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Nonrelativistic energies of the deuterium molecule, accurate to 10−7− 10−8 cm−1 for all levels
located up to 8000cm−1 above the ground state, are presented. The employed nonadiabatic
James-Coolidge wave functions with angular factors enable the high accuracy to be reached re-
gardless of vibrational or rotational quantum number. The derivative of the energy with respect
to the deuteron-to-electron mass ratio is supplied for each level, which makes the results inde-
pendent of the future changes in this physical parameter and will enable its determination from
sufficiently accurate experimental data.

Introduction
The deuterium molecule has been extensively studied spectro-
scopically for almost as long as the hydrogen molecule.1–3 Re-
cently, the ionization potential of ortho- (total nuclear spin I =
0,2) and para-D2 (I = 1) have been determined with precision
of tens of MHz by combining the measured frequencies of tran-
sitions via an intermediate EF1Σ+

g state4,5 and the calculated
Rydberg-states binding energies.6 Using extremely accurate theo-
retical data for D+

2
7–9 and the deuterium atom? , the dissociation

energy of the ortho- and para-D2 states as well as the separa-
tion energy of these states have been determined5 with precision
higher than 10−3 cm−1 (30 MHz).

Although only weak electric quadrupole and magnetic dipole
transitions? within the manifold of rovibrational states are al-
lowed, a selection of transition energies have been directly ac-
quired using various experimental techniques.11–18 Specifically,
accurate absorption line positions and intensities for the 2-0 vi-
brational band have been determined experimentally.19 Nowa-
days, a relative accuracy of 5 ·10−8 has been achieved in the mea-
surements of the transition energies in D2.

Theoretical energy separation (ionization, dissociation, transi-
tion energy) is composed of several additive components. For
a light molecule, such as D2, these components can be well de-
scribed in the framework of the nonrelativistic quantum electro-
dynamic theory (NRQED)20 by the following expansion of the
total energy in powers of the fine structure constant α (≈ 1/137)

E(α) =
∞

∑
i=2

α
i E(i) . (1)

The higher the expected accuracy, the more (smaller and smaller)
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Poland. E-mail: komasa@man.poznan.pl

components of this series must be involved. Furthermore, the
higher the expected accuracy, the more accurate the required cal-
culation of the involved components. In particular, the leading
term of the expansion (1), which represents the nonrelativistic
energy, is by far the most dominant, and its accuracy can directly
limit the accuracy of the total energy E(α). For example, attaining
the 1 MHz (∼ 3 ·10−5 cm−1) accuracy for the dissociation energy
of D2 requires 10 significant figures of the nonrelativistic compo-
nent to be known. A common procedure of decomposing the non-
relativistic energy into the clamped nuclei, adiabatic, and nona-
diabatic components can hardly enable such an accuracy. How-
ever, for systems like deuterium molecule, the nonrelativistic en-
ergy can also be calculated directly, i.e. without expansion in a
mass parameter. Such pioneering calculations were performed by
Kołos and Wolniewicz in 1964.21 Much later, variational calcula-
tions for rotationless levels were performed using nonadiabatic,
explicitly correlated Gaussian (naECG) functions reaching the ac-
curacy of 10−5 cm−1.22–24 To complete this historical sketch, we
mention also the calculations of the leading order nonadiabatic
corrections to the Born-Oppenheimer energy by Wolniewicz in
199525 as well as the application of the nonadiabatic perturba-
tion theory (NAPT)26 to the determination of these corrections
for all bound rovibrational levels of D2 using explicitly correlated
Gaussians (ECG)27 and later using James-Coolidge (JC) wave
functions.28 In this work, we present the results of another ap-
proach to the nonrelativistic energy, which employs nonadiabatic
James-Coolidge (naJC) basis functions. This variational and fully
nonadiabatic method enables an accuracy of 10−7−10−8 cm−1 to
be obtained for the dissociation energy of an energy level and,
in contrast to the aforementioned variational calculations, is not
limited to the rotationless states. At this level of accuracy the
rovibrational energies as well as intervals between them become
sensitive to the uncertainty in the deuteron-to-electron mass ra-
tio µd. For instance, the change of µd by its current uncertainty
(1.3 ·10−7) results in a change in the vibrational 2-0 excitation en-
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ergy by 1.0 ·10−7 cm−1, while the achieved numerical uncertainty
is at the level of 10−8 cm−1,

Theory
The nonrelativistic Hamiltonian of the molecular system com-
posed of two electrons (1,2) and two nuclei (A,B) reads

Ĥ =− 1
2MA

∇
2
A−

1
2MB

∇
2
B−

1
2me

∇
2
1−

1
2me

∇
2
2

+
ZA ZB

rAB
+

1
r12
− ZA

r1A
− ZA

r2A
− ZB

r1B
− ZB

r2B
. (2)

The wave function of the state with the rotational quantum num-
ber J (and its projection M on the laboratory z-axis) accounts
for the coupling between the nuclear and electronic angular mo-
menta and is built of components representing electronic symme-
try Σ, Π, ∆, and so on

Ψ
J,M = Ψ

J,M
Σ

+Ψ
J,M
Π

+Ψ
J,M
∆

+ . . . . (3)

Each component Ψ
J,M
Λ

is factored into a spatial ‘electronic’ func-
tion ΦJ

Λ
, the electronic angular factor 1,ρ i,(ρ iρ ′ j)(2), . . . , the nu-

clear angular part containing the spherical harmonic Y J
M , and the

nuclear radial part containing powers of the internuclear distance
R. In particular,

Ψ
J,M
Σ

= Y J
M Φ

J
Σ , for J ≥ 0 (4)

Ψ
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Π

=

√
2

J(J+1)
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(
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M

)
Φ

J
Π , for J ≥ 1 (5)
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ρ
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Φ
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∆
, for J ≥ 2 (6)

where the following symbols are used

(ρ i
ρ
′ j)(2) ≡ 1

2

(
ρ

i
ρ
′ j +ρ

j
ρ
′i−
(

δ
i j−nin j

)
~ρ ·~ρ ′

)
, (7)

~ρ,~ρ ′ ≡~ρ1 or ~ρ2, ni ≡ Ri/R and ρ i
a =

(
δ i j−nin j) r j

aB. The functions
ΦJ

Λ
are expanded in the basis of four-particle nonadiabatic James-

Coolidge (naJC) functions

Φ
J
Λ
= RJ

∑
{k}

c{k} (1+P12) φ
J
Λ{k} (8)

φ{k} = e−α R−β (ζ1+ζ2) Rk0 rk1
12 η

k2
1 η

k3
2 ζ

k4
1 ζ

k5
2 (9)

with ζ1 = r1A + r1B, η1 = r1A− r1B, ζ2 = r2A + r2B, η2 = r2A− r2B,
and ~R =~rAB. The α and β in Eq. (9) denote nonlinear variational
parameters, common for the whole set of basis functions called
‘sector’, and ki are non-negative integers collectively denoted as
{k}. If needed, two or more sectors (with different pairs α(i) and
β (i)) can be used. In Eq. (8), c{k} are linear variational parameters
and P12 is the electron exchange operator.

The components Ψ
J,M
Λ

are mutually orthogonal which enables
a perturbative scheme of solving the Schrödinger equation to be

applied. This feature is particularly profitable when large basis
sets are in use. Technical details concerning evaluation of matrix
elements in the naJC basis, the procedure of solving the general-
ized symmetric eigenvalue problem, as well as the optimization of
the nonlinear parameters, the interested reader will find in Refs.
29 and 30. Here, we shall concentrate on the numerical results
and their accuracy.

Results
In order to establish a reliable uncertainty estimation for calcu-
lated rovibrational energies we performed a detailed convergence
study for individual levels. The size of the basis set was succes-
sively increased under the control of the ’shell’ parameter Ω. For
k0 fixed at an optimal kmax

0 value we included all the basis func-
tions satisfying the condition ∑

5
i=1 ki ≤Ω. Observation of the con-

vergence of energy with Ω allowed the numerical uncertainty and
the number of significant digits to be determined. Sample results
of such a study for the ground level energy are shown in Table 1.
The energy converges regularly with increasing Ω, enabling a firm
extrapolation to the infinite basis set size. In general, the energy
with 13 stable figures was obtained for all the levels considered
here.

Table 1 Convergence of the lowest eigenvalue E0,0 (in a.u.) for D2 with
the growing basis set size K. A two-sector wave function was used with
optimal α(1) = α(2) ≡ α, β (1) and β (2) parameters. kmax

0 powers were fixed
at 38 and 21 for sector 1 and 2, respectively.

Ω α β (1) β (2) K E0,0

9 17.96 0.870 2.306 33733 −1.167168809240572
10 17.95 0.910 2.690 49959 −1.167168809276440
11 18.02 0.932 3.088 71736 −1.167168809282247
12 18.06 0.959 3.519 100772 −1.167168809283632
13 18.06 0.990 3.910 138348 −1.167168809283929
14 18.06 1.019 4.314 186660 −1.167168809284013
∞ ∞ −1.16716880928405(4)

Table 2 contains the final nonrelativistic energies for the rovi-
brational levels (v,J) located up to ca. 8000cm−1 above the
ground level. For each level, the corresponding dissociation en-
ergy

Dv,J = 2R
(
2E(D)−Ev,J

)
,

where 2E(D)=−me md/(me+md), is also supplied. The deuteron-
to-electron mass ratio (md/me = 3670.48296785(13)) was taken
from the 2014 CODATA31 compilation while the Rydberg constant
(R = 109737.31568153(10)cm−1) from Ref. ? as more accurate
than the CODATA value (109737.31568508(65)cm−1). Addition-
ally, this table contains derivatives of the energy with respect to
the deuteron-to-electron mass ratio µd = md/me. Knowledge of
their values allows the energy results to be corrected later by
prospective revisions of µd . These derivatives will also be use-
ful in selecting the transitions that are the most sensitive to µd

variations.
As already mentioned in the Introduction, results of nonadia-

batic calculations for rotationless (J = 0) energy levels of D2 exist
in literature. The new data reported in this work enable an as-
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Table 2 Nonrelativistic eigenvalue (Ev,J) and dissociation energy (Dv,J) of the rovibrational energy levels of D2 located up to ca. 8000cm−1 above the
ground level. The uncertainties assigned to Ev,J and Dv,J are due to the numerical convergence only and do not account for uncertainties transferred
from the fundamental constants (e.g. Dv,J δR/R ≈ 2×10−7 cm−1). The last column contains derivatives of the nonrelativistic energy with respect to the
deuteron-to-electron mass ratio, µd

(v,J) Ev,J/hartree Dv,J/cm−1 ∂Ev,J

∂ µd
·106

(0,0) −1.16716880928405(4) 36749.09098981(1) −1.02
(0,1) −1.16689643235976(4) 36689.31116476(1) −1.10
(0,2) −1.16635293028883(4) 36570.02624810(1) −1.24
(0,3) −1.16554078662744(4) 36391.78131740(1) −1.46
(0,4) −1.16446367747261(4) 36155.38318270(1) −1.75
(0,5) −1.1631264144511(2) 35861.88787401(4) −2.10
(0,6) −1.1615348720091(2) 35512.58468327(4) −2.52
(0,7) −1.1596959015498(2) 35108.97731963(4) −3.00
(0,8) −1.1576172352765(1) 34652.76280556(2) −3.53
(0,9) −1.1553073827533(2) 34145.80877452(4) −4.12
(0,10) −1.1527755231827(2) 33590.12982860(4) −4.75
(0,11) −1.1500313962527(2) 32987.86358223(4) −5.43
(0,12) −1.1470851941469(1) 32341.24696114(2) −6.15
(0,13) −1.1439474569694(3) 31652.59325079(6) −6.90
(0,14) −1.1406289734489(3) 30924.27030346(6) −7.67
(0,15) −1.1371406883765(3) 30158.68022309(6) −8.48
(0,16) −1.1334936178335(2) 29358.24076011(4) −9.30

(1,0) −1.15352889637999(5) 33755.47613337(1) −2.81
(1,1) −1.15326613332580(4) 33697.80630891(1) −2.88
(1,2) −1.15274182922909(5) 33582.73486056(1) −3.01
(1,3) −1.15195840834627(5) 33410.79385111(1) −3.22
(1,4) −1.15091945841430(4) 33182.77069778(1) −3.49
(1,5) −1.1496296743731(2) 32899.69582080(5) −3.83
(1,6) −1.1480947866696(2) 32562.82690789(5) −4.22
(1,7) −1.1463214767099(2) 32173.63035820(5) −4.67
(1,8) −1.1443172823321(1) 31733.76053594(2) −5.18
(1,9) −1.1420904963122(2) 31245.03749510(5) −5.73
(1,10) −1.1396500608929(2) 30709.42383109(5) −6.33
(1,11) −1.1370054611617(2) 30129.00127998(5) −6.97
(1,12) −1.1341666198321(1) 29505.94762567(2) −7.64

(2,0) −1.14043169661532(4) 30880.97304313(1) −4.44
(2,1) −1.14017837963564(5) 30825.37639239(1) −4.51
(2,2) −1.13967293901077(5) 30714.44499757(1) −4.64
(2,3) −1.13891774189684(5) 30548.69838939(1) −4.83
(2,4) −1.13791629102280(5) 30328.90532798(1) −5.09
(2,5) −1.1366731692039(2) 30056.07162503(5) −5.41
(2,6) −1.1351939687289(2) 29731.42464607(5) −5.78
(2,7) −1.1334852082000(2) 29356.39505891(5) −6.21
(2,8) −1.1315542397072(1) 28932.59646078(2) −6.68
(2,9) −1.1294091493442(2) 28461.80354412(5) −7.20

(3,0) −1.1278676783515(5) 28123.48976624(9) −5.94

sessment of the quality of the results obtained in the past using
other methods. In particular, Table 3 presents such a comparison
with the variational method of nonadiabatic explicitly correlated
Gaussians (naECG) and with the second-order nonadiabatic per-
turbation theory (NAPT) employing James-Coolidge basis func-
tions. As one can infer from the data, the previously reported en-
ergies reached an accuracy of up to 10−5 cm−1. It is also evident
that the energy error of these two methods grows with increasing
vibrational quantum number. This growth is more pronounced in
the case of the variational ECG method as illustrated in Figure 1.

The same conclusion can be drawn for H2 and HD molecules.29,30

The accuracy of the NAPT results for Dv,J is limited to 10−4−
10−5 cm−1 by the lack of the higher order terms. Although the
general expressions for the third- and fourth-order NAPT correc-
tions are known28 no direct calculations of these terms have been
performed. Hence, the numerical values of the higher order NAPT
corrections are unknown. The results reported in this work corre-
spond to the NAPT expansion summed up to infinity, which gives
the opportunity to estimate the value of the sum of the higher or-

Journal Name, [year], [vol.], 1–5 | 3



Table 3 Comparison of the best previous literature data with the non-
relativistic dissociation energy Dv,J obtained in this work for the lowest
rotationless (J = 0) levels of D2

Year and method Dv,0/cm−1 Difference

v = 0
This work 36749.09098981(1)
2018, 2048-term naECG24 36749.090970 2.0 ·10−5

2015, NAPT28 36749.090976 1.3 ·10−5

2011, 10000-term naECG23 36749.090974 1.6 ·10−5

v = 1
This work 33755.47613337(1)
2015, NAPT28 33755.476098 3.5 ·10−5

2011, 10000-term naECG23 33755.47603 1.0 ·10−4

v = 2
This work 30880.97304313(1)
2015, NAPT28 30880.972993 5.0 ·10−5

2011, 10000-term naECG23 30880.97277 2.7 ·10−4

v = 3
This work 28123.48976624(9)
2015, NAPT28 28123.489708 5.8 ·10−5

2011, 10000-term naECG23 28123.48930 4.7 ·10−4

der (> 2) NAPT terms. A particular numerical value can be easily
obtained by subtracting the NAPT energy reported in Ref. 28 from
the fully nonadiabatic energy listed in Table 2. A sample of such
data collected for v = 0,1,2, converted to cm−1, and drawn versus
J (J + 1), is shown in Fig. 2. As can be seen, the missing higher
order NAPT remainder changes almost perfectly proportionally to
J (J+1).

Conclusions

The nonrelativistic energy is by far the biggest contribution to
the dissociation energy of a rovibrational state. For a long time,
its uncertainty was also greater than or at best comparable with
uncertainties carried by relativistic, QED, and higher order cor-
rections. The accuracy achieved presently for the nonrelativis-
tic energy allows its contribution to be practically removed from
the overall uncertainty budget. Meanwhile, the nonadiabatic (re-
coil) contribution to the relativistic correction? in the deuterium
molecule has recently been determined,33 which significantly di-
minished the uncertainty of this correction. As a result the dom-
inating uncertainty, which limits the present-day accuracy of the
theoretical predictions for rovibrational levels of D2, comes from
the unknown finite mass effects in the ∼α5 QED correction. The
nonadiabatic wave functions obtained in the framework of the
present project will be employed in future calculations of the rel-
ativistic and QED corrections for the rovibrational levels. The
ultimate goal of such plans is to achieve an accuracy sensitive to
the deuteron-to-electron mass ratio and to the deuteron charge
radius.?
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the accurate calculations performed here and those obtained using vari-
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in the lowest vibrational states (v = 0,1,2)
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