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I. INTRODUCTION

Molecular hydrogen is the simplest neutral molecule, and it has been a benchmark sys-

tem for calculations and spectroscopy since the explanation of its stability by quantum

mechanics1 in 1927. Determination of the dissociation energy of H2 has led to a fruitful

interplay between theory and experiment, continued over several decades and resulting in

ever increasing accuracies of both.2–24 The progress made by 2001 is the subject of a detailed

review by Stoicheff.25

In recent years, the accuracy of experimental determination of the dissociation and ioniza-

tion energies of H2 and its isotopomers has reached the level of 10 ppb.26–30 Simultaneously,

significant progress in theory31–35 has enabled ab initio calculations with precision rivaling or

even surpassing that of the best measurements. To keep up with the increasing experimental

accuracy, theory needs to take into account tiny nonadiabatic, relativistic and even quantum

electrodynamic effects. The latter effects contribute about 5 ppm to the total dissociation

energy and their rigorous treatment is crucial in state-of-the-art calculations. Excellent

compliance between contemporary experimental and theoretical data on rovibrational levels

of the ground electronic state of H2 has allowed the first observation of the QED effects in

the rotational progressions of the H2 spectrum.35,36 To push the accuracy of the theoretical

predictions to a level limited by uncertainties in the proton-to-electron mass ratio37 or in

the proton-charge radius,38 it is necessary both to include higher order effects and to level

up the accuracy of the already known contributions.

The theoretically determined energy of a rovibrational level contains several contributions:

nonrelativistic, relativistic, radiative, and others. A convenient interpretation of these con-

tributions is obtained by expanding the energy as a power series in α—the fine structure

constant.39–41 The finite nuclear mass effects can be treated using the nonadiabatic per-

turbation theory (NAPT),31,32 which relies on the expansion of the energy in me/M—the

electron-nucleus mass ratio. Such a double power expansion provides a firm framework for

theoretical description of molecular systems.

In our multistage program of improving the overall accuracy of theoretical outcome, two

steps have already been successfully accomplished. They concern the two largest terms of the

energy expansion—the Born-Oppenheimer (BO) and the adiabatic contributions. Thanks

to a new technique42 for the evaluation of molecular integrals in the James-Coolidge basis,
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an improvement of several orders of magnitude in accuracy of these contributions has been

possible.43,44 Here we report on the next step concerning the leading nonadiabatic correction

evaluated using the improved approach and the James-Coolidge functions. The following

section sets theoretical background for the perturbative treatment of the nonadiabatic effects,

and subsequent sections go deeper into technical details of the project.

II. PERTURBATIVE FORMALISM

The formalism presented in the following sections is a modification of that introduced

several years ago.31,32 A more efficient treatment of wave-function derivatives is shown, as

well as explicit expressions for the higher order effective Hamiltonians in the NAPT approach

are derived.

Let the total wave function φ be a solution of the stationary Schrödinger equation [H −

E] |φ〉 = 0 , with the Hamiltonian H = Hel +Hn , partitioned into the electronic and nuclear

parts. The clamped nuclei electronic Hamiltonian (with fixed positions of nuclei)

Hel = −
∑
a

∇2
a

2me

+ V (1)

consists of the electronic kinetic energy term and the potential V , which includes all the

Coulomb interactions. The nuclear Hamiltonian of a homonuclear diatomic molecule, after

the center of mass motion separation and with the space-fixed reference frame attached to

the geometrical center of two nuclei, has the form

Hn = − 1

2µn

(
∇2
R +∇2

el

)
, (2)

where

~∇el ≡
1

2

∑
a

~∇a , (3)

R means the internuclear distance, and µn is the nuclear reduced mass.

Now, let the unperturbed (zeroth-order) wave function be taken as the adiabatic wave

function

φa(~r, ~R) = φel(~r) χ(~R) (4)

i.e. as a product of the nuclear wave function χ and the electronic wave function φel de-

pending implicitly on the nuclear coordinates ~R. The electronic wave function obeys the
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electronic Schrödinger equation with the clamped nuclei Hamiltonian[
Hel − Eel(~R)

]
|φel〉 = 0 . (5)

The total wave function can be expressed as a sum of terms parallel to and orthogonal to

φel

φ = φel χ+ δφna . (6)

The latter condition means that

〈δφna|φel〉el = 0 , (7)

where 〈. . . 〉el represents integration over electronic coordinates only. As a consequence, the

Schrödinger equation with the Hamiltonian H and the energy E can be decomposed into

parallel and orthogonal parts

[
(Hel − Eel) + (Eel +Hn − E)]|φel χ+ δφna〉 = 0 (8)

and further transformed to

(Eel −Hel)|δφna〉 = (Eel +Hn − E)|φel χ+ δφna〉. (9)

Since δφna is orthogonal to φel, see Eq. (7), the formal recursive solution to the above

equation can be written as

|δφna〉 =
1

(Eel −Hel)′
[
Hn|φel χ〉+ (Eel +Hn − E)|δφna〉

]
, (10)

where the prime in the denominator denotes subtraction of the reference state φel from the

Hamiltonian inversion.45 In the next step, Eq. (8) is left-multiplied by 〈φel| to yield

〈φel|Eel +Hn − E|φel χ+ δφna〉el = 0 , (11)

which can be rewritten to the form

(Eel + Ea +Hn − E)|χ〉 = −〈φel|Hn|δφna〉el (12)

with Ea ≡ 〈φel|Hn|φel〉el. Recursive substitution of Eq. (10) into (12) forms a perturbative

expansion for the effective nuclear Hamiltonian

(Eel + Ea +Hn − E)|χ〉 = −(H(2)
n +H(3)

n +H(4)
n + . . .)|χ〉 (13)
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the leading terms of which have the following explicit form

H(2)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
Hn

∣∣∣∣φel

〉
el , (14)

H(3)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
(Hn + Eel − E)

× 1

(Eel −Hel)′
Hn

∣∣∣∣φel

〉
el , (15)

and

H(4)
n =

〈
φel

∣∣∣∣Hn
1

(Eel −Hel)′
(Hn + Eel − E)

1

(Eel −Hel)′

× (Hn + Eel − E)
1

(Eel −Hel)′
Hn

∣∣∣∣φel

〉
el. (16)

Taking into account the actual form (2) of the nuclear Hamiltonian we can transform

further the above formulas, e.g.

H(2)
n =

〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
el (17)

+
1

µn

~∇R
〈
~∇Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
el

− 1

µn

〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣~∇Rφel

〉
el
~∇R

− 1

µ2
n

~∇R
〈
~∇Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣~∇Rφel

〉
el
~∇R .

In order to make the following expressions more compact, we shall introduce two abbrevia-

tions

|φell〉 =
1

(Eel −Hel)′

∣∣∣Hnφel

〉
, (18)

|~φell〉 =
1

(Eel −Hel)′

∣∣∣~∇Rφel

〉
, (19)

and then

H(3)
n =

(
〈φell|+

1

µn

~∇R 〈~φell|
)

(Hn + Eel − E)
(
|φell〉 −

1

µn

|~φell〉 ~∇R
)

(20)

and

H(4)
n =

(
〈φell|+

1

µn

~∇R 〈~φell|
)

(Hn + Eel − E)
1

(Eel −Hel)′
(Hn + Eel − E)

(
|φell〉 −

1

µn

|~φell〉 ~∇R
)
.(21)

The Hamiltonian H
(2)
n contains only the terms proportional to (me/µn)2, but H

(3)
n may have

the terms with the second and higher powers of the electron-to-nucleus mass ratio. We are

interested in the leading nonadiabatic correction, which means in the terms proportional to

(me/µn)2.
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III. IMPLEMENTATION OF DERIVATIVES

Let ψk be the basis functions of electronic coordinates, then the electronic ground state

wave function can be expressed as

φel(~r1, ~r2) =
N∑
k=1

vk(R)ψk(~r1, ~r2) , (22)

where ~v is a vector consisting of real coefficients of this expansion. From now on we shall

drop the ’el’ subscript in the braket symbol as all the following integrations will be performed

in the electronic domain. The matrix elements of the nuclear Hamiltonian (2) in the ψi basis

are

〈ψi|Hn|ψj〉 = − 1

2µn

~∇R 〈ψi|ψj〉 ~∇R

− 1

4µn

〈ψi|(∇2
R +∇2

el)ψj〉 −
1

4µn

〈(∇2
R +∇2

el)ψi|ψj〉

+
1

4µn

{
〈~∇Rψi|ψj〉 − 〈ψi|~∇Rψj〉 , ~∇R

}
,

(23)

where the braces are used to denote the anticommutator.

Let us introduce the following symbols for the new matrix elements

Hkl = 〈ψk|Helψl〉,

Nkl = 〈ψk|ψl〉,

Akl = 〈ψk|∂Rψl〉,

Bkl = 〈~∇Rψk|~∇Rψl〉+ 〈~∇elψk|~∇elψl〉,

Ckl = 〈ψk|∇2
el +∇2

R|ψl〉,

Rkl =
〈
ψk

∣∣∣ 1

(Eel −Hel)′

∣∣∣ψl〉 . (24)

With this notation the electronic Schrödinger equation (5) reads

(H− EelN )~v = 0 , (25)

the normalization condition

~vT N ~v = 1 , (26)

and the reduced resolvent45

R =
1

(EelN −H)′
. (27)
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Let us consider now the first order R-derivative of φel

∂Rφel =
∑
k

(∂Rvk ψk + vk ∂Rψk) . (28)

The term ∂Rψk is assumed to be known, as it is a derivative of the basis function. The ∂Rvk

is obtained by differentiation of Eq. (25)

(H− EelN ) ∂R~v + (∂RH− ∂REelN − Eel ∂RN )~v = 0 (29)

and of the normalization condition, Eq. (26),

2 (∂R~v)T N ~v + ~vT ∂RN ~v = 0 , (30)

which combined together give

∂R~v = R (∂RH− Eel ∂RN )~v − 1

2
(~vT ∂RN ~v)~v . (31)

The first derivative of φel projected onto the basis function ψk gives

uk ≡ 〈ψk|∂Rφel〉 =
∑
l

(Akl vl +Nkl ∂Rvl) . (32)

Let us turn now to the second order R-derivative of φel

∇2
Rφel =

∑
k

(
∂2
Rvk ψk +

2

R
∂Rvk ψk + 2 ∂Rvk ∂Rψk

+vk∇2
Rψk

)
. (33)

Its projection onto the basis function ψl is

wl ≡ 〈ψl|∇2
el +∇2

R|φel〉 (34)

=
∑
k

(
Nlk ∂2

Rvk +
2

R
Nlk ∂Rvk + 2Alk ∂Rvk + Clk vk

)
.

The second order derivative of ~v is obtained by double differentiation of Eqs. (25) and (26)

∂2
R

[
(H− EelN )~v

]
= 0

(H− EelN ) ∂2
R~v + 2 (∂RH− ∂REelN − Eel ∂RN ) ∂R~v

+(∂2
RH− ∂2

REelN − Eel ∂
2
RN − 2 ∂REel ∂RN )~v = 0

(35)
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2 ∂2
R~v

T N ~v + 2 ∂R~v
T N ∂R~v

+4 ∂R~v
T ∂RN ~v + ~vT ∂2

RN ~v = 0
(36)

which leads to

∂2
R~v = R

[
2 (∂RH− ∂REelN − Eel ∂RN ) ∂R~v (37)

+(∂2
RH− Eel ∂

2
RN − 2 ∂REel ∂RN )~v

]
−
(
∂R~v

T N ∂R~v + 2 ∂R~v
T ∂RN ~v +

1

2
~vT ∂2

RN ~v

)
~v,

where the first order derivative of Eel is

∂REel = ~vT (∂RH− Eel ∂RN ) ~v . (38)

The matrices and vectors derived in this Section set the grounds for the expressions of the

nonadiabatic potentials comprising the effective Hamiltonians presented in the next Section.

IV. CONSTRUCTION OF THE EFFECTIVE NUCLEAR

HAMILTONIANS AND THE RADIAL SCHRÖDINGER EQUATION

The adiabatic correction Ea, appearing in Eq (12), has been derived in Ref. 44 using the

notation introduced in the previous section

Ea =
1

2µn

(
~vT B ~v + ∂R~v

T N ∂R~v + 2 ∂R~v
T A~v

)
. (39)

In the following sections we shall present expressions for the second- and third-order effective

nuclear Hamiltonians, appearing in Eq. (13), using quantities introduced in the preceding

sections.

A. Second-order Hamiltonian

The second-order nonadiabatic effective Hamiltonian of Eq. (17) is transformed to the

form31,32

H(2)
n = U(R) +

(
2

R
+

∂

∂R

)
V(R) (40)

− 1

R2

∂

∂R
R2W‖(R)

∂

∂R
+
J (J + 1)

R2
W⊥(R)
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where

U(R) =
〈
Hnφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
=

1

4µ2
n

wT Rw , (41)

V(R) =
1

µn

〈
∂Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣Hnφel

〉
= − 1

2µ2
n

uT Rw , (42)

W‖(R) =
1

µ2
n

〈
∂Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣∂Rφel

〉
=

1

µ2
n

uT Ru , (43)

W⊥(R) =
1

µ2
n

(δij − ni nj)
2

〈
∇i
Rφel

∣∣∣ 1

(Eel −Hel)′

∣∣∣∇j
Rφel

〉
=

1

2µ2
nR

2

〈
φel

∣∣∣~Lel
1

(Eel −Hel)′
~Lel

∣∣∣φel

〉
(44)

In the last equation, it is assumed that the molecule has a null total angular momentum (Σ

state), which implies ~Ln = −~Lel with ~Ln = −iR× ~∇R and ~Lel = −i
∑

a ~ra × ~∇a .

B. Third-order Hamiltonian

The third-order Hamiltonian (20) can be expressed as a sum of three distinct terms

H(3)
n = A+B + C, (45)

where

A = 〈φell|(Hn + Eel − E)|φell〉,

B =
1

µn

~∇R 〈~φell|(Hn + Eel − E)|φell〉

− 1

µn

〈φell|(Hn + Eel − E)|~φell〉 ~∇R ,

C = − 1

µ2
n

~∇R 〈~φell|(Hn + Eel − E)|~φell〉 ~∇R . (46)

All these three expressions are transformed by commuting the term Hn +Eel−E to the right

and left

A =
1

2µn

〈∇Rφell|∇Rφell〉+
1

2
(Hn + Eel − E) 〈φell|φell〉

+
1

2
〈φell|φell〉 (Hn + Eel − E). (47)
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Since χ satisfies Eq. (13), A can be approximated, neglecting the terms of the order higher

than fourth in me/µn, by

A =
1

2µn

〈∇Rφell|∇Rφell〉 − Ea 〈φell|φell〉 . (48)

Similarly the term B is transformed to

B =
1

µn

[
~∇R , 〈~φell|Hnφell〉 − Ea 〈~φell|φell〉

]
− 2

µ2
n

~∇R · 〈~φell|~∇R φell〉 · ~∇R (49)

and the term C becomes

C = − 1

2µ3
n

∇i
R

[
〈∇k

Rφ
i
ell|∇k

Rφ
j
ell〉 − Ea

]
∇j
R

+
1

2µ2
n

[
∇i
R , 〈φiell|φ

j
ell〉∇

j
R

(
Eel + Ea

)]
. (50)

All the components of H
(3)
n are O(µ−3

n ) except the last one in C, which is proportional to

µ−2
n . In the present calculations, only this term was accounted for. Its explicit form reads

δV(R) = − 1

2µ2
n

∂REel

〈
∂Rφel

∣∣∣[ 1

(Eel −Hel)′

]2∣∣∣∂Rφel

〉
= − 1

2µ2
n

∂REel u
T RT N Ru (51)

and it was added to V(R) in Eq (40). The omitted components of H
(3)
n and of the higher

order Hamiltonians remain the main source of the uncertainty of the nonrelativistic results.

C. Radial Schrödinger equation

Now, our goal is to solve Eq. (13) to the second order in the me/µn, which means that the

right hand side series of Hamiltonians is limited to the terms proportional to (me/µn)2. The

explicit form of the radial Schrödinger equation reads (see Ref. 32 for detailed derivation)[
− 1

R2

∂

∂R

R2

2µ‖(R)

∂

∂R
+

J (J + 1)

2µ⊥(R)R2
+ Y(R)

]
χJ(R)

= E χJ(R) , (52)

where the functions
1

2µ‖(R)
≡ 1

2µn

+W‖(R), (53)
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and
1

2µ⊥(R)
≡ 1

2µn

+W⊥(R). (54)

are interpreted as R-dependent vibrational and rotational masses, and where the potential

Y(R) for the movement of the nuclei consists of the BO curve Eel(R), the adiabatic correction

curve Ea(R), and the nonadiabatic correction curve δEna(R)

Y(R) = Eel(R) + Ea(R) + δEna(R) . (55)

The latter correction is expressed in terms of the functions defined in previous sections as

δEna(R) = U(R) +

(
2

R
+

∂

∂R

)
[V(R) + δV(R)] . (56)

As we are interested in dissociation energy D0 of rovibrational levels we fix the origin of the

energy scale to the separated atoms limit, and correspondingly, we convert all the potentials

to the following form

Y int(R) = Y(R)− Y(∞) , (57)

W int(R) =W(R)−W(∞) . (58)

In the separated atoms limit, V and δV vanish, whereas µ2
nW and µ2

n U are equal to −1
4

a.u. In this convention, the eigenvalue E of the Hamiltonian in Eq. (52) corresponds to the

negative of D0.

For convenience, the radial equation (52) was further transformed, using ηJ(R) =

RχJ(R), to the following working form

∂

∂R

1

µ‖(R)

∂

∂R
ηJ(R) (59)

= −2

[
E − Z(R)

R
− J (J + 1)

2µ⊥(R)R2

]
ηJ(R),

with

Z(R) = RY int(R) +
∂

∂R
W int
‖ (R) . (60)

Eq. (59) was solved numerically using the procedure described in Ref. 46 modified by us

to account for the variable masses. A significant advantage of the above approach is the

possibility of obtaining all the nonadiabatic levels from a single set of the potentials.
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V. NUMERICAL RESULTS

Our goal is to obtain as high numerical accuracy of the nonadiabatic corrections as

possible. For this reason, we implemented the working formulas of Sec. III and IV in

FORTRAN 90 using the 212-bit (∼64 digits) precision with a support from the quad-double

arithmetic QD library.47

A. Basis set and matrix elements

To evaluate all the required matrix elements (24) we have employed the James-Coolidge

(JC)4 basis functions. In recent studies on the ground state BO potential energy of H2
43

and on the adiabatic correction44, the JC basis has been found very effective in analytic

evaluation of all the needed integrals, and has proven to yield highly accurate results. The

symmetric JC basis function is of the form

ψ = (1 + P12) (1 + ı̂)

(r1A − r1B)n2(r2A − r2B)n3(r1A + r1B)n4(r2A + r2B)n5

e−β (r1A+r1B+r2A+r2B) rn1
12 R

−n1−n2−n3−n4−n5−3. (61)

The basis function depends parametrically on the internuclear distance R in two ways:

through the explicit power of the internuclear distance R, introduced to ensure that the

overlap integrals are dimensionless, and implicitly through the electron-nucleus distances

r1A, r1B, r2A, r2B. The numerical value of the nonlinear parameter β was optimized with

respect to the electronic energy Eel(R) for each R separately. Proper spin and inversion

symmetry (singlet gerade for the ground electronic state) of the wave function was imposed

using two projectors containing the electron exchange P12 and the electron-coordinate inver-

sion ı̂ operators. In the JC basis, the matrix elements (24) are expressible by combinations

of the closed-form functions f derived in Ref. 42

f(n1, n2, n3, n4, n5;R, β) = R−n1−n2−n3−n4−n5−1 (62)∫
d3r1

4 π

∫
d3r2

4π

e−β r1A

r1A

e−β r1B

r1B

e−β r2A

r2A

e−β r2B

r2B

1

r1−n1
12

(r1A − r1B)n2(r2A − r2B)n3(r1A + r1B)n4(r2A + r2B)n5 ,

therefore, their evaluation requires no numerical integration to be involved.
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For ψk, the k-th element of the basis set, the subscript k can be treated as a multi-

index composed of integer exponents {n1, n2, n3, n4, n5}. To simplify the description of

the arrangement of the basis set we introduce here an integer parameter Ω related to the

exponents ni by ∑
i

ni ≤ Ω . (63)

The parameter Ω is pivotal in the basis set convergence study discussed below. For the

evaluation of W‖ potential, we split the expansion (22) into two sectors, one limited by Ω

and the other by Ω− 2, each with his own nonlinear parameter β and {ni}.

B. Convergence of the nonadiabatic potentials

There are five nonadiabatic potentials involved in the radial Schrödinger equation (52):

U(R), V(R), δV(R), W‖(R), andW⊥(R). At first, we shall analyze the accuracy of a single-

point evaluation of all these potentials. An estimate of the accuracy can be obtained by

watching the convergence of given potential with increasing size of the basis set. Table I

contains a selection of representative data illustrating the convergence of the nonadiabatic

potentials with increasing size of the basis set governed by the shell parameter Ω of Ineq. (63).

A general conclusion which can be drawn from these data is that the relative accuracy ob-

tained from the largest expansions is better than 10−9 for the whole range of internuclear

distances R. Exceptions appear only in the vicinity of those R at which a potential changes

its sign. In such a region, the accuracy is lower than that mentioned above but simultane-

ously the absolute value of the potential itself is close to zero. Both, the reduced resolvent

and the matrix elements of the four potentials of Table I were evaluated with the same basis

functions used to represent the electronic wave function φel, i.e. the functions of 1Σ+
g sym-

metry. In contrast, the W⊥ potential requires a basis function of Πg symmetry to represent

the resolvent, because of the presence of the ~Lel operator raising the angular momentum.

In this case we have employed the JC function (61) multiplied by x1 + i y1. For this reason

the convergence of the W⊥ potential depends on two separate expansions. Examples of the

convergence are presented in Table II, where the left panel shows the convergence with in-

creasing expansion size of the unperturbed 1Σ+
g wave function and the fixed size of the first

order correction function, whereas the right panel with the opposite combination of func-

tions. The convergence with the size of the Πg basis set is apparently slower and determines

13



the final relative accuracy reached for theW⊥(R) but again the accuracy is definitely better

than 10−9 for all R’s.

TABLE I. A sample of the convergence of the mass-independent nonadiabatic functions (in a.u.)

with growing size of JC basis at selected internuclear distances R. Ω is the shell parameter of

Eq. (63) and N is the number of basis functions.

Ω N µ2n U(0.8) µ2n U(1.4) µ2n U(6.0) µ2n U(12.0)

16 5301 −0.698 940 569 0 −0.310 003 263 43 −0.257 867 067 598 06 −0.250 010 225 524 99

17 6831 −0.698 940 600 8 −0.310 003 273 13 −0.257 867 067 602 95 −0.250 010 225 530 25

18 8701 −0.698 940 608 0 −0.310 003 275 26 −0.257 867 067 603 87 −0.250 010 225 529 88

19 10956 −0.698 940 609 6 −0.310 003 275 74 −0.257 867 067 604 15 −0.250 010 225 529 75

estim. relative accuracy 3 · 10−9 2 · 10−9 2 · 10−12 3 · 10−13

Ω N µ2n V(0.8) µ2n V(1.4) µ2n V(6.0) µ2n V(12.0)

16 5301 +0.325 244 212 96 +0.185 995 802 15 −0.012 637 379 028 −0.000 011 494 697 30

17 6831 +0.325 244 226 98 +0.185 995 808 73 −0.012 637 379 017 −0.000 011 494 711 74

18 8701 +0.325 244 229 93 +0.185 995 810 10 −0.012 637 379 017 −0.000 011 494 713 30

19 10956 +0.325 244 230 62 +0.185 995 810 41 −0.012 637 379 017 −0.000 011 494 713 59

estim. relative accuracy 3 · 10−9 2 · 10−9 4 · 10−11 3 · 10−8

Ω N µ2n δV(0.8) µ2n δV(1.4) µ2n δV(6.0) µ2n δV(12.0)

16 5301 −0.078 959 645 30 −0.000 049 612 744 +0.000 355 367 878 713 +0.000 000 340 744 777 4

17 6831 −0.078 959 659 00 −0.000 049 612 742 +0.000 355 367 879 519 +0.000 000 340 744 743 6

18 8701 −0.078 959 661 88 −0.000 049 612 742 +0.000 355 367 879 635 +0.000 000 340 744 742 0

19 10956 −0.078 959 662 56 −0.000 049 612 743 +0.000 355 367 879 662 +0.000 000 340 744 741 9

estim. relative accuracy 9 · 10−9 2 · 10−8 9 · 10−11 3 · 10−10

Ω/Ω− 2 N µ2n W‖(0.8) µ2n W‖(1.4) µ2n W‖(6.0) µ2n W‖(12.0)

15/13 6324 −0.181 944 170 901 16 −0.192 143 401 019 4 −0.268 758 564 643 1 −0.250 010 683 358 996

16/14 8361 −0.181 944 170 898 96 −0.192 143 401 019 4 −0.268 758 564 649 7 −0.250 010 683 362 978

17/15 10887 −0.181 944 170 898 64 −0.192 143 401 019 4 −0.268 758 564 651 9 −0.250 010 683 362 914

18/16 14002 −0.181 944 170 898 31 −0.192 143 401 019 4 −0.268 758 564 652 7 −0.250 010 683 362 904

estim. relative accuracy 2 · 10−12 3 · 10−13 3 · 10−12 4 · 10−14

C. Analytic fits of the nonadiabatic potentials

In the next stage, the numerical values of the nonadiabatic potentials were used to de-

termine the least-square fits of the following functional forms

e−aR
imax∑
i=0

PiR
i + e−bR−cR

2

jmax∑
j=1

Qj R
j (64)

14



TABLE II. Typical examples of convergence of the mass-independent µ2
n W⊥(R) potential (in

a.u.) with growing basis set size of both the unperturbed and perturbed wave function at selected

internuclear distances R. Ω0 and Ω1 are the shell parameters of Eq. (63), whereas N0 and N1

symbolize the corresponding number of basis functions. The subscripts ’0’ or ’1’ correspond to the

unperturbed and the first order correction function, respectively.

Ω1 = 15 and N1 = 11832 Ω0 = 19 and N0 = 17787

Ω0 N0 µ2n W⊥(1.4) µ2n W⊥(12.0) Ω1 N1 µ2n W⊥(1.4) µ2n W⊥(12.0)

16 8361 −0.027 202 029 805 512 0 −0.249 998 747 996 01 12 4480 −0.027 202 029 805 127 −0.249 998 737 19

17 10887 −0.027 202 029 805 513 5 −0.249 998 747 997 80 13 6328 −0.027 202 029 805 466 −0.249 998 747 25

18 14002 −0.027 202 029 805 514 0 −0.249 998 747 997 86 14 8736 −0.027 202 029 805 507 −0.249 998 747 95

19 17787 −0.027 202 029 805 514 1 −0.249 998 747 997 92 15 11832 −0.027 202 029 805 514 −0.249 998 748 00

estim. relative accuracy 6 · 10−13 2 · 10−10

for short and medium distances R < Rc, and

kmax∑
k=kmin

Ak R
−k for R > Rc . (65)

The nonlinear parameters a, b, and c, the linear parameters Pi, Qj, and Ak, as well as the

sum limits and the threshold Rc were selected individually for each nonadiabatic potential.

The optimum values of the parameters of potential (64) were determined by the fits to 88

points covering the range 0.1 ≤ R/bohr ≤ 12.0. Table III contains a selection of numerical

values of the five potentials in their mass-independent form, whereas the full list of 88 points

is deposited in the Supplemental Material.48 The parameters pertinent to the long-range

formula (65) were fitted to the points from the range 8 ≤ R/bohr ≤ 12. The discrete values

of the potentials were shifted beforehand by pertinent atomic values, so that the interaction

potentials vanishing in the R→∞ limit were obtained (see Eqs (57) and (58)).

The two parts of the potentials were joined together at the internuclear distance Rc, at

which we imposed a requirement that both parts as well as their first and second derivatives

were the same. The Ak parameters of the long-distance potential were fitted with these

constraints, whereas the parameters present in formula (64) were determined freely. We

do not present tables with the best fit parameters, instead we supply in the Supplemental

Material48 several Fortran’90 code routines which evaluate the potentials at an arbitrary

internuclear distance.

The fitting procedure is another source of error in the final results and our priority
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TABLE III. An excerpt of the full-length table of the nonadiabatic potentials. The numerical values

of the potentials correspond to the mass-independent form. All figures displayed are supposed to

be exact. Full-length table is available in the Supplemental Material.48

R/bohr µ2
n W‖(R) µ2

n W⊥(R) µ2
n U(R) µ2

n V(R) µ2
n δV(R)

0.4 −0.143 550 860 20 −0.002 957 170 260 −2.000 079 5 +0.519 763 56 −3.683 742 0 · 10−1

0.8 −0.181 944 170 8983 −0.010 137 821 1172 −0.698 940 61 +0.325 244 231 −7.895 966 3 · 10−2

1.4 −0.192 143 401 0194 −0.027 202 029 8055 −0.310 003 276 +0.185 995 810 −4.961 274 3 · 10−5

2.0 −0.213 757 395 328 −0.053 144 277 8343 −0.211 804 814 +0.117 115 821 +1.368 916 3 · 10−2

2.7 −0.288 087 420 668 −0.097 457 080 0382 −0.187 498 745 +0.063 409 104 +1.943 650 9 · 10−2

3.2 −0.363 338 633 46 −0.136 807 508 995 −0.200 371 498 +0.019 329 540 +2.079 514 38 · 10−2

3.8 −0.405 638 269 03 −0.182 849 879 952 −0.237 779 769 9 −0.036 627 715 4 +1.463 931 83 · 10−2

4.4 −0.369 830 983 118 −0.216 276 864 418 −0.266 019 254 0 −0.053 351 141 8 +6.321 608 76 · 10−3

4.8 −0.332 980 176 923 −0.230 071 222 613 −0.269 639 888 81 −0.044 299 463 7 +3.108 514 65 · 10−3

6.0 −0.268 758 564 653 −0.246 504 028 951 −0.257 867 067 604 −0.012 637 379 017 +3.553 678 797 · 10−4

12.0 −0.250 010 683 3629 −0.249 998 748 0 −0.250 010 225 530 −0.000 011 494 714 +3.407 447 42 · 10−7

was to minimize the error even at the expense of the length of analytic expressions (64)

and (65). The quality of the obtained fits was characterized by means of the square root of the

estimated variance (10−12 < σ < 10−8) and the maximum distortion (3 · 10−12 < ε < 10−8).

In order to estimate the error in the rovibrational energy due to the uncertainties in the

individual points, for each potential we constructed a fit to the residuals. Such a fit was then

added to or subtracted from the main potential and its effect on the rovibrational energy

was obtained. On the basis of the above procedure, we estimate that the fitting procedure

described above introduces approximately a hundred times greater error than the individual

points of the potential, that means the error is about 10−7 cm−1.

D. Numerical solution of the radial Schrödinger equation

The analytic nonadiabatic correction potentials, together with the previously reported

BO43 and adiabatic correction44 potentials, were employed to construct the total nonadi-
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abatic potential Z(R) of Eq. (60). Eq. (59) was integrated numerically on a nonuniform

grid46

ri = r0

(
eti − 1

)
(66)

where

ti = (i− 1)h, i = 1, 2, . . . , N . (67)

The grid parameters r0 = 0.0001 bohr, N = 2400, rN = 40 bohr, and h ≈ 0.000537 bohr

were adjusted experimentally to permit at least 10−7 cm−1 accuracy of the eigenvalues.

To confirm these results we employed additionally the discrete variable representation

(DVR) method.49 Prior to the construction of the DVR Hamiltonian on (0,∞) interval, we

first transform Eq. (52), using notation of Sec. IV C, to a more convenient form

[
− ∂

∂R

(
1

2µa

+W int
‖ (R)

)
∂

∂R
+
J (J + 1)

R2

(
1

2µa

+W int
⊥ (R)

)
+
W int′
‖ (R)

R
+ Y(R)

]
ηJ(R) = E ηJ(R),

(68)

where µa is a reduced mass of separated atoms. Next, for the grid of radial points xi =

a + i b−a
N

, i = 1, . . . , N − 1, we introduce the following associated functions τn(xi) =√
2
b−a sin

(
nπ i
N

)
. Then, the diagonal and non-diagonal DVR Hamiltonian operators are,

respectively,

Hjj =
1

2 ∆x
W int′
‖ (xj)

1

j

+
1

(∆x)2

(
1

2µa

+W int
‖ (xj)

)[
π2

3
− 1

2 j2

]
(69)

+
J(J + 1)

x2
j

(
1

2µa

+W int
⊥ (xj)

)
+ Y(xj) ,

Hij = (−1)i−j
{

1

∆x
W int′
‖ (xj)

[
1

i− j
+

1

i+ j

]
+

2

(∆x)2

(
1

2µa

+W int
‖ (xj)

)[
1

(i− j)2
− 1

(i+ j)2

]}
(70)

with ∆x = b−a
N

.

Another potential source of error affecting the final results comes from the uncertainty

in the nuclear mass. The currently most accurate value of the proton mass37 mp/me =

1 836.152 673 77(17) carries the uncertainty at eleventh significant figure. The nuclear masses
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for D2 and T2 are less accurate and amount to md/me = 3 670.482 9652(15) and mt/me =

5 496.921 5267(50), respectively. To establish the influence of this uncertainty on the lead-

ing nonadiabatic correction to D0 of rovibrational levels, the mass parameter was changed

by ±1σ, while solving Eq. (59). The observed changes in energy levels were lower than

10−8 cm−1 for H2 and < 3 · 10−8 cm−1 for D2 and T2.

The main conclusion drawn from this analysis is that the final accuracy of the leading

order nonadiabatic corrections is limited by the efficiency of the fitting procedure and equals

to 10−7 cm−1. Certain room for further improvement still exists and would require using

finer grid for single point calculations and refinement of the fitting functions.

In the best available in literature total energy of H2, the overall error introduced by higher

order nonadiabatic corrections, estimated in Ref. 32, and by relativistic and QED corrections

(see Ref. 33) is of the order of 10−3 cm−1. The results reported in this work, accurate to

10−7 cm−1, enable removal of the uncertainties of the leading order nonadiabatic corrections

along with the BO and adiabatic correction errors43,44 from the overall error budget.

E. Nonadiabatic corrections to rovibrational levels

Our final values of the leading order nonadiabatic corrections to the dissociation energy

of the ground level of the symmetric isotopologues of hydrogen molecule are collected in

Table IV. For H2 and D2 these values agree perfectly with previous estimations (0.4339(2)

and 0.1563(2) of Ref. 33) but are three orders of magnitude more accurate. The third value,

for T2, also agrees with 0.0859 obtained by Wolniewicz24 albeit his value has no uncertainty

assigned. Extensive tables with the leading order nonadiabatic correction to all rovibrational

TABLE IV. The leading order nonadiabatic corrections to the dissociation energy of the ground

level of the symmetric isotopologues of hydrogen molecule. The Rydberg constant 2 Ry =

219 474.631 370 78(110) cm−1 was used to convert D0 from atomic units to cm−1.

Molecule ∆D0/cm−1

H2 0.433 961 8(1)

D2 0.156 316 0(3)

T2 0.085 966 4(6)
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levels of H2, D2, and T2 are available in the Supplemental Material repository.48

In the perturbative approach to the nonrelativistic energy employed here, what remains to

be established and possibly eliminated is the error originating from the neglect of the higher

order terms in the electron-to-nucleus mass ratio. One could expect that in the sequence

of H2, D2, and T2, such terms would scale proportionally to the me/µn factor. In a very

simplistic approach to this problem one could estimate these corrections for D0 of the ground

level by multiplying the leading order value by this factor to obtain 5·10−4 cm−1, 8·10−5 cm−1,

and 3 · 10−5 cm−1. Another manner of such estimation relies on subtraction of the total

nonadiabatic energy obtained directly in variational calculations50–52 (displayed in Table V)

from our perturbative nonadiabatic energy. Such an estimation leads to 6 · 10−5 cm−1,

−3 · 10−6 cm−1, and 1 · 10−6 cm−1. Apparently this series lacks the proper dependence on

nuclear mass as is not even monotonic. Perhaps the accuracy of the variational calculations

is near the value of the evaluated effect, which prevents a reliable estimation.

VI. CONCLUSIONS

The theoretical total dissociation energy of a molecule can be considered using nonrela-

tivistic QED (NRQED) in which D0 is composed of several contributions resulting from the

expansion in powers of the fine-structure constant. NRQED enables approaching the total

D0 by successively collecting smaller and smaller terms of its expansion. The ultimate error

of the theoretical D0 has then two main sources: one is the cutoff of the perturbational series,

and the other is the limited accuracy of determination of the leading terms. This obser-

vation sets the strategic directions for improvement in theoretical predictions. The present

publication, along with the two preceding articles,43,44 aims at increasing the accuracy of the

nonrelativistic contribution to D0, which appears to be the largest of all the components.

This goal has been reached thanks to the improved methodology connected with explicitly

correlated exponential wave function. Further development of this method in relation to the

relativistic effects is underway in our group. One should realize though that it is insufficient

just to increase the accuracy of a particular term of the NRQED expansion. The main factor

limiting the accuracy of the predictions are the missing small terms of higher order in α or

me/M as well as the relativistic recoil terms. Determination of these contributions requires

significant theoretical efforts, but once it is successfully performed, the negligible effects, like

19



TABLE V. Comparison of the leading order nonadiabatic dissociation energy obtained in the

present calculations with literature results.

Reference D0/cm−1

H2

This work, 2015 36 118.797 675

Bubin et al., 200950 36 118.797 74

Bubin, Adamowicz, 200353 36 118.797 552

ECG, 200932 36 118.797 8

Wolniewicz, 199524 36 118.795

Bishop, Cheung, 197818 36 118.60

D2

This work, 2015 36 749.090 978

Bubin et al., 201151 36 749.090 975

ECG, 200933 36 749.091 0

T2

This work, 2015 37 029.224 863

Stanke, Adamowicz, 201452 37 029.224 863

ECG, 2009 37 029.224 9

finite size of the nuclei38 or gerade-ungerade mixing,54 will enter then into play.
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