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First-principles calculations are presented for fundamental vibrational splitting energies of tritium-
bearing molecular hydrogen species with the improved treatment of the nonrelativistic, relativistic
and quantum electrodynamic energy contributions resulting in a total uncertainty of 0.000 11 cm−1

for DT, or about 100-times improvement over previous results. Precision coherent Raman spec-
troscopic measurements of Q(J = 0 − 5) transitions in DT were performed at an accuracy of
< 0.000 4 cm−1, representing even larger 250-fold improvement over previous experiments. Perfect
agreement between experiment and theory is found, within 1σ, for all six transitions studied.

Seventy years after its development, quantum electro-
dynamics (QED) has emerged to be the best-tested the-
ory in physics. While QED is most accurately tested from
the measurement of the anomalous magnetic moment of
a free electron [1] and atomic recoil measurements [2, 3],
tests in the bound atomic hydrogen system are at present
limited by effects of the proton structure [4, 5]. Precision
tests in the hydrogen atom rely ultimately on the narrow-
est transition involving the long-lived 2S quantum state
with a natural lifetime of 0.12 s [6]. In contrast, the
additional rotational and vibrational degrees of freedom
in H2 give rise to a multitude of states in the ground
electronic manifold with extremely long lifetimes in the
order of 105 − 106 s [7]. In addition, access to all six
isotopic variants of molecular hydrogen enables a robust
validation of nonadiabatic perturbation theory.

The additional complexity of the four-body molecular
hydrogen system presents formidable challenges in first-
principles calculations. The last decade has shown great
improvements in calculation of the nonrelativistic ener-
gies using a perturbative approach [8, 9], or a recent non-
perturbative treatment [10]. Concurrent developments in
the calculation of relativistic [11], QED [12], and associ-
ated recoil corrections have led to sub-MHz accuracies
in level energies of the stable molecular hydrogen species
H2, HD, and D2 [13], but have not been applied to triti-
ated isotopologues until now.

Parallel progress in experiments have resulted in an ac-
curate measurement of the dissociation energy of the H2

molecule [14, 15], the measurement of its fundamental vi-
brational splitting [16], as well as very weak quadrupole
overtone transitions [17–19]. Similar spectroscopic stud-
ies have also been applied to the other stable D2 (cf. [20–
22]) and the mixed isotopologue HD (cf. [23–26]). On
the other hand, very few precision studies have been un-
dertaken on the tritium-bearing species [27–29], on ac-

count of difficulties in handling radioactive tritium. If
these practical challenges would be overcome, access to
tritium-bearing species T2, HT, and DT would double
the number of molecular hydrogen test systems.

Here we present highly-accurate calculations of the
rovibrational transitions for all tritiated molecular hydro-
gen that are two orders of magnitude more accurate than
previous studies [30]. This improvement is obtained by
applying a recently-developed nonadiabatic perturbation
theory approach to obtain accurate nonrelativistic ener-
gies [9], as well as by systematic treatment of leading,
higher-order and recoil relativistic and QED corrections

FIG. 1. Q(1) transition of the DT X1Σ+
g (v = 0→ 1) Raman

band, probed at different peak intensities and plotted with re-
spect to the Stokes frequency ωS (lower frequency axis) and
the Raman shift ωR (upper axis). The solid lines through
the DT data points are Gaussian fits, with the line centers
exhibiting ac-Stark shifts. The transmission peaks of the sta-
bilized etalon and saturated I2 spectrum used in the relative
and absolute frequency calibrations of ωS are also plotted.
Inset: Nonlinear four-wave mixing scheme.



2

based on nonrelativistic wave functions. The calculations
are benchmarked by accurate measurements of DT tran-
sition energies, which enables precision tests in tritiated
species that are now sensitive to QED effects.

As for the experimental study, we use the nonlinear
frequency-mixing scheme of coherent anti-Stokes Raman
spectroscopy (CARS), illustrated in the inset of Fig. 1.
An anti-Stokes coherent beam is produced for signal
detection, at frequency ωAS = 2ωP − ωS correspond-
ing to λAS ∼ 464 nm, whenever the frequency differ-
ence between the pump (ωP ) and Stokes (ωS) frequen-
cies is in resonance with a vibrational mode (ωR) in the
molecule. The high-resolution CARS setup has been de-
scribed in a previous work on T2 [31]. An injection-
seeded and frequency-doubled Nd:YAG laser provides the
pump beam (λP ∼ 532 nm), while the Stokes radiation
(λS ∼ 623 nm) originates from a narrowband pulsed
dye amplifier (PDA) system [32], which is seeded by a
continuous-wave (cw) ring dye laser. DT at a partial
pressure of 4 mbar is contained in a 4-cm3 gas cell, pre-
pared from a 4:1 mixture of D2 and T2 at the Tritium
Laboratory Karlsruhe and transported to LaserLaB Am-
sterdam for the spectroscopic measurements [33].

Recordings of the Q(1) Raman transition at differ-
ent intensities are shown in Fig. 1, manifesting ac-Stark
broadening and shifting. The cw-seed frequency for
the ωS radiation is calibrated using a HeNe-stabilized
etalon in combination with an absolute frequency ref-
erence from saturation I2 spectroscopy [34]. The cw-
pulse frequency offset induced by frequency chirp effects
in the pulsed-dye amplification [32, 35, 36] is measured
and corrected for [37]. The frequency of the ωP pulse
is monitored online using a high-resolution wavemeter
(High Finesse Ångstrom WSU-30), which is periodically
calibrated against several absolute frequency standards
at different operating wavelengths, including calibrations
against a Cs clock with the aid of an optical frequency
comb. This wavemeter also measures the correct fre-
quency that includes any chirp-induced frequency offset
as verified when using a narrowband titanium sapphire
pulsed laser source with an adjustable cw-pulse frequency
offset used in Ref. [14]. The Raman shift, ωR = ωP −ωS ,
is derived from the simultaneous frequency calibrations
of both pump ωP and Stokes ωS laser frequencies.

The ac-Stark shift for the Q(1) transition is plotted
in Fig. 2 panel a) as a function of the pump IP and
Stokes beam IS intensities; and in panel c) as a func-
tion of the total intensity, IP + IS , of both pump and
Stokes beams. It was established that the extrapolation
to the unperturbed zero-intensity frequency by fitting,
a plane in a) or by a line in c), yields the same value
within 2 MHz. This linear dependence is expected since
the polarizabilities at λP and λS for both the v = 0 and
v = 1 levels of molecular hydrogen are very similar [38].
In this manner, the ac-Stark dependence on the total
intensity for all other Q(J = 0, 2 − 5) transitions was
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FIG. 2. a) ac-Stark extrapolation for the Q(1) line position
by fitting a plane (blue-shaded area) spanned by the pump,
IP , and Stokes, IS , laser intensities separately. b) Full-widths
at half-maximum plotted against the total intensity IP + IS .
The zero-intensity ωR value obtained in a) is consistent with
a linear fit in c) using the total intensity as independent pa-
rameter.

treated by linear extrapolation and found to be accurate
to 6 MHz. The full-widths at half-maximum are plotted
in Fig. 2 b), which extrapolates to the Doppler width at
zero intensity. Collisional shifts on the DT transitions are
conservatively estimated to be ∼ 1 MHz based on investi-
gations of the stable molecular hydrogen species [39–41].
Since we cannot vary the pressure of DT, we have veri-
fied the estimates by pressure-dependent measurements
of D2 in an identical gas cell. The hyperfine structure
of DT is expected to be similar to that of HD with the
hyperfine splittings spanning within ∼ 1 MHz, and is
not observed in our Doppler-limited linewidths. Possible
shifts in the hyperfine center-of-gravity of the transitions
are expected to be well below a MHz and are neglected.
Table I shows the uncertainty contributions, where a fi-
nal uncertainty of 12 MHz or 4×10−4 cm−1 is estimated
for the Q(J = 0, 2 − 5) lines. The Q(1) transition has
a slightly smaller uncertainty due to more measurements
collected for the assessment of systematic shifts. The
reproducibility of measurements performed on multiple
days is indicated in the statistics entry in Table I.

Measurements of the Q(0), Q(1), and Q(2) transitions

TABLE I. Systematic and statistical contributions to the fre-
quency uncertainties in the DT fundamental vibrational Ra-
man transitions. Values are given in MHz.

Contribution Q(J 6= 1) Q(1)
Pump (ωP ) calibration 6 6
Stokes (ωS) cw calibration 2 1
Stokes cw–pulse chirp correction 5 5
ac-Stark analysis 6 3
Collisional shift 1 1
Statistics 7 5
Combined (1σ) 12 10
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of the fundamental band of D2, with 8-mbar partial pres-
sure inside the same DT cell, were also performed. High-
accuracy D2 measurements using molecular beams have
been performed with a completely different spectroscopic
approach [16, 42], allowing for the in situ assessment
of any other systematic effects. D2 comparisons with
Ref. 42 yield an average deviation, shown in Fig. 3, that
is consistent with and validates the independently esti-
mated uncertainty of the present CARS study. These
experimental results are compared with the theoretical
results presented in the following discussion.

In order to calculate molecular rovibrational levels and
transition energies accurately, we use a variant of nonre-
lativistic quantum electrodynamics (NRQED) – an effec-
tive theory approximating QED at low energy scales [12].
It assumes an expansion of the binding energy in powers
of the fine-structure constant α

E(α) = α2E(2) + α4E(4) + α5E(5) + α6E(6) + . . . ,
(1)

where E(i) is a contribution of order αim (with the elec-
tron mass m) and may include powers of lnα. Each E(i)

can be expressed as an expectation value of some effective
Hamiltonian with the nonrelativistic wave function. The
E(i) terms can be calculated directly (see e.g. [10, 43–45])
or expanded further in the m/µn mass ratio (with µn =
MAMB/(MA + MB) – the nuclear reduced mass) in the
spirit of the nonadiabatic perturbation theory (NAPT)
[9, 46]. This yields the well-known components of the
nonrelativistic energy—the Born-Oppenheimer (BO) en-
ergy E(2,0), the adiabatic correction E(2,1), and the non-
adiabatic correction E(2,2) for a given rovibronic state.
Similarly, NAPT enables the relativistic E(4) and QED
E(5) corrections to be evaluated as a sum of the leading
(infinite nuclear mass) and the recoil (finite mass) com-
ponents, although finite mass QED corrections have not
yet been incorporated.

The Schrödinger equation for a hydrogen molecule iso-
topomer, written in a center-of-mass frame, with the ori-
gin in the geometric center of the nuclei, is

(H +Hn − E(2)) |Ψ(~r1, ~r2, ~R)〉 = 0, (2)

where

H = −1

2

(
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2

)
+ V, (3)
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(
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)
+

(
1

MA
− 1

MB

)
~∇R

~∇el, (5)

and where the 1, 2 indices denote electrons, A, B denote
nuclei, ~R = ~RA − ~RB, and ~∇el = (~∇1 + ~∇2)/2. The
last term in Hn is present in heteronuclear isotopomers
and is a source of the gerade/ungerade mixing effects, of

relevance to the DT species investigated here. Within
NAPT, the wave function is represented as

Ψ(~r1, ~r2, ~R) = ψ(~r1, ~r2)Y (~n)χ(R)/R+ δΨ(~r1, ~r2, ~R),
(6)

where one assumes 〈δΨ|ψ〉 = 0, Y (~n) is a spherical har-

monic, and ~n = ~R/R. ψ(~r1, ~r2) is an eigenfunction of the
electronic Schrödinger equation

H |ψ〉 = E(2,0)(R) |ψ〉 , (7)

with the eigenvalue dependent on the internuclear dis-
tance R. In the NAPT leading order, the function χ
satisfies the following nuclear equation

HNχ(R) = E(2,0)χ(R), (8)

HN = − 1

2µn

d2

dR2
+ E(2,0)(R) +

J(J + 1)

2µnR2
, (9)

where J is the rotational quantum number. E(2,0)(R)
from the electronic Schrödinger equation (7) serves as a
potential for the movement of the nuclei, present in the
nuclear equation (8). We solve Eq. (8) with a discrete
variable representation (DVR) method [47, 48] for χ,
which is then used in a perturbative manner to calculate
the rovibrational energy contributions 〈χ|E(i,k)(R)|χ〉,
where E(i,k)(R) denotes a correction of the order αim ·
(m/µn)

k
to the electronic potential. Regarding E(2), its

BO approximation E(2,0) is surely not accurate enough
for our purposes. At the same time, direct calculation
of E(2,1) and E(2,2) is not very convenient. This is why
the nuclear Schrödinger equation is solved again instead
– with the NAPT-corrected Hamiltonian, including the
nonadiabatic effects up to the (m/µn)2 level

H̃N =

[
− d

dR

1

2µ‖(R)

d

dR
+

J(J + 1)

2µ⊥(R)R2
+
W ′‖(R)

R
+ Y(R)

]
.

(10)

All the functions µ‖(R), µ⊥(R), W ′‖(R), and Y(R) in
the above are defined and provided as analytic fits in
Refs. 9, 46, and 48. Note that Y(R) incorporates both the
adiabatic and nonadiabatic effects, and the g/u-mixing
term from Eq. (5) in particular.

The E(4) and E(6) corrections are calculated as

E(4) =E(4,0) + E(4,1), (11)

E(6) = 〈χ|E(6,0)(R)|χ〉 (12)

+ 〈χ| E(4,0)(R)
1

(E(2,0) −HN)′
E(4,0)(R) |χ〉 ,

where

E(4,0) = 〈χ|E(4,0)(R)|χ〉 , (13)

E(4,1) = 〈χ|E(4,1)(R)|χ〉 (14)

+2 〈χ| E(4,0)(R)
1

(E(2,0) −HN)′
E(2,1)(R) |χ〉 .
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The rest: E(5), E(7), and EFS (the correction due to
the finite nuclear sizes), are calculated just as expecta-
tion values with χ(R). All needed potentials are taken
from, respectively: E(2,0)(R) – Refs. 8 and 48, E(2,1)(R)
– Ref. 49, the nonadiabatic potentials in Eq. 10 – Refs. 9
and 48, E(4,0)(R) – Ref. 11, E(4,1)(R) – Ref. 13, E(6,0)(R)
– Ref. 12. The potentials E(7,0)(R) and EFS(R) make
use of the electron-nucleus Dirac δ values obtained in
Ref. 11. Their calculation method follows the approach of
Refs. 13 and 45 respectively (based, in turn, on Ref. 50).
The leading QED contribution E(5,0)(R) combines re-
sults from Refs. 11, 12, and 51. More details concern-
ing particular potentials are going to be available in
the upcoming paper [48]. The theoretical uncertainty
of an E(i) component includes the missing next term
E(i,kmax+1) ≈ E(i,kmax)m/µn, where kmax is the highest
included term in the m/µn expansion. For E(2), E(i,kmax)

is E(2,2) ≈ E(2) − 〈χ|E(2,1)(R)|χ〉 − E(2,0), for E(4) it is
E(4,1), and E(i,kmax) = E(i,0) = E(i) for i = 5 and 6,
as well as for EFS. The uncertainties also include an
estimate of the numerical error of the respective poten-
tial used, and the EFS error comprises a contribution
from uncertainties of the nuclear radii. For E(7), for
which only an approximate formula is known, a relative
25% error is used instead [45]. Total theoretical uncer-
tainties of all the transitions reported in this paper are
dominated by the missing E(2,3) in the nonrelativistic
contribution. The calculated contributions to the Q(1)
transition energy in the fundamental vibrational splitting
(v = 0→ 1) for all tritiated species DT, HT, and T2 are
listed in Table II. The theoretical results obtained here
are in agreement with Ref. 30, with the present accu-
racy of 0.000 11 cm−1 representing more than a 100-fold
improvement. The 0.02 cm−1 uncertainty in Ref. 30 is
dominated by the uncertainty in the nonadiabatic non-
relativistic correction (E(2,2)), and only included leading
order relativistic (E(4,0)) and QED corrections using a
Bethe logarithm that is 20% off from the modern value,
or a deviation of > 0.001 cm−1 in E(5).

The experimental and theoretical values for Q(J =
0 − 5) transition energies in DT are listed in Table III.
The present measurements with 0.0004 cm−1 accuracy
are consistent with, but are two orders of magnitude more
precise than the previous investigation in Ref. 28. The
comparison of the present experimental and theoretical
values demonstrates excellent agreement as listed in Ta-
ble III and shown graphically in Fig. 3, with the differ-
ences (indicated by data points) falling well within 1σ of
the combined measurement and calculation uncertainty
(represented by the error bars).

In summary, we have determined Q(J = 0 − 5) tran-
sition energies of the fundamental band of DT with a
250-fold improvement over all other previous measure-
ments. Highly-accurate calculations are also presented
with similar improvements of uncertainty. Studies using
the heavier tritiated species are useful in disentangling
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FIG. 3. a) Comparison of the experimental and calculated DT
Raman splittings demonstrating very good agreement. The
data points (squares) represent the experiment-calculation
differences, ωexp − ωcalc, while the error bars represent the
combined experimental and theoretical uncertainties. b) A
comparison of D2 Q(J) lines (circles) also measured with the
present CARS setup and DT gas cell are shown. In addition,
a comparison of D2 molecular beam measurements in Ref. 42
(triangles) is also plotted in b). The dashed lines indicate the
average of experiment-calculation differences (data points) of
all measured transitions, while the shaded regions indicate the
standard deviation.

various mass-dependent effects that have been frequently
overlooked in the literature [54]. In view of a present 2.7σ
discrepancy in experiment and calculations in the dissoci-
ation energy of HD [44] while there is perfect agreement
for H2 and D2, investigations on heteronuclear species
such as DT may be helpful in the resolution of the HD
discrepancy.

Since the present experimental and theoretical val-
ues are in very good agreement, these can be used to
constrain hypothetical long-range fifth forces between
hadrons [55]. In fifth-force investigations on diatomic
molecules, the hypothetical interaction is parameterized
as a Yukawa potential

V5(R;α5, λ5) = N1N2
α5 exp (−R/λ5)

R
h̄c, (15)

where α5 and λ5 are the interaction strength and length
parameters, respectively, while R is the distance between
the two nuclei of nuclear numbers N1 and N2. The most
stringent constraint for these hypothetical fifth forces in
the range λ5 ∼ 1 Å is derived from HD+ [56] yielding
α5 < 8 × 10−10α, where α is the electromagnetic cou-
pling strength. This tight bound is largely due to the
sub-MHz uncertainties obtained in the HD+ measure-
ments. Applying the method in Ref. 55 on the DT Q(1)
transition, the strength of a fifth force for an interaction
range of ∼ 1 Å is constrained at α5 < 2×10−8α, which is
more than an order of magnitude weaker than the HD+

derived bound. With the sixfold enhanced sensitivity of



5

TABLE II. Calculated contributions to the Q(1) transition energy (in units of cm−1) in the fundamental band of tritium-bearing
molecular hydrogen. EFS is the finite nuclear size correction with rp = 0.841 4(19) fm [52], rd = 2.127 99(74) fm [52], and
rt = 1.759 1(363) fm [53], for the proton-, deuteron-, and triton sizes, respectively. The fine-structure constant α, Rydberg
constant R∞, and Bohr radius a0 are taken from [52], as are the respective proton-, deuteron- and triton-electron mass ratios:
mp/m = 1 836.152 673 43(11), md/m = 3 670.482 967 88(13), mt/m = 5 496.921 535 73(27).

Contribution T2 DT HT

E(2) 2 463.346 322(61) 2 741.729 99(11) 3 431.573 40(44)

E(4) 0.014 837 5(1) 0.016 339 6(1) 0.019 890 6(1)

E(4,0) 0.014 806 83 0.016 296 89 0.019 804 22

E(4,1) 0.000 030 62 0.000 042 72 0.000 086 36

E(5) −0.012 686 6(79) −0.014 105 2(96) −0.017 606 9(156)

E(6) −0.000 113 5(3) −0.000 126 2(4) −0.000 157 8(5)

E(7) 0.000 006 1(15) 0.000 006 8(17) 0.000 008 5(21)
EFS −0.000 008 2(3) −0.000 011 3(2) −0.000 007 0(2)

Total 2 463.348 358(62) 2 741.732 09(11) 3 431.575 53(44)

DT with respect to the lightest species H2 as seen from
Eq. 15, the present DT results yield a limit that is slightly
more stringent than that of H2. This is despite the H2

(v = 0 → 1) Q lines [16, 42] having 2.7 times better ac-
curacy than the present DT study. With the inherent
sensitivity of the heavier tritiated species (with Nt = 3)
this limit can be further tightened when an accuracy in
the kHz level is reached, for example by using techniques
recently applied to HD [25].

We are grateful to Tobias Falke, David Hillesheimer,
Stefan Welte and Jürgen Wendel of TLK for the prepa-
ration and handling of the tritium cell. WU thanks
the European Research Council for an ERC-Advanced
grant (No 670168). The calculations were supported
by the National Science Center (Poland) Grants No.
2017/27/B/ST2/02459 (KP) and 2016/23/B/ST4/01821
(MP) and by PL-Grid Infrastructure. The research
leading to these results has received funding from
LASERLAB-EUROPE (grant agreement no. 654148,
European Unions Horizon 2020 research and innovation
programme).

TABLE III. Fundamental vibrational (v = 0 → 1) splittings
of the Q(J) transitions in DT. The measured values appear
in the second column while the theoretical values are listed in
the third column, with uncertainties indicated within paren-
theses. The last column is the difference (ωexp − ωcalc) with
the combined experiment-calculation uncertainty indicated.
All values in units of cm−1.

line experiment calculation difference

Q(0) 2 743.341 71 (40) 2 743.341 74 (11) −0.000 03 (41)
Q(1) 2 741.731 90 (33) 2 741.732 09 (11) −0.000 19 (35)
Q(2) 2 738.516 59 (40) 2 738.516 97 (11) −0.000 38 (41)
Q(3) 2 733.704 70 (40) 2 733.704 66 (11) +0.000 04 (41)
Q(4) 2 727.307 34 (40) 2 727.307 55 (11) −0.000 21 (41)
Q(5) 2 719.341 93 (40) 2 719.342 02 (11) −0.000 09 (41)
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[25] F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E.
Eikema, and W. Ubachs, Phys. Rev. Lett. 120, 153002
(2018).

[26] E. Fasci, A. Castrillo, H. Dinesan, S. Gravina, L. Moretti,
and L. Gianfrani, Phys. Rev. A 98, 022516 (2018).

[27] H. G. M. Edwards, D. A. Long, and H. R. Mansour, J.
Chem. Soc., Faraday Trans. 2 74, 1203 (1978).

[28] D. Veirs and G. Rosenblatt, J. Mol. Spectrosc. 121, 401
(1987).

[29] M.-C. Chuang and R. N. Zare, J. Mol. Spectrosc. 121,
380 (1987).

[30] C. Schwartz and R. J. Le Roy, J. Mol. Spectrosc. 121,
420 (1987).

[31] T. M. Trivikram, M. Schlösser, W. Ubachs, and E. J.
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