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Abstract

A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is

presented, in which the electronic wave function is expanded in the James-Coolidge basis functions.

Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical

results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative

precision of 10−12 at an arbitrary internuclear distance. Such calculations have been performed for

88 internuclear distances in the range of 0 < R ≤ 12 bohrs to construct the adiabatic correction

potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the

dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined.

For the ground state of H2 the estimated precision is 3 · 10−7 cm−1, which is almost three orders

of magnitude higher than that of the best previous result. The achieved accuracy removes the

adiabatic contribution from the overall error budget of the present day theoretical predictions for

the rovibrational levels.
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I. INTRODUCTION

Several laboratories have recently measured dissociation energy and certain rovibrational

energy intervals of two-electron molecules with precision of one part per 10−8 or even better

[1–11]. In parallel with these experimental achievements, a theoretical methodology for the

determination of rovibrational energy levels of H2 has recently been pursued [12–15]. The

compliance between theory and experiment was obtained by taking rigorously into account

various contributions originating from finite nuclear mass, relativistic, and quantum electro-

dynamic (QED) effects. The agreement made it possible to verify for the first time QED

corrections to the rovibrational spectrum of molecular hydrogen [15, 16], and to establish

bounds [17] on the hypothetical fifth force acting between nuclei.

Theoretically determined energy of a rovibrational level is usually composed of several

contributions: the Born-Oppenheimer (BO), adiabatic, nonadiabatic, relativistic, radiative,

and others. These contributions can conveniently be interpreted in frames of the nonadia-

batic perturbation theory (NAPT) [12, 13] as subsequent terms of the energy expansion into

powers of small parameters: α – the fine structure constant and me/M – the electron-nucleus

mass ratio

E =
∑
i=0

∑
j=0

(me/M)i αj E(i,j), (1)

where the coefficients E(i,j) themselves may also depend on the mass ratio. In the particular

case of the dissociation energy (D0) of the ground rovibrational level of H2, the most signif-

icant is the BO term (i = 0, j = 0), which amounts to 36 112.5927(1) cm−1 and constitutes

99.98 % of the total dissociation energy. The next largest contribution (i = 1, j = 0) ow-

ing to the modification of BO potential by the kinetic energy of the nuclei is the adiabatic

correction (∼ 5.7711(1) cm−1). The remaining corrections altogether bring a contribution

to D0 less than 1 cm−1. In the heavier isotopic species the finite mass effects are smaller

than in H2 but still bring a dominant correction to BO energy. Each contribution adds its

own uncertainty to the overall error budget. For H2, the uncertainties of the best currently

available results, shared by all the mentioned contributions, are of the order of 10−4 cm−1

[14]. Our strategy for a further increase in the precision of theoretical predictions relies

on diminishing the estimated errors of subsequent components of Eq. (1). The first step

towards this goal has already been made, the BO energy curve has been evaluated with a

relative accuracy of 10−15 [18], which has practically removed this contribution from the
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energy error list. Here, we report on the next step in the same direction, that is we propose

a new methodology, which enables prediction of the adiabatic correction to the energy levels

of H2 with accuracy of the order of 10−7 cm−1, that is three orders of magnitude higher than

those available to date. Results concerning subsequent contributions to the total energy are

being worked out and will be published later on.

II. METHOD

In the Schrödinger equation HΨ = EΨ, the Hamiltonian for the hydrogen molecule, after

separation of the center of mass movement, can be split into the electronic and nuclear parts

H = Hel + Hn. The electronic part Hel includes kinetic energy of electrons and Coulomb

interactions between all particles constituting the molecule

Hel = −1

2

∑
a

∇2
a + V , (2)

whereas the nuclear one, assuming that the origin is fixed at the geometric center of the

nuclei, can be written as

Hn = − 1

2µn

(
∇2
R +∇2

el

)
(3)

where ~∇el = (~∇1+ ~∇2)/2, R is the internuclear distance, and µn is the nuclear reduced mass.

In the adiabatic approximation the total wave function Ψ(~r1, ~r2, ~R) is represented as a

product of an electronic wave function φ(~r1, ~r2)R being a solution to the electronic eigen-

problem

[Hel − Eel(R)]φ = 0 (4)

and the nuclear wave function χ(~R) which fulfills the nuclear equation[
− 1

2µn

∇2
R + Eel(R) +

1

2µn

Ea(R)− Ea

]
χ(~R) = 0 . (5)

Ea is the adiabatic approximation to the total energy, E, and

1

2µn

Ea(R) =
1

2µn

(〈
~∇elφ

∣∣~∇elφ
〉

+
〈
~∇Rφ

∣∣~∇Rφ〉) (6)

is the adiabatic (diagonal) correction to the Born-Oppenheimer potential Eel(R).
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III. MATRIX ELEMENTS AND R-DERIVATIVES

The electronic wave function for a two-electron diatomic system is the most efficiently

represented in the Ko los-Wolniewicz [19] or the James-Coolidge (JC) [20] basis. In a recent

study on the ground state BO potential energy of H2, the latter basis set has been found

very convenient [21], since all the integrals can be obtained analytically. The same basis is

used for the evaluation of the adiabatic correction.

The symmetric James-Coolidge basis function is of the form

ψ = (1 + P12) (1 + ı̂)

(r1A − r1B)n2(r2A − r2B)n3(r1A + r1B)n4(r2A + r2B)n5

e−β (r1A+r1B+r2A+r2B) rn1
12 R

−n1−n2−n3−n4−n5−3. (7)

The power of the internuclear distance R is introduced to ensure that the overlap integrals

are dimensionless. The additional R-dependence of ψ is implicit through electron-nucleus

distances r1A, r1B, r2A, r2B. The nonlinear parameter β is set for each R separately. Its

numerical value has been optimized with respect to the electronic energy Eel(R). Required

spin and inversion symmetry (singlet gerade for the ground electronic state) of the wave

function is ensured by the two projectors containing the electron exchange P12 and the

electron-coordinate inversion ı̂ operators.

Let ψk be the k-th element of the basis set employed to expand the ground state electronic

wave function

φ =
∑
k

vk ψk (8)

and let ~v be a vector consisting of real coefficients of this expansion. The subscript k can

be treated as a multiindex composed of integer exponents {n1, n2, n3, n4, n5}. We introduce

here a shell parameter Ω, employed to arrange the basis functions, related to the exponents

ni by ∑
i

ni ≤ Ω . (9)

Ω is an integer number taken from the range (2,17) and it is pivotal in the basis set conver-

gence study discussed below. In this work we split the expansion (8) into two sectors, one

limited by Ω and the other by Ω− 2, each with his own nonlinear parameter β and {ni}.
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Next, let us define the following matrices

Hkl =
〈
ψk
∣∣Helψl

〉
, (10)

Nkl =
〈
ψk
∣∣ψl〉 , (11)

Akl =
〈
ψk
∣∣∂Rψl〉 , (12)

Bkl =
〈
~∇Rψk

∣∣~∇Rψl〉+
〈
~∇elψk

∣∣~∇elψl
〉
. (13)

All these matrix elements are expressible by combinations of the f -functions introduced in

[22]

f(n1, n2, n3, n4, n5;R, β) = R−n1−n2−n3−n4−n5−1 (14)∫
d3r1
4 π

∫
d3r2
4π

e−β r1A

r1A

e−β r1B

r1B

e−β r2A

r2A

e−β r2B

r2B

1

r1−n1
12

(r1A − r1B)n2(r2A − r2B)n3(r1A + r1B)n4(r2A + r2B)n5 .

With this notation the electronic Schrödinger equation can be written in the matrix form as

(H− EelN )~v = 0 . (15)

Let us further consider the first order R-derivative of φ

∂Rφ =
∑
k

(∂Rvk ψk + vk ∂Rψk) . (16)

The term ∂Rψk is assumed to be known, as it is the derivative of a basis function at constant

values of nonlinear parameters. The term ∂Rvk can be obtained by taking the derivative of

Eq. (15), namely

(H− EelN ) ∂R~v + (∂RH− ∂REelN − Eel ∂RN )~v = 0 (17)

so that

∂R~v =
1

(EelN −H)′
(∂RH− Eel ∂RN )~v − 1

2
~v
(
~vT ∂RN ~v

)
(18)

where the last term was obtained by differentiation of the normalization condition

~vT N ~v = 1 (19)

leading to

2 (∂R~v)T N ~v + ~vT ∂RN ~v = 0 . (20)

Now, the mass-independent adiabatic correction of Eq. (6) can be transformed to our working

formula

Ea(R) = ~vT B ~v + (∂R~v)T N ∂R~v + 2 (∂R~v)T A~v . (21)
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IV. RESULTS AND DISCUSSION

As we aim at high numerical accuracy of Ea, we implemented the formula (21) in FOR-

TRAN 90 using the hexuple (∼64 digits) precision with a support from the quad-double

arithmetic QD library [23].

TABLE I: A sample of the convergence of the mass-independent adiabatic correction Ea(R) (in a.u.)

with the growing size of JC basis at selected internuclear distances R. Ω is the shell parameter of

Eq. (9) and N is the number of basis functions.

Ω N Ea(0.8) Ea(1.4) Ea(6.0)

13 3444 1.199 493 971 179 86 0.958 684 725 421 67 0.998 341 126 273 17

14 4712 1.199 493 971 177 61 0.958 684 725 428 33 0.998 341 126 278 71

15 6324 1.199 493 971 176 92 0.958 684 725 429 49 0.998 341 126 279 85

16 8361 1.199 493 971 175 62 0.958 684 725 429 72 0.998 341 126 280 17

17 10887 1.199 493 971 175 28 0.958 684 725 429 79 0.998 341 126 280 26

A. Numerical convergence of Ea(R)

In order to asses an accuracy of our calculations we have checked the numerical conver-

gence of the adiabatic correction with the growing length of the wave function expansion

at several short-, medium-, and long internuclear distances. Table I shows sample data at

selected internuclear distances. A general conclusion from the data analysis is that at least

twelve significant digits remain stable while approaching the highest value of Ω = 17. Hence,

we conclude that for the whole range of the internuclear distances at least twelve significant

digits are exact and an uncertainty would appear only on the thirteenth or further digit.

The accuracy could be increased by another order of magnitude using an extrapolation to

the infinite basis size. However, since the present accuracy of twelve significant digits is by

far sufficient, we omitted this step. In comparison with the most accurate previous calcu-

lations, performed using ECG functions [14], the accuracy of the present results has been

increased by at least five orders of magnitude. Presently, the estimated contribution of the

uncertainty in evaluation of a single Ea(R) value to the error of the dissociation energy is
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FIG. 1: Mass-independent adiabatic correction to the BO interaction energy.

less than 10−9 cm−1, and is much smaller than the errors from the other sources described

below. Table II shows how the accuracy of the adiabatic correction, evaluated near the

equilibrium internuclear distance, has been changing over the years. The final values of the

mass-independent Ea(R) are presented in Table III where all the listed digits are supposed

to be exact.

TABLE II: Comparison of the accuracy of the present results at R = 1.4 bohr with literature data.

Reference Ea(1.4)/a.u.

Van Vleck, 1936 [24] 0.954

Ko los and Wolniewicz, 1964 [25] 0.958 926

Ko los and Rychlewski, 1993 [26] 0.958 691

Wolniewicz, 1993 [27] 0.958 683

Cencek and Kutzelnigg, 1997 [28] 0.958 684 72

Pachucki and Komasa, 2009 [13] 0.958 684 14

This work, 2014 0.958 684 725 430

B. Adiabatic correction to the interaction energy

The adiabatic correction to the interaction BO potential is defined with respect to the

separated atoms limit

E inta (R) = Ea(R)− Ea(∞), (22)
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TABLE III: Ea(R) – values of the mass-independent adiabatic correction to the BO interaction

potential. All figures are supposed to be exact.

R Ea(R) R Ea(R)

0.1 1.550 958 100 21 2.0 0.862 170 945 858
0.2 1.548 102 462 02 2.1 0.856 115 986 498
0.3 1.510 616 374 14 2.2 0.852 432 649 972
0.35 1.483 439 368 64 2.3 0.850 957 550 559
0.4 1.453 009 380 55 2.35 0.850 996 542 639
0.45 1.420 676 967 07 2.4 0.851 524 934 042
0.5 1.387 464 880 06 2.5 0.853 961 054 324
0.55 1.354 124 732 60 2.6 0.858 079 416 594
0.6 1.321 195 464 19 2.7 0.863 677 387 075
0.65 1.289 054 076 78 2.8 0.870 534 706 921
0.7 1.257 956 514 79 2.9 0.878 414 396 024
0.75 1.228 069 372 96 3.0 0.887 066 358 688
0.8 1.199 493 971 18 3.1 0.896 233 697 879
0.85 1.172 284 405 12 3.2 0.905 661 337 333
0.9 1.146 460 975 38 3.3 0.915 106 115 057
0.95 1.122 020 127 13 3.4 0.924 347 155 575
1.0 1.098 941 778 57 3.5 0.933 195 163 296
1.05 1.077 194 705 46 3.6 0.941 499 379 332
1.1 1.056 740 482 07 3.7 0.949 151 309 990
1.15 1.037 536 351 40 3.8 0.956 084 885 196
1.2 1.019 537 301 62 3.9 0.962 273 299 755
1.25 1.002 697 553 89 4.0 0.967 723 281 613
1.3 0.986 971 613 714 4.2 0.976 558 381 612
1.32 0.980 983 093 331 4.4 0.983 033 195 995
1.34 0.975 162 863 317 4.6 0.987 680 270 678
1.36 0.969 508 181 666 4.8 0.990 988 213 951
1.38 0.964 016 351 899 5.0 0.993 346 349 776
1.39 0.961 330 676 863 5.2 0.995 040 257 943
1.4 0.958 684 725 430 5.4 0.996 269 883 897
1.4011 0.958 396 081 986 5.6 0.997 172 293 732
1.405 0.957 376 544 913 5.8 0.997 841 172 093
1.41 0.956 078 174 316 6.0 0.998 341 126 280
1.42 0.953 510 703 442 6.5 0.999 117 827 776
1.44 0.948 491 738 318 7.0 0.999 511 361 323
1.449 0.946 283 124 517 7.5 0.999 716 677 766
1.46 0.943 625 334 674 8.0 0.999 827 480 672
1.48 0.938 909 050 051 8.5 0.999 889 772 815
1.5 0.934 340 495 289 9.0 0.999 926 440 000
1.55 0.923 550 229 153 9.5 0.999 949 061 160
1.6 0.913 633 773 608 10.0 0.999 963 643 443
1.65 0.904 558 107 268 10.5 0.999 973 410 827
1.7 0.896 292 149 182 11.0 0.999 980 165 450
1.8 0.882 074 017 855 11.5 0.999 984 959 857
1.9 0.870 764 620 658 12.0 0.999 988 435 895
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where Ea(∞) = +1. For the hydrogen molecule the united atom limit is also well known from

accurate helium atom calculation Ea(0) = 1.531 396 926 06 [29]. Consequently, the analytic

form of the E inta (R) function was obtained by fitting the following multiparameter formula

E inta (R) = e−aR
14∑
i=0

PiR
i

+ e−bR−cR
2

(
E inta (0)− P0 +

32∑
i=1

QiR
i

)
(23)

to the 88 discrete values of Table III, shifted beforehand by Ea(∞). The fit parameters

are listed in the supplemental material [30], where a FORTRAN procedure evaluating this

formula is also supplied. The largest residuum value of this fit was 2.1 · 10−9 cm−1 and the

square root of the single-deletion variances was less than 8 · 10−12 cm−1. As an additional

check of the fit accuracy, 18 values for points located in between the nodes were compared

with direct numerical evaluation, and the differences were found smaller than 10−9 cm−1.

The long distance part of the E inta (R) was modeled using the asymptotic function

1

2µn

Easa (R) = −
(
A6

R6
+
A8

R8
+
A10

R10

)
(24)

with the Ai parameters determined for H2 by Przybytek and Jeziorski [31]: A6 =

0.017 699(2), A8 = 0.144(2), and A10 = 2.28(2) a.u. The asymptotic and the fit functions

were joined together at R = 11.5 bohr and employed to generate the adiabatic interaction

potential of Eq. (5) on pertinent integration grid. A graphical representation of the E inta (R)

function is given in Fig. 1.

C. Adiabatic correction to the rovibrational levels

The newest and also the most accurate value of the proton-electron mass ratio mp/me =

1 836.152 673 77(17) [32] was used in the numerical computations. The remaining fundamen-

tal physical constants (CODATA 2010) were obtained from [33] (see also the NIST web page

[34]): the deuteron-electron mass ratio md/me = 3 670.482 9652(15) and the triton-electron

mass ratio mt/me = 5 496.921 5267(50). The conversion factor from atomic units to inverse

centimeters was 2 Ry = 219 474.631 37078(110) cm−1.

The radial Schrödinger equation (5) with the adiabatic potential was solved numerically

using two independent methods. The first one relies on the integration method described in
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[35]. We checked the influence of the integration grid parameters, step h and range (0−Rmax),

on the values of D0 (in cm−1) for all 301 bound adiabatic states of H2. The final calculations

were performed with h ≈ 0.000 537 bohr and Rmax = 40 bohr, which ensured nine stable

decimal digits of D0 for the lower half of the rovibrational levels ladder (D0 > 20 000 cm−1).

In the worst case observed, the eighth decimal digit of D0 changed for some levels located

near the dissociation threshold. The second method of solving Eq. (5) is based on a discrete

variable representation (DVR). We performed the integration on a grid of 9600 nodes evenly

distributed with a step of 0.0025 bohr. The DVR calculations confirmed those of the direct

integration approach for all H2 levels with the largest deviation of ±4 ·10−8 cm−1. In general,

we claim that the uncertainties of the energy levels and their adiabatic corrections resulting

from the numerical integration are distinctly smaller than 10−7 cm−1.

Another source of the error in D0 are the uncertainties of the physical constants: the

nuclear masses and the Rydberg constant. While changing the proton mass by its one

standard deviation we observed changes in dissociation energy ranging from 1 · 10−7 cm−1

for the lowest rotational quantum numbers to 2 · 10−6 cm−1 for the highest J levels. The

uncertainty of the Rydberg constant affects only the conversion of D0 from a.u. to cm−1.

It influences D0 proportionally to its value and for the ground level the variation in D0

amounts to 2 · 10−7 cm−1.

In summary, the dominant factor limiting the accuracy of the current theoretical pre-

dictions for adiabatic energies is the uncertainty of the nucleus-electron mass ratio and it

changes from one level to another in the range 1 ·10−7−2 ·10−6 cm−1. The final uncertainties

assigned to the adiabatic corrections were estimated by quadratically adding error bars of

various sources and amount to 3 · 10−7 cm−1 for the lowest levels and grow to 20 · 10−7 cm−1

for the highest states. All the considered uncertainty sources are collected in Table IV.

Our recommended eigenvalue Ea of the ground (v, J)=(0, 0) rovibrational energy level of

H2 amounts to −0.164 567 373 835 hartree, which corresponds to the adiabatic dissociation

energy of

D0 = 36 118.363 713 2(3) cm−1.

As the corresponding BO dissociation energy equals to 36 112.592 731 58 cm−1, the adiabatic

correction to this energy is

∆D0 = 5.770 981 7(3) cm−1.

10



TABLE IV: Various sources of the error in the computed adiabatic dissociation energy of H2 in units

of 10−7 cm−1. The total uncertainty was estimated by quadratically adding all these contributions.

Single point evaluation of Ea(R) < 0.01

Fitting of Ea(R) < 0.1

Numerical integration < 1

Uncertainty of the Rydberg constant < 2

Uncertainty of the proton-electron mass ratio 1–20

Total state-dependent uncertainty 3–20

This value differs from the previous estimation of 5.77111(10) cm−1 [14] by 13 · 10−5 cm−1.

For the non-symmetric isotopologues of H2, the nuclear Hamiltonian (3) contains an addi-

tional term of mixed derivatives (1/MA−1/MB)~∇R · ~∇el. Because the origin of the coordinate

system was chosen at the geometric center of the nuclei, the electronic wave function has a

definite symmetry with respect to the inversion of electronic variables (gerade for the elec-

tronic ground state) irrespective of whether we consider homo- or hetero-isotopic molecule.

Hence, because ~∇R · ~∇el is odd with respect to inversion in the electronic coordinates, its

expectation value with the adiabatic wave function vanishes. As a result, the Ea(R) func-

tion is valid for all the isotopic variants of the hydrogen molecule. To obtain the adiabatic

correction potential for a given combination of hydrogen isotopes, it is sufficient to multiply

the mass-independent Ea(R) function by 1
2µn

with the pertinent nuclear reduced mass µn.

The adiabatic corrections to the dissociation energy the ground level of these species are

shown in Table V. One can notice, that the uncertainty in ∆D0 increases with the reduced

mass of the nuclei in accordance with growing uncertainty in the mass of the heavier isotopes.

A full set of the bound adiabatic energy levels and their adiabatic corrections was evaluated

for H2 (301 states), HD (400 states), HT (449 states), D2 (601 states), DT (720 states),

and T2 (897 states). Extensive tables with the results for all the levels are supplied as a

supplemental material [30].
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TABLE V: Adiabatic corrections to the dissociation energy of the ground level of all the six isotopic

species of hydrogen molecule.

Molecule ∆D0[cm−1]

H2 5.770 981 7(3)

HD 4.250 777 7(3)

HT 3.754 041 2(4)

D2 2.772 394 4(4)

DT 2.291 553 1(6)

T2 1.816 999 8(7)

V. CONCLUSION

The novelty of the results presented above is twofold. Firstly, a new method of deal-

ing with derivatives of the electronic wave function over nuclear variable was presented.

Secondly, this methodology was combined with the James-Coolidge basis functions ensuring

very high accuracy of the calculations. As a result, an increase in the accuracy of determina-

tion of the adiabatic correction for the hydrogen molecule reached three orders of magnitude

in comparison with the best previous results. Compared to the other components of the total

energy error (i.e. nonadiabatic, relativistic, radiative, etc.), the achieved level of accuracy

is by far sufficient to eliminate the contribution of the adiabatic correction from the error

budget of the total energy.

In the next step of our project, the nonadiabatic corrections will be evaluated using the

JC basis functions, the ultimate goal being an increase in the accuracy of the total energy

levels in molecular hydrogen matching the recently reported progress in spectroscopy.

Acknowledgement

This research was supported by NCN Grants No. 2012/04/A/ST2/00105 (K.P.) and

2014/13/B/ST4/04598 (J.K.), as well as by a computing grant from the Poznan Supercom-

12



puting and Networking Center, and by PL-Grid Infrastructure.

[1] J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and

F. Merkt, J. Chem. Phys. 130, 174306 (2009).

[2] D. Sprecher, J. Liu, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 133, 111102 (2010).

[3] J. Liu, D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 132, 154301 (2010).

[4] P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia,

G. Di Lonardo, and P. De Natale, J. Chem. Phys. 133, 154317 (2010).

[5] D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, Faraday Discuss. 150, 51 (2011).

[6] S. Kassi and A. Campargue, J. Mol. Spectrosc. 267, 36 (2011).

[7] B. J. Drouin, S. Yu, J. C. Pearson, and H. Gupta, J. Mol. Spectrosc. 1006, 2 (2011).

[8] A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, Phys. Chem. Chem. Phys. 14, 802

(2012).

[9] S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, J. Chem. Phys. 136, 184309 (2012).

[10] D. Sprecher, C. Jungen, and F. Merkt, J. Chem. Phys. 140, 104303 (2014).

[11] A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, J. Chem. Phys.

141, 101101 (2014).

[12] K. Pachucki and J. Komasa, J. Chem. Phys. 129, 034102 (2008).

[13] K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).

[14] K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem.

Theory Comput. 5, 3039 (2009).

[15] J. Komasa, K. Piszczatowski, G.  Lach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem.

Theory Comput. 7, 3105 (2011).

[16] E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, Phys. Rev. Lett. 107, 043005

(2011).

[17] E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs,

Phys. Rev. D 87, 112008 (2013).

[18] K. Pachucki, Phys. Rev. A 82, 032509 (2010).

[19] W. Ko los and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

[20] H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

13



[21] K. Pachucki, Phys. Rev. A 81, 032505 (2010).

[22] K. Pachucki, Phys. Rev. A 80, 032520 (2009).

[23] Y. Hida, X. S. Li, and D. H. Bailey, Tech. Rep., LBL-46996, Lawrence Berkeley National

Laboratory (2000).

[24] J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).

[25] W. Ko los and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).

[26] W. Ko los and J. Rychlewski, J. Chem. Phys. 98, 3960 (1993).

[27] L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).

[28] W. Cencek and W. Kutzelnigg, Chem. Phys. Lett. 266, 383 (1997).

[29] K. Pachucki, Phys. Rev. A 74, 022512 (2006).

[30] See supplemental material at [URL] for the Eq. (23) fit parameters and for extensive tables

of all bound adiabatic rovibrational states of H2, HD, HT, D2, DT, and T2.

[31] M. Przybytek and B. Jeziorski, Chem. Phys. 401, 170 (2012).

[32] S. Sturm, F. Kohler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel,

and K. Blaum, Nature 506, 467 (2014).

[33] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

[34] NIST web page accessed on Sep 12, 2014, URL http://www.physics.nist.gov/cuu/

Constants.

[35] W. R. Johnson, Atomic Structure Theory, Lectures on Atomic Physics (Springer-Verlag, Berlin

and New York, 2007).

14


