)+
W4

R4 +
W6

R6 , (9)

with parameters, b = 1.351860240, A0 = 2.077615180, A1 = −2.519175275,

A2 = 0.577315005, A3 = −0.051870326, and A4 = 0.001715821, all in atomic units, ad-

justed to values computed by us for R > 5.0 bohr. We estimate that the resulting contribution

to the dissociation energy −α2 〈B(R)〉= 0.5422 cm−1, has an uncertainty of 0.0001 cm−1.

2.3 QED contribution

The lowest-order QED correction, α3E(3), to the energy of an atomic or molecular bound

state is given by:24–26

E(3) =
16
3

(
19
30

−2lnα − lnK
)〈

δ (r1a)
〉
+

(
164
15

+
14
3

lnα

)〈
δ (r12)

〉
− 7

6π
〈P(r−3

12 )〉,

(10)

where the expectation values are computed with the eigenfunction ψ of the nonrelativistic

Hamiltonian H. P(r−3
12 ) is the distribution defined by

〈φ1|P(r−3
12 )φ2 〉= lim

a→0
[〈φ1|θ(r12−a)r−3

12 φ2〉+4π (γ + lna)〈φ1|δ (r12)φ2〉] (11)
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with θ(x) being the Heaviside step function and γ – the Euler-Macheroni constant. The so

called Bethe logarithm, lnK, in Eq. (10) is defined as

lnK =
〈ψ | j(H−E(0)) ln [ (H−E(0))/Ry∞] jψ〉

〈ψ | j(H−E(0)) jψ〉
, (12)

where j =−p1/me−p2/me +pa/mp +pb/mp is the electric current operator for the system

(pa and pb are proton momenta), and Ry∞ = α2mec2/2 = 1/2 hartree is the Rydberg constant.

The expectation values
〈
δ (r1a)

〉
and

〈
δ (r12)

〉
are already known from the calculation of the

α2 contribution so the only new quantities to be calculated are the Bethe logarithm lnK and

the so-called Araki-Sucher term — the last on the r.h.s. of Eq. (10).

The evaluation of Eq. (12) for the four-body system using an accurate nonadiabatic wave

function ψ appears to be very demanding computationally and was not attempted. Instead

we used an adiabatic approximation to lnK defined as

lnKad =
〈 lnKel(R)D1(R)〉

〈D1(R)〉
, (13)

where D1(R) is the already computed electronic expectation value of 2πδ (r1a) and the aver-

aging over R is carried out with the adiabatic nuclear wave function χ(R). The R dependent

electronic Bethe logarithm, lnKel(R), appearing in Eq. (13), is defined exactly by Eq. (12)

but with ψ replaced by the electronic wave function ψel(r1,r2;R), H by the electronic

Hamiltonian Hel, E(0) by the Born-Oppenheimer energy −2Ry∞ +V (R) and j by the total

electronic momentum operator p1 + p2. Note that after these substitutions the denominator

in Eq. (12) becomes equal to 4D1(R).

One can ask how well does this simple adiabatic approximation for lnK work. To answer

this question we used Eq. (13) to compute lnKad for the H+
2 ion using the values of lnKel(R)

reported in Ref. 29 (note that the definition of lnK adopted in this reference differs from

ours by ln2). The obtained adiabatic value lnKad = 3.01276 agrees very well with the result

lnK = 3.01225 of the complete nonadiabatic calculation of Korobov.20 In fact the adiabatic

value (obtained with the real electron mass me) should be corrected by ln(µ/me), where µ =
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me(1 + me/mp)−1 is the reduced electron mass (see Ref. 24, p. 101). With this correction

the adiabatic value, equal now 3.01222, differs only in 1 part per 105 from the result of

Korobov’s calculation. Similarly excellent agreement is observed for excited vibrational

levels. Since using this reduced electron mass correction gives an energy effect of the order

of (me/mp)α3, much smaller than the neglected relativistic recoil effects, we did not include

this correction in our H2 calculations.

To compute lnKel(R) we followed closely the technique described in Refs. 55–57. The

present work is the first molecular application of this technique and probably the first calcu-

lation of the Bethe logarithm for a molecule other then H+
2 and HD+. The method employed

by us is based on the integral representation of lnK introduced by Schwartz58 and involves

essentially an integration over the photon momenta k. Using large Gaussian geminal bases

fully optimized at each value of R and k (by minimizing the relevant Hylleraas-type func-

tionals) allows for a very efficient modeling of perturbed wave functions at different k and

R dependent length scales. The mathematical completeness of Gaussian geminal bases for

functions of Σ and Π symmetries, appearing in our calculations, is guaranteed by theorems

proved in Refs. 59,60. By inspecting the basis convergence pattern we found that the values

of lnKel(R), obtained with 3000-term geminal bases and listed in Table 2, may be inaccurate

only at the last figure given in this table. It may be of some interest to note that our values

of lnKel(R) agree rather well with the values one can obtain using approximate models pro-

posed by Garcia27 and Bishop and Cheung28 and used by Wolniewicz.12 In fact the Garcia

model works somewhat better underestimating lnKel(R) by 2% at R=1 bohr and even less

for larger distances. The model of Bishop and Cheung overestimates lnKel(R) by 4% at

R=1 bohr, by 2% at the minimum of the potential well, and by less than that at larger in-

ternuclear separations. Note, however, that the good performance of these models does not

hold generally since they do not work so well for H+
2 .29

We obtained a very accurate analytic fit of lnKel(R) interpolating between the atomic

hydrogen, lnKH, and helium, lnKHe, values and exhibiting the correct L6/R6 fall off at large

R. The asymptotic constant L6 was calculated independently from appropriate perturbation
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theory expressions using Slater basis set. The specific form of the fit function is

lnKel(R) = lnKH + e−bR(lnKHe− lnKH +A1R+A2R2 +A3R3 +A4R4)+
f6(R)L6

R6 . (14)

The parameters of the fit are given in Table 3. For R > 1 bohr the error of this fit is of the

order of 10−4 (at few points in the vicinity of R=3 bohr it reaches 4×10−4) but using the fit

function in evaluating the formula (13) leads to errors much smaller than 0.0001.

The value of lnKad, found using Eq. (14) and our values of D1(R), amounts to 3.0188

and has uncertainty smaller than 0.0001. Using this value, we can compute the dissociation

energy contribution from the first term in Eq. (10), referred to as the 1-electron Lamb shift.

This term, dominating the total α3 contribution, is equal to −0.2241 cm−1 and we estimate

its uncertainty as 0.0001 cm−1. It is worthwhile to note that using the atomic hydrogen

value of lnK, which is a natural and inexpensive approximation, one obtains −0.2277 cm−1

instead of −0.2241 cm−1, i.e., a value which is not sufficiently accurate for our purpose.

Thus, including the correct R dependence of the electronic Bethe logarithm is essential for a

meaningful comparison with high precision experimental data. The second term in Eq. (10),

which we refer to as the 2-electron Lamb-shift, gives only 0.0166 cm−1, with uncertainty

smaller than 0.0001 cm−1.

The Araki-Sucher term, the last in Eq. (10), was also obtained in the adiabatic approxi-

mation by computing the R-dependent electronic expectation value A(R) =

−(7/6π)〈ψel|P
(
r−3

12
)

ψel〉 and subsequently averaging A(R) with the adiabatic nuclear wave

function χ(R). The numerical calculation was performed using Gaussian geminal basis.

The needed matrix elements of the distribution P(r−3
12 ) between Gaussian geminal functions

located at points P and T in the bra and R and Q in the ket

I = lim
λ→0

∫
exp(−a1r2

1P−b1r2
1T − c1r2

12) [θ(r12−λ )r−3
12

+4π (γ + lnλ )δ (r12)] exp(−a2r2
1R−b2r2

1Q− c2r2
12)dr1 dr2

(15)
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were obtained from the formula

I = W1W2
2π5/2

(a+b)3/2 exp
[
− ab

a+b
(FH)2

]
×

[
γ − log

(
ξ

a+b

)
+g

(
a2b2(FH)2

ξ (a+b)

)] (16)

where:

a = a1 +a2 b = b1 +b2 c = c1 + c2 ξ = ab+bc+ ca (17)

and:

F =
a1P+a2R

a1 +a2
W1 = exp

[
− a1a2

a1 +a2
(PR)2

]
(18)

H =
b1T+b2Q

b1 +b2
W2 = exp

[
− b1b2

b1 +b2
(TQ)2

]
. (19)

The function g(x) appearing in Eq. (16) is defined as an integral involving the usual Boys

function F0(x) =
√

π/xerf(
√

x)/2:

g(x) =
∫ x

0

1
t
[et F0(t)−1]dt. (20)

To compute g(x) we used the following expansions

g(x) =
n

∑
k=1

2k

(2k +1)!!k
xk +O(xn+1) , (21)

g(x) =
√

πex

2x3/2

n

∑
k=0

(2k +1)!!
2k x−k +O(x−(n+1)) . (22)

used, respectively, for small and medium, and for large values of the argument x. To in-

dependently verify our calculations we computed 〈ψel|P
(
r−3

12
)

ψel〉 using also the integral

transform method of Ref. 61 obtaining the same results at basis set convergence. The values

of 〈ψel|P
(
r−3

12
)

ψel〉 computed with an extensively optimized 1200-term explicitly correlated

Gaussian basis set are given in Table 2. We estimate that their accuracy is better than one

unit in the last digit shown in the Table.
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The integral 〈ψel|P
(
r−3

12
)

ψel〉 exhibits a slow R−3 decay at large R. To compute it for

values of R larger than 12.0 bohr we used its asymptotic expansion

〈ψel|P
(
r−3

12
)

ψel〉=
1

R3 +
6

R5 +
75
R7 +O(R−8) . (23)

Using the values given in Table 2 and the asymptotic formula (23) we found that the Araki-

Sucher contribution to the dissociation energy α3〈A(R)〉 amounts to 0.0127 cm−1 with an

uncertainty of one unit at the last digit. This contribution has not been computed before for

H2. It should be noted that in his calculations Wolniewicz47 neglected also the first part

(164/15)
〈
δ (r12)

〉
of the 2-electron Lamb shift, amounting to −0.01457 cm−1.

Calculation of the complete α4 contribution to the dissociation energy is a very complex

task30,31 and could not be carried out for the purpose of this investigation. It is well known,31

however, that this α4 contribution is dominated by the one-loop term given by

E(4)
1−loop = 4π

(
427
96

−2ln2
)
〈δ (r1a)〉. (24)

The corresponding correction to the dissociation energy is −0.0016 cm−1 and we estimate

that it differs from the exact value of the complete α4E(4) contribution by less than 50% .

We also verified that the α4, α5, and higher-order QED corrections due to retardation and

taken into account by the Casimir-Polder formula? are smaller than 0.0001 cm−1, i.e., are

well within the error bars assumed for the complete α4E(4) contribution.

3 Results and discussion

Dissociation energies for the H2 and D2 molecules are presented in Table 4 together with all

components computed by us. The experimental dissociation energies shown for comparison

are already corrected for the effects of hyperfine interactions, i.e., the true energies of atoms

into which the molecule dissociate are replaced by the center of gravity of the hyperfine

structure of the 1 2S1/2 atomic states. This means that in the case of H2 we must not add

16



the 2×0.0355 cm−1 correction corresponding to the difference between this center of gravity

and the F = 0 hyperfine level of hydrogen atom.

The error bars of all computed components were discussed in Sec. II. Here we still

have to estimate the relativistic nonadiabatic/recoil corrections that have not been computed.

Within the perturbation formalism of Ref. 41 the leading nonadiabatic contribution to each

of the four terms in Eq. (6) is given by the expression

2〈ψelχ|W
1

(Eel−Hel)′
Hn|ψelχ〉 , (25)

where W stands for p4
1/4, 2πδ (r1a), πδ (r12) or for the Breit operator,

Hn =− 1
mp

∇
2
R +

1
4mp

(p1 +p2)2 , (26)

Hel is the electronic Hamiltonian, Eel is the eigenvalue of Hel corresponding to the wave

function ψel, R is the vector joining the nuclei, and the prime indicates the orthogonalization

to ψel. The term involving (p1 +p2)2 can be obtained by averaging the R dependent function

1
2mp

〈ψel|W
1

(Eel−Hel)′
(p1 +p2)2|ψel〉el , (27)

with 4πR2χ2(R). The bracket 〈· · · 〉el denotes the integration over electronic coordinates

only. Since the integral in Eq. (27) is mass independent the corresponding contribution to

the energy is clearly of the order of α2me/mp. The term involving ∇2
R can also be written

in terms of mass independent radial functions. To see that we note that this term can be

expressed as the sum of two terms

− 2
mp

∫
χ

2(R)〈ψel|W
1

(Eel−Hel)′
|∇2

Rψel〉eld3R

− 4
mp

〈ψelχ|W
1

(Eel−Hel)′
|∇Rψel∇Rχ〉 .

(28)

The first one is explicitly in the form of an average of a mass independent radial function
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and is clearly of the order of α2me/mp. Performing integration by parts the mass dependent

gradient of χ in the second term can be eliminated and this term can be written as an average

of the radial function

2
mp

〈∇Rψel|W
1

(Eel−Hel)′
|∇Rψel〉el +

2
mp

〈ψel|∇RW
1

(Eel−Hel)′
|∇Rψel〉el (29)

proportional to 1/mp. This term is thus also of the order of α2me/mp.

Since, all relativistic nonadiabatic/recoil terms are of the order of α2me/mp we decided

to estimate their magnitude by scaling the total α2 correction by the factor me/mp. We view

this estimate as a conservative one since for separated hydrogen atoms the α2me/mp con-

tributions to the mass-velocity, Darwin, and Breit terms (equal to 5α2me/mp, −3α2me/mp,

and −2α2me/mp) add up exactly to zero and this cancellation must persist to a significant

degree when the atoms are bound. The resulting estimate of the total relativistic nonadia-

batic/recoil correction is ±0.0000(4) and gives the second largest (after the α4 term) contri-

bution to the error budget of our calculation. We applied the same scaling procedure to the

QED contribution of the order α3me/mp.

The results of Table 4 show that the dissociation energy of H2 computed by us, amounting

to 36118.0695(10) cm−1, is not only within the rather wide error bars of the experimental de-

terminations form Eyler group,14,15 but agrees impresively well with the very precise hybrid,

experimental-theoretical value 36118.0696(4) cm−1 determined recently by Liu et al.16 The

difference between the experiment and our theoretical prediction is only 1 unit at the ninth

decimal place. It should be emphasized that the theoretical input used in Ref. 16 can be

viewed as very reliable (it contains data from extremely high accuracy calculations for the

H+
2 ion20–22) and is totally independent of the results of present calculations. The fact that the

experimental value lies rather close to the center of the energy range determined by our error

bars may not be accidental. We believe that as a result of the cancellation of terms (complete

at the separated atoms limit), the actual value of the α2me/mp contribution is smaller than

our estimate and that our estimate of the uncertainty of the α4 contribution is very conserva-
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tive. Before the α4 contribution and the relativistic nonadiabatic/recoil terms are accurately

calculated it will be very difficult to further reduce the uncertainty of the theoretical value of

the dissociation energy. It may be interesting to observe that the achieved agreement with

experiment would have been impossible without the inclusion of the Araki-Sucher term, the

radial dependence of the electronic Bethe logarithm, and the one-loop α4 contribution.

The dissociation energy for D2 was computed using the same method as for H2 and

the same approach to estimate the α2me/md and α3me/md terms (we assumed that md =

3670.4829654 me
? ). These terms are smaller for D2 so in this case 90% of the error budget

comes from the uncertainty in the value of the α4 contributions other than the one-loop term

included in our calculations. For D2 the agreement with the most recent experimental value15

is not satisfactory despite the large experimental uncertainty (25 times larger than for H2).

The observed discrepancy is, however, only 2σ (experimental). A more precise experiment

should be possible now and could shed some light on the reason of this small discrepancy.

To demonstrate better the level of accuracy of our calculations we also computed the en-

ergy differences between the ground-state energy of H2 and energies of the first rotationally

and vibrationally excited states. These energies are shown in Table 5 and compared with

experimental results. Both theoretical and experimental energies of the J=1 state refer to

the center of gravity of the hyperfine structure so we did not have to consider nuclear spin

interactions in computing the rotational (ortho-para) energy difference.

In computing small energy differences there is a significant cancellation of errors so the

error bars for some contributions are smaller than for the dissociation energy. These error

bars were estimated by performing computations with several reasonable approximations

to the radial functions [like V (R), D1(R), or D2(R)] and observing the resulting scatter of

energy differences. We assumed that the error of the nonadiabatic contribution is twice

as large as the error of the adiabatic contribution - as suggested by the observed ratio of

uncertainties for the individual energy levels.

The inspection of the last two rows of Table 5 shows that the theoretical and experimental

values of the ortho-para energy gap differ only by 0.00004 cm−1, which is much less than
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the error of either theoretical and experimental determinations. This excellent agreement is

very gratifying since the ortho-para energy difference was employed in Ref. 16 to obtain the

most precise to date experimental value of the dissociation energy.

The results presented in Table 5 show also an excellent agreement (up to seventh sig-

nificant digit) between the theoretical and experimental vibrational energy difference. The

experimental value, which has a very small uncertainty of 0.0003 cm−1, differs only by

0.0001 cm−1 from the theoretical result and lies well within the error bars of the latter. It ap-

pears that the new evaluation of experimental data reported in Ref. 62 leads indeed to much

more accurate result than the older value measured by Dabrowski,63 amounting to 4161.14

cm−1 and lying about 30σ (theoretical) off our result.
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Appendix

A calculation of the complete α2 contribution to the ground-state energy of H2 without

the adiabatic approximation, i.e., including the relativistic nonadiabatic/recoil effects, has

already been presented in the literature62 and we made an effort to use the results of Ref.

62 to extract the magnitude of the α2me/mp contribution to the dissociation energy. This

was not an easy task since the authors of Ref. 62 included partly the α3 QED contribution

(by using the anomalous magnetic moment of electron in their α2 Hamiltonian) and because

they provided two values of their relativistic energy differing by 0.0083 cm−1: one obtained

as the sum of the mass-velocity, Darwin, Breit and spin-spin contributions from their Table

III and the other which could be calculated as the difference between the 5th and 2nd column

in their Table II.
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We were able to eliminate the α3 contributions from their Darwin energies and after

subtracting the correct atomic values we found that their mass-velocity, 1-electron Dar-

win, 2-electron Darwin and Breit contributions to the dissociation energy differ from ours

by −0.0030, −0.0032, −0.0043, and 0.0020 cm−1. The sum of these four contributions

amounts to −0.0085 cm−1. This value is by almost an order of magnitude larger than our

estimate of the α2me/mp contribution. If we added this additional −0.0085 cm−1 to our

dissociation energy the disagreement with experiment would increase to 9σ . However, the

total relativistic energy from their Table II, after eliminating the α3 terms (using results from

their Table III), differs from our α2 contribution by only −0.0002 cm−1. This magnitude of

the α2me/mp effect is within our error bars and including it would not affect the comparison

with experimental result. For the reasons discussed above we did not use the results of Ref.

62 in our theoretical determination of the dissociation energy of H2.
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Table 1: Parameters determining the analytic form, Eq. (3), of the Born-Oppneheimer
potential for H2. All parameters are in atomic units.

b0 −246.146616782077 b11 19.870410304616
b1 −122.890180187858 b12 −7.564322211157
b2 −162.863251799668 b13 2.089842241100
b3 −67.028576007896 b14 −0.400842621727
b4 −58.308248409124 b15 0.047594467110
b5 3.483076932756 b16 −0.002719925287
b6 −52.461380739836 β 0.584358199608
b7 59.254861689279 γ 3.338428574260
b8 −70.780756953312 η 2.561607545
b9 59.254901002422 a2 5.258436256979
b10 −39.529747868821 a3 −1.499067595467
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Table 2: Electronic Bethe logarithm lnKel(R) and the electronic expectation values of
δ (ria), δ (r12), and of P

(
r−3

12
)

for H2 as functions of internuclear separation R. All val-
ues in atomic units.

R lnKel δ (ria) δ (r12) P
(
r−3

12
)

0.0 4.37016 3.62086 0.10635 0.98927
0.1 3.765 2.88530 0.10157 0.98082
0.2 3.526 2.28447 0.09137 0.96236
0.4 3.279 1.50399 0.06887 0.88474
0.6 3.1596 1.06778 0.05076 0.77747
0.8 3.09331 0.80828 0.03767 0.66964
1.0 3.05490 0.64410 0.02835 0.57115
1.1 3.04206 0.58427 0.02473 0.52685
1.2 3.03215 0.53496 0.02164 0.48593
1.3 3.02448 0.49397 0.01901 0.44828
1.4 3.01855 0.45967 0.01674 0.41430
1.5 3.01396 0.43079 0.01479 0.38169
1.6 3.01040 0.40636 0.01309 0.35199
1.7 3.00763 0.38565 0.01161 0.32500
1.8 3.00547 0.36805 0.01032 0.30005
1.9 3.00377 0.35309 0.00918 0.27685
2.0 3.00240 0.34040 0.00817 0.25544
2.2 3.00034 0.32062 0.00649 0.21731
2.4 2.99878 0.30686 0.00514 0.18412
2.6 2.99742 0.29779 0.00406 0.15552
2.8 2.99610 0.29243 0.00319 0.13036
3.0 2.99476 0.29000 0.00247 0.10847
3.5 2.99137 0.29236 0.00124 0.06613
4.0 2.98848 0.29997 0.00057 0.03881
4.5 2.98650 0.30722 0.00024 0.02277
5.0 2.98534 0.31220 0.00010 0.01390
5.5 2.98473 0.31510 0.00004 0.00903
6.0 2.98442 0.31667 0.00001 0.00625
7.0 2.98420 0.31788 0.00000 0.00347
8.0 2.98415 0.31819 0.00000 0.00219

10.0 2.98413 0.31829 0.00000 0.00107
12.0 2.98413 0.31831 0.00000 0.00061
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Table 3: Parameters determining the analytic form, Eq. (14), of the Bethe logarithm
lnKel(R). All parameters are in atomic units.

lnKHe 4.370160222
lnKH 2.984128555
L6 2.082773197
A1 −2.296997851
A2 2.791145918
A3 −1.589533050
A4 0.408542881
b 2.292743496

Table 4: Dissociation energies for H2 and D2 (in cm−1) compared with experimental data.
H2 D2

α0 Born-Oppenheimer 36112.5927(1) 36746.1623(1)
Adiabatic 5.7711(1) 2.7725(1)
Nonadiabatic 0.4339(2) 0.1563(2)
Total α0 36118.7978(2) 36749.0910(2)

α2 Mass-velocity 4.4273(2) 4.5125(2)
1-el. Darwin −4.9082(2) −4.9873(2)
2-el. Darwin −0.5932(1) −0.5993(1)
Breit 0.5422(1) 0.5465(1)
Total α2 −0.5319(3) −0.5276(3)

α2 me/mp Estimate 0.0000(4) 0.0000(2)
α3 1-el. Lamb shift −0.2241(1) −0.2278(1)

2-el. Lamb shift 0.0166(1) 0.0167(1)
Araki-Sucher 0.0127(1) 0.0128(1)
Total α3 −0.1948(2) −0.1983(2)

α3 me/mp Estimate 0.0000(2) 0.0000(1)
α4 One-loop term −0.0016(8) −0.0016(8)
Total theory 36118.0695(10) 36748.3633(9)a

Expt. Ref. 14 36118.06(4) 36748.32(7)
Expt. Ref. 15 36118.062(10) 36748.343(10)
Expt. Ref. 16 36118.0696(4)

a This value includes the −0.0002 cm−1 correction for the finite size of the deuteron (the charge radius of
2.14 fm was assumed). The corresponding correction for the H2 molecule is smaller than 0.0001 cm−1 and
can be neglected for our purposes.
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Table 5: The energy differences (in cm−1) between the ground-state energy of H2 and
energies of the first rotationally and vibrationally excited states.

J = 0 → 1 v = 0 → 1
α0 Born-Oppenheimer 118.55558(2) 4163.4035(1)

Adiabatic −0.06365(4) −1.4029(1)
Nonadiabatic −0.00667(8) −0.8365(2)
Total α0 118.48526(9) 4161.1641(2)

α2 Mass-velocity 0.02713(4) 0.5341(2)
1-el. Darwin −0.02383(4) −0.4994(2)
2-el. Darwin −0.00160(2) −0.0391(1)
Breit 0.00088(2) 0.0279(1)
Total α2 0.00258(6) 0.0235(3)

α3 1-el. Lamb shift −0.00109(2) −0.0231(1)
2-el. Lamb shift 0.00004(1) 0.0011(1)
Araki-Sucher 0.00002(1) 0.0007(1)
Total α3 −0.00103(2) −0.0213(2)

α4 One-loop term −0.00001(1) −0.0002(2)
Total theory 118.48680(11) 4161.1661(5)
Experiment 118.48684(10)a 4161.1660(3)b

a Ref. 17
b Ref. 62
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