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We demonstrate that energy levels of excited states in a hydrogenic system consisting of an arbi-
trary nucleus and an antiproton can be calculated within the framework of nonrelativistic quantum
electrodynamics, even for a large nuclear charge Z. It is because for rotational states the expansion
parameter is Z α/n. The main advantage of this approach is the possibility of exact inclusion of the
finite nuclear mass, which we achieve up to the (Z α)6 order. In addition, we include unperturba-
tively the one-loop and two-loop electron vacuum polarization (evp) potentials in the nonrelativistic
Hamiltonian, as well as in the leading relativistic correction. The obtained results for l > 1 states
of antiprotonic atoms with spinless nucleus are the most accurate to date. We make available a
user-friendly Mathematica code for antiprotonic atoms PbarSpectr, which can be further improved
by combining evp potentials with (Z α)5 QED effects, by adding three-loop evp, and by extending
to an arbitrary nuclear spin. Finally, we note that rotational states of antiprotonic atoms can be
used to determine the mean square nuclear charge radius much more accurately than from electronic
or muonic atoms.

I. INTRODUCTION

Two-body systems like hydrogen [1], muonic hydrogen
[2], or muonium [3] are the most viable candidates for
tests of the Standard Model of fundamental interactions
at low energies. These simple systems allow for highly ac-
curate theoretical predictions. Therefore, from the com-
parison of theory with precise experimental data we are
able to search for new physics and to determine values
of fundamental constants such as the electron mass, the
nuclear magnetic moments, and nuclear charge radii [4].

From the theoretical side, the Schrödinger equation
can be solved exactly for two-body systems and, within
the framework of Nonrelativistic QED (NRQED), the
relativistic and QED corrections can be accounted for
perturbatively using the exact form of the wave func-
tion. The main limiting factor for theoretical predictions
comes from the not well known nuclear structure effects,
with the exception of muonium, where the limiting factor
is the electron-muon mass ratio.

In atoms where the orbiting electron is replaced by
a heavier particle – such as muonic hydrogen – vacuum
polarization constitutes the most significant QED con-
tribution to energy levels. The conventional approach
treats this effect perturbatively [2]. In the present work,
we pursue an alternative strategy: following [5] we in-
clude the vacuum polarization contributions directly into
the Schrödinger equation and solve it numerically. The
numerically obtained wave function is then used for the
perturbative calculation of the relativistic correction, for
which an exact formula that includes vacuum polariza-
tion potentials is known [6]. The higher-order corrections
are obtained without evp, using analytically derived for-
mulas [7] which are valid for an arbitrary masses of con-
stituent particles.

Our main focus is on antiprotonic atoms – exotic sys-
tems in which an antiproton orbits the nucleus. These

atoms are promising candidates [8, 9] for exploring pos-
sible new physics, such as long-range interactions be-
tween hadrons. Apart from this, QED effects are sig-
nificantly enhanced in antiprotonic atoms with a high
nuclear charge Z, offering opportunities to verify various
QED theoretical approaches through comparison with
upcoming antiprotonic measurements planned by PAX
collaboration.

In two-body systems that consist of two hadronic parti-
cles, strong interactions between the constituent hadrons
must, in principle, also be considered. To avoid this,
we focus only on excited circular states where such an
interaction, along with the nuclear structure effects, is
highly suppressed. Surprisingly, due to the presence of
evp, the mean square charge radius can contribute –as
large as 10−5– to transition energies between circular
states. Moreover, the nuclear polarizability shift, which
comes mainly from the static electric dipole polarizabil-
ity αE , contributes only at the order of (Z α)6 and can
be accounted for. This means that nuclear mean square
charge radii can be accurately determined from circu-
lar transitions in antiprotonic atoms, provided measured
values are accurate enough, typically 10−8 relative preci-
sion. This is slightly beyond the planned accuracy of the
PAX collaboration, so further developments in precision
spectroscopy of X-rays would be needed.

This work is organized as follows. In Section II we
present a brief overview of the NRQED approach and
the vacuum polarization contributions taken into account
for solution of the Schrödinger equation. Section III is
dedicated to the method of numerical solution for non-
relativistic energy and wave function. In Section IV we
present particular results for several two-body antipro-
tonic systems. Further, in the Supplemental material
[10] we provide the Mathematica code PbarSpectr that
can be used to obtain theoretical predictions for energy
levels of arbitrary excited states of antiprotonic systems
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with a spinless nucleus.

II. NRQED EXPANSION FOR ENERGY
LEVELS

In the framework of NRQED the energy levels of light
atoms can be expressed as a series in powers of the fine
structure constant α,

E(α) = E(2)+E(4)+E(5)+E(6)+E(7)+E(8)+ . . . , (1)

where each contribution E(j) is of the order αj and may
depend also on lnα. E(2) = E is the nonrelativistic en-
ergy obtained by solving the Schrödinger equation. Each
higher-order term E(j) is calculated as an expectation
value of an effective Hamiltonian H(j) with nonrelativis-
tic wave function ϕ,

E(j) = ⟨ϕ|H(j)|ϕ⟩+ . . . , (2)

where the ellipsis stands for possible second-order contri-
butions.

For a spherically symmetric potential the two-body
nonrelativistic wave function ϕ(r, θ, ϕ) can be decom-
posed into a product of the radial function R(r) = P (r)/r
and the spherical harmonic function Ylm(θ, ϕ). The ra-
dial part satisfies the one-dimensional equation

P ′′(r) + 2

(
µ
(
E − V (r)

)
− l(l + 1)

2 r2

)
P (r) = 0 , (3)

where µ is the reduced mass and we assume natural units
ℏ = c = 1. Potential V (r) consists of a Coulomb poten-
tial VC(r) = −Z α/r and the electron vacuum polariza-
tion correction VVP(r).
The electron vacuum polarization modifies the photon

propagator

−gµν

k2
→ − gµν

k2 [1 + ω̄(k2/m2
e)]

, (4)

where k2 = (k0)2 − k⃗2 is the photon momentum squared
and me is the electron mass. The sum of one-particle
irreducible diagrams ω̄ is expanded in a power series in
α/π,

ω̄ = ω̄(1) + ω̄(2) + ω̄(3) + . . . , (5)

and the photon propagator is thus expanded as

−gµν

k2
→ −gµν

k2
(
1 + ρ(1) + ρ(2) + ρ(3) + . . .) , (6)

with individual contributions ρ(i) being

ρ(1) = − ω̄(1), (7)

ρ(2) = − ω̄(2) + (ω̄(1))2, (8)

ρ(3) = − ω̄(3) + 2 ω̄(1) ω̄(2) − (ω̄(1))3. (9)

Each ρ(i) generates electronic vacuum polarization po-
tential V (i)(r) at k0 = 0,

V (i)(r) = −Z α

∫
d3k

(2π)3
4π

k⃗2
ρ(i)(−k⃗2) ei k⃗·r⃗ . (10)

For example, the one-loop vacuum polarization correc-
tion is given by the Uehling potential

V (1) = − Z α

r

α

π

∫ ∞

4

d(ξ)2

ξ2
e−meξ r u(ξ2), (11)

where

u(ξ2) =
1

3

√
1− 4

ξ2

(
1 +

2

ξ2

)
, (12)

and u is related to ω̄(1) by

ω̄(1)(ζ2) =
α

π
ζ2

∫ ∞

4

d(ξ2)
1

ξ2(ξ2 − ζ2)
u(ξ2) . (13)

It is possible to express the Uehling potential in a closed
form [11]

V (1) = − Z α

r

2α

3π

[(
1 +

b2 r2

3

)
K0(2 b r)

− b r

6
Ki1(2 b r)−

(
5

6
+

b2 r2

3

)
Ki2(2 b r)

]
,

(14)

where b = me/(µα), K0(z) is a modified Bessel function
of the second kind, and Kin(x) are Bickley functions,

Ki0(z) = K0(z), Kin(z) =

∫ ∞

z

Kin−1(x) dx . (15)

On a two-loop level, the potential V (2)(r) stands for a
sum of irreducible and reducible parts of the Källén-
Sabry potential [12], see Eq. (8). Furthermore, we also
include the Wichmann-Kroll correction VWK(r) [13], so
the complete vacuum-polarization potential is

VVP(r) = V (1)(r) + V (2)(r) + VWK(r) + . . . , (16)

where the ellipsis stands for the omitted three-loop vac-
uum polarization correction. The corresponding uncer-
tainty is estimated as

δE3loop ≈
(
α

π

)2(
E +

(Z α)2

2n2

)
. (17)

The exact analytic formula for u(3) has recently been
derived [14], so it will be included in the next edition of
PbarSpectr.
We will solve Eq. (3) using numerical methods de-

scribed in Section III and Appendix A to obtain non-
relativistic energy E and the radial wave function P (r).
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This function is next used for evaluation of the relativis-
tic correction

E(4) = ⟨H(4)⟩ , (18)

given by the expectation value of Breit HamiltonianH(4).
Although we will omit the nuclear spin in the following,

we first present the complete Breit Hamiltonian that in-
cludes all possible interactions for spin 0 and 1/2 nu-
clei. For an orbiting particle with spin s1, mass m, finite
charge radius rC1 and g-factor g1, and nucleus with spin
s2, mass M , nuclear charge radius rC2 and g-factor g2,
the Breit Hamiltonian is [6]

H(4) = − p4

8

(
1

m3
+

1

M3

)
+

1

8

(
δs1
m2

+
δs2
M2

+
4

3
(r2C1 + r2C2)

)
∇2V +

[(
g1 − 1

2m2
+

g1
2mM

)
L⃗ · s⃗1(

g2 − 1

2M2
+

g2
2mM

)
L⃗ · s⃗2

]
V ′

r
+

1

2mM

[
∇2

(
V − 1

4
(rV )′

)
+

V ′

r
L⃗2 +

{
p2

2
, V − rV ′

}]
+

g1 g2
6mM

s⃗1 · s⃗2 ∇2V − g1 g2
2(2l − 1)(2l + 3)mM

si1s
j
2

(
Li Lj

)(2) (V ′

r
− V ′′

)
. (19)

Here, the symbol V ′ stands for the derivative of the po-
tential V with respect to the radial distance r,

(Li Lj)(2) =
1

2
{Li, Lj} − δij

3
L⃗2 (20)

is a symmetric and traceless irreducible tensor of the sec-
ond rank, and δs = 1 for a spin s = 1/2 particle and
δs = 0 for a spinless s = 0 particle. The inclusion of the
evp potential into the Breit-Pauli Hamiltonian was first
performed by Borie in Ref. [5], but her result was not
fully correct. The first correct derivation was performed
by one of us in Ref. [15] by construction of the Breit-Pauli
Hamiltonian for a massive photon. This formula has been
verified in many later works, including very recent ones
[16], (cf Eq. (21) of Ref. [15] with Eqs. (63a)-(63f) of
Ref. [16]). However, this Breit-Pauli Hamiltonian for a
massive photon was not suitable for a direct evaluation
with the numerical wave function since it needs to be
integrated over the photon mass, as V (1) in Eq. (11). In-
terestingly, the integration over the photon mass can be
performed on the Hamiltonian level, see Ref. [6], leading
to Eq. (19). Despite the correctness of the original for-
mulas in Ref. [15], Adkins and Jentschura in Ref. [16]
claim that the work [6] “apparently omitted contribut-
ing terms due to the gauge used”, which we find very
awkward.

In the following we will restrict ourselves to spinless
nuclei and spin-1/2 orbiting particles. When calculating
the expectation value of this Hamiltonian, it is advanta-
geous to use the Schrödinger equation and move deriva-
tives from the potential into the wave function. Thus, we
use the expectation value identities

⟨p4⟩ = 4µ2 ⟨(E − V )2⟩ , (21)

⟨∇2V ⟩ = ⟨−4µ (E − V )V + 2 p⃗ V p⃗ ⟩ , (22)

⟨∇2(r V )′⟩ = ⟨−4µ (E − V ) (r V )′ + 2 p⃗ (r V )′ p⃗ ⟩ . (23)

With help of integration by parts we get, for instance,〈
V ′

r

〉
=

∫
dr P 2 V ′

r

= −
∫

dr

(
P 2

r

)′

V. (24)

Terms with product V V ′ can be handled with the help
of the trivial observation that V V ′ = 1

2 (V
2)′. Similarly,

it can be shown that

⟨p⃗ f(r) p⃗ ⟩ =
∫

dr

[(
P ′ − P

r

)2

+
l (l + 1)

r2
P 2(r)

]
f(r),

(25)

⟨p⃗ f ′(r) p⃗ ⟩ = 2

∫
dr

(
P ′ − P

r

)[
P ′ − P

r

+ 2 r P

(
µ (E − V )− l (l + 1)

r2

)]
f(r)

r
.

(26)

In this way we move all derivatives with respect to r
from the potential V into the wave function. Any higher-
order derivatives of P (r) are resolved with help of the
Schrödinger equation (3), so that all the expectation val-
ues can be expressed using only P (r), P ′(r), and V (r).
For higher-order contributions of order α5+ we use re-

sults valid for two-body systems without evp. E(5) is in
the case of spinless nucleus and angular momentum l > 0
given by

E(5) =
7 (Z α)5

3π mM

µ3

l(l + 1)(2l + 1)n3

− 4α(Zα)4 µ3

3π n3

(
1

m
+

Z

M

)2

ln k0(n, l) , (27)

where ln k0(n, l) is the Bethe logarithm. For n ≤ 20 and
l ≤ 19 we take the values for Bethe logarithm from [17]
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while for n > 20 states we calculated them by ourselves.
In the case of antiprotonic atoms, we are interested in
highly excited Rydberg states for which the effects of
strong interaction between the nucleus and the orbiting

particle are negligible. We thus focus only on states with
l > 1 where the contact interaction terms vanish. The
next-order contribution is for l > 1 states and spinless
nucleus given by [7]

E(6) = µ (Zα)6
[

X3

(2κ+ 1)3 |κ|n3
+

X4

(2κ+ 1)2 κ2 n4
+

X5

(2κ+ 1) |κ|n5
+

X6

n6

+
2µ3

(
αE1 + αE2

)
(2l − 1)(2l + 1)(2l + 3)

(
1

n5
− 3

l(l + 1)n3

)]
, (28)

where e2 αE1, (Z e)2 αE2 is the electric dipole polarizability of the antiproton and of the nucleus, correspondingly,
and Xi are coefficients for a two-body system with a point spin 0 and spin 1/2 particles with an arbitrary g-factor

X6 = − 5

16
+

3

16

µ2

mM
− 1

16

µ4

(mM)2
, (29)

X5 =
g21

(2κ− 1)(2κ+ 3)

[
µ2

m2

(3 + κ)

8
+

µ3

m3

κ

4

]
+ g1

[
µ

m
+

µ2

m2

3 (1− 2κ− 2κ2)

2 (2κ− 1)(2κ+ 3)
+

µ3

m3

3 (−3 + 3κ+ 4κ2)

4 (2κ− 1)(2κ+ 3)

]
+

3κ

2
+

µ

m

κ (3− 8κ− 8κ2)

2 (2κ− 1)(2κ+ 3)
+

µ2

m2

(15− 26κ− 4κ2 + 16κ3)

4 (2κ− 1)(2κ+ 3)
+

µ4

m3 M

(−9 + 10κ+ 12κ2)

4 (2κ− 1)(2κ+ 3)
, (30)

X4 = − 3

8

(
2κ+ g1

µ

m
− µ2

m2

)2

, (31)

X3 =
g21

(1 + κ)(2κ− 1)(2κ+ 3)

[
− µ2

m2

(
− 3− 5κ+ 49κ2 + 96κ3 + 36κ4

)
8κ2

− µ3

m3

3 (2κ+ 1)2

4

]

+ g1

[
µ2

m2

3 (2κ+ 1)2

(2κ− 1)(2κ+ 3)
+

µ3

m3

(
− 3− 5κ+ 43κ2 + 60κ3 − 36κ4 − 48κ5

)
4κ2(1 + κ)(2κ− 1)(2κ+ 3)

− µ

m

(1 + 6κ+ 6κ2)

2κ(1 + κ)

]

− κ+
µ

m

6κ (2κ+ 1)2

(2κ− 1)(2κ+ 3)
+

µ3

m3

3 (2κ+ 1)2

2 (1 + κ)(2κ− 1)(2κ+ 3)
+

µ4

m4

(3 + 2κ− 48κ2 − 24κ3 + 48κ4)

8κ2(2κ− 1)(2κ+ 3)

− µ2

m2

(3 + 14κ+ 2κ2 + 12κ3 + 72κ4 + 48κ5)

2κ (1 + κ)(2κ− 1)(2κ+ 3)
, (32)

where

κ = (l − j)(2j + 1) =

{
l for j = l − 1

2
−l − 1 for j = l + 1

2

(33)

We note that Eq. (28) is valid for an arbitrary mass ratio
m/M .

The next term of the order α7 can be estimated by the
logarithmic contribution taken from the nonrecoil (in-
finitely heavy nucleus) hydrogenic results [18, 19] with
g = 2,

E(7) =
mα (Zα)6

π

8
(
3n2 − l(l + 1)

)
ln
[
1
2 (Zα)−2

]
3n5 l (l − 1) (2l − 1) (2l + 1) (2l + 3)

,

(34)
and we assume 50% uncertainty. For atoms with a large
nuclear charge Z it is also necessary to include the con-
tribution of the order α8, which may be even more sig-
nificant than E(7). We estimate it by expanding the non-

recoil result from the Dirac equation,

ED = m

[
1 +

(Zα)2

(n− δ)2

]−1/2

, (35)

where δ = j+ 1
2 −

[(
j+ 1

2

)2 − (Zα)2
]1/2

, up to the order

(Zα)8

E(8) =
m (Zα)8

16

(
35

8n8
− 15

|κ|n7
+

15

κ2 n6
− 1

|κ|3 n5

− 3

κ4 n4
− 1

|κ|5 n3

)
, (36)

and we assume 50% uncertainty as for E(7).

III. NUMERICAL METHOD

To obtain an accurate numerical solution of the
Schrödinger equation, we have to account for the log-
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arithmic singularity of the evp potential. The small r
expansion of the Uehling potential V (1)(r) is of the form

V (1)(r) =
Z α2

π

( ∞∑
i=−1

A2 i+1 r
2 i+1 +A0 +A2 r

2

)

+
Z α

π
[γ + ln(me r)]

∞∑
i=−1

B2 i+1 r
2 i+1 . (37)

Expansion coefficients can be obtained from Eq. (14),
and the first expansion terms are

A−1 =
5

9
, (38)

B−1 =
2

3
. (39)

Similar small r expansions can be obtained also for two-
loop vacuum polarization [12, 20] and Wichmann-Kroll
[21] corrections. We can now search for the solution of
the wave function P (r) near the origin in the form

P (r) = rl+1
∞∑
i=0

i∑
j=0

ai,j r
i lnj(me r) . (40)

Substituting this solution along with low-r expansion
of vacuum polarization potentials into the Schrödinger
equation, Eq. (3), will lead to recurrence relations for
coefficients ai,j which is solved assuming a0,0 = 1.

For large r the one-loop vacuum polarization poten-
tial V (1) ≈ r−

5
2 e−2me r decreases exponentially, similarly

V (2), so for a sufficiently large distance they can be ne-
glected. Namely, if the ratio to the Coulomb potential is
smaller than some specified threshold, 10−20 for exam-
ple, then evp potentials are neglected. Although VWK

has an r−5 tail, it is also neglected at large r by a similar
procedure.

The wave function for r → ∞ is searched for in the
form

P (r) = rσ e−λr
∞∑
k=0

ak
rk

, (41)

with σ = Z/λ and λ =
√
−2E. We will set a0 = 1,

and the remaining coefficients of the expansion are ob-
tained recurrently by inserting P (r) into Eq. (3) with the
Coulomb potential only.

To numerically solve the Schrödinger equation for all
r, we follow the approach of [22] and present the details
of the numerical procedure in Appendix A. For the finest
grid we assumed the following parameters (in atomic
units): r0 = 3×10−5 and h = 3×10−4, N = 75 000, from
which we proceed to obtain r[n∞] and r[nc]. The con-
vergence of the algorithm is very fast and usually three
iterations are sufficient to obtain the nonrelativistic en-
ergy for low Z with 20-digit accuracy. We performed the
calculation using Wolfram Mathematica, and our code
PbarSpectr is included in the Supplemental material [10].

IV. RESULTS

In Table I we present the theoretical results for an-
tiprotonic transitions considered by PAX collaboration
[8]. The potential V (r) in the Schrödinger equation (3)
includes the Coulomb potential, the Uehling potential in
the form given by Eq. (14), the two-loop vacuum polar-
ization potential in the form presented in Ref. [20], and
the Wichmann-Kroll potential in the form taken from
[21]. We omitted three-loop vacuum polarization, which
has recently been derived [14, 23] but is quite compli-
cated. It is estimated by Eq. (17), which is identified as
an uncertainty of nonrelativistic energy and represents
the dominant part of the uncertainty for current theoret-
ical predictions.
It is remarkable that even for very heavy nuclei the

NRQED expansion converges well for circular states, and
we are able to reach meV precision. This is because for
circular states the higher-order QED contributions con-
verge as (Zα/n)j , which can be small, even for large Z,
where the nonrelativistic approximation would otherwise
not be appropriate. Our results are in agreement with the
ones listed in Ref. [8], but are about two orders of mag-
nitude more accurate. In addition, we present results for
a point nucleus and the nuclear finite size contribution,
which demonstrates the possibility for determination of
the nuclear charge radii.

V. CONCLUSIONS

We have presented calculations of energy levels of two-
body antiprotonic systems using the NRQED approach,
and obtained theoretical predictions for selected transi-
tions between rotational states. Our results are exact
through order (Z α)6 in NRQED expansion and are valid
for an arbitrary antiproton to the nucleus mass ratio.
Higher-order corrections of order α7 and α8 are included
approximately and are significantly smaller than the un-
certainty due to the omitted three-loop evp. Leading
nonrelativistic and relativistic contributions to energy
nonperturbatively include one- and two-loop evp. The
omitted three-loop evp gives the dominant uncertainty
in our results, and its inclusion would further increase
the accuracy by two orders of magnitude. In the future,
the theory for medium-Z atoms can be further improved
by including the complete E(7) contribution with the full
mass dependence. For two-body systems, this has been
achieved only for radiative corrections [19].
Our results for circular states are sufficiently accurate

even for highly charged ions, which are being considered
in the upcoming measurements [8]. Namely, the rela-
tive uncertainty of our numerical results is of the order
of 10−7 for 12o → 11n transition in antiprotonic 184W
and even better for transitions in lighter atoms, as can
be seen in Table I. Furthemore, the Mathematica code
PbarSpectr included in the Supplemental material [10]
allows for application to a wide variety of antiprotonic
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TABLE I. Theoretical predictions for various antiprotonic transitions between circular states in eV. E(2) is nonrelativistic
energy obtained from the numerical solution of the Schrödinger equation (3) with inclusion of the one- and two-loop evp. The

uncertainty of nonrelativistic energy comes from the omitted three-loop evp. δE(2) = E(2) + (Z α)2/(2n2) is the difference

between E(2) and nonrelativistic energy without evp. E(4)(point N and p̄) is the leading relativistic correction with inclusion
of evp for a point nucleus and a point antiproton. Efns is the correction to energy coming from the finite charge radius of both
the orbiting antiproton and the nucleus. Values of the nuclear charge radii in femtometers were taken from [24], and we neglect
electric dipole polarizabilities.

Term 6h11/2 − 5g9/2(
20Ne) 6h11/2 − 5g9/2(

40Ar) 10m19/2 − 9l17/2(
132Xe) 12o23/2 − 11n21/2(

184W)

E(2) 29175.998(1) 97024.511(7) 170492.20(2) 180512.77(2)

δE(2) 107.252(1) 528.128(7) 909.72(2) 915.08(2)

E(4)(point N and p̄) −1.927 −22.693 0.37 37.26

E(5) −0.000 054 −0.000 81 −0.000 6 −0.000 4

E(6) 0.000 239 0.013 09 0.020 4 0.036 8

E(7) −0.000 004(1) −0.000 10(3) −0.000 1(1) −0.000 1

E(8) 0.000 000 0.000 00 0.000 5(1) 0.000 6(7)
Efns(fs N and p̄) 0.078 1.156 3.28 3.64
Total 29174.149(1) 97002.987(7) 170495.88(2) 180553.71(2)

Total (point N + fs p̄) 29174.076(1) 97001.896(7) 170492.69(2) 180550.15(2)
Efns(fs N) 0.007992 r2C 0.09279 r2C 0.1390 r2C 0.1235 r2C
rC (fm) 3.0055(21) 3.4274(26) 4.7859(48) 5.3658(23)

atoms for states with angular momentum l > 1.

In Table I we present the summary for theory of an-
tiprotonic transitions that can be used for determination
of the corresponding nuclear charge radii. Currently,
both theory and experiment are not accurate enough
to extract nuclear charge radii with sufficient precision.
From a theoretical point of view it is possible to improve
the accuracy of the calculations by two orders of magni-
tude through inclusion of three-loop vacuum polarization
into the solution of the Schrödinger equation. This is fea-
sible and will be done in the near future. From an exper-
imental point of view, the upcoming PAX collaboration
aims for relative precision of 10−5−10−6 for antiprotonic
transitions using microcalorimeter detectors. Such a pre-
cision is still lower than the current theoretical accuracy.
However, if the precision of experiment would reach level
of meV in the future, we would be able to extract nuclear
charge radii with an accuracy that would compete with

the one from muonic atoms, or from electron scattering
measurements.
Beside the antiprotonic atoms, the next step for theory

will be to extend the calculation to the case of muonic
atoms. For muonic atoms we need to include also the
contributions to l = 0, 1 states. This is, however, sig-
nificantly more complicated than the case of Rydberg
states investigated here since many additional higher-
order QED contributions have to be taken into account
[2]. Nevertheless, for the nonrelativistic, relativistic, and
leading QED contributions in muonic atoms the exten-
sion of our code is simple, and it will be done in the
future.
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Appendix A: Numerical solution of the Schrödinger
equation

To solve the Schrödinger equation numerically we fol-
low the approach of W. Johnson [22]. We introduce the
function Q(r), which satisfies the equations

dP (r)

dr
= Q(r), (A1)

dQ(r)

dr
= − 2

(
E − V (r)− l(l + 1)

2r2

)
P (r) . (A2)

The solution will be searched for on a non-uniform grid
defined as

r[i] = r0
(
et[i] − 1

)
, (A3)

t[i] = i h, i = 0, 1, 2, . . . , N (A4)

with grid parameters r0, h, and N chosen in such a way
as to obtain the desired accuracy of the result. Two

equations for P (r) and Q(r) can be combined together
to give

dy(t)

dt
= f(y(t), t) , (A5)

where

f(y(t), t) = G(t) y(t), (A6)

G(t) =

(
0 b(t)

c(t) 0

)
, y(t) =

(
P (r(t))
Q(r(t))

)
, (A7)

b(t) =
dr

dt
, c(t) = −2

dr

dt

(
E − V (r)− l(l + 1)

2r2

)
.

(A8)

Integrating Eq. (A5) between two neighboring points
on the grid we get

y[n+ 1] = y[n] +

∫ t[n+1]

t[n]

G(t) y(t) dt . (A9)

Using k-step Adams-Moulton interpolation, we obtain for
the integral

y[n+ 1] = y[n] +
h

D

k+1∑
j=1

a[j] f [n− k + j] , (A10)

where coefficients a[j] and D depend on parameter k.
The sum on the right-hand side of this equation contains
f [n + 1] and consequently also y[n + 1]. To avoid this,
we define a 2× 2 matrix M [n+1], corresponding inverse
matrix M−1[n+ 1], and constant Λ = h a[k + 1]/D as

M [n+ 1] = 1− ΛG[n+ 1], (A11)

M−1[n+ 1] =
1

1− Λ2 b[n+ 1] c[n+ 1]

×
(

1 Λ b[n+ 1]
Λ c[n+ 1] 1

)
. (A12)

Eq. (A10) can then be rewritten as

y[n+ 1] = M−1[n+ 1]

(
y[n] +

h

D

k∑
j=1

a[j] f [n− k + j]

)
,

(A13)
where the dependence on y[n + 1] is now only on the
left-hand side. For the first k steps on the grid we
use the asymptotic solution for P (r) given by series in
Eq. (40) and then proceed with help of Eq. (A13) to
obtain y[n] until the classical turning point r[nc] where
E − V (r[nc]) = 0. Next, we use the asymptotic solution
for large r given by Eq. (41) to get the first k values
y[N ], y[N − 1], . . . , y[N − k] and then proceed to obtain
y[n] again until the turning point with help of

y[n] = M−1[n]

(
y[n+ 1] +

h

D

k∑
j=1

a[j] f [n+ 1 + k − j]

)
,

(A14)
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where we have to take coefficients b(t) and c(t) with a
minus sign. The wave function P (r) has to be continuous
at the turning point r[nc], so both the solution evolved
from small r by Eq. (A13) and the one evolved from
large r by Eq. (A14) have to coincide at the point r[nc].
However, since we have chosen arbitrarily the expansion
coefficients a0 = 1 in Eq. (41) and a0,0 = 1 in Eq. (40), it
means that we have to rescale y[n] for n ≥ nc accordingly
so that P (r) is continuous at the turning point r[nc].

Function Q(r) (i.e. the first derivative of the radial
function P (r)) which satisfies Eq. (A2) will be continu-
ous only if E is the exact nonrelativistic energy. In the
first iteration of the algorithm we set energy E equal to
−Z2/2n2 and in the following steps it will be shifted to-
wards the correct value. Firstly, we assume that vacuum
polarization does not change the amount of zeros of the
wave function given by nr = n − l − 1. If the amount
of nodes is greater or lower, the energy is slightly shifted
correspondingly and the algorithm for obtaining the wave
function is repeated. For further correction of the energy
we use the following. Consider functions P1(r) and Q1(r)
that correspond to energy E1, and P2(r) and Q2(r) that
correspond to energy E2, i.e. two different iterations of
the algorithm. It follows from Eqs. (A1) and (A2) that

d

dr

(
Q2(r)P1(r)−P2(r)Q1(r)

)
= 2 (E1−E2)P1(r)P2(r) .

(A15)
Integrating this equation first from zero to turning point
r[nc], then from the turning point to infinity, and sum-
ming both results leads to

E1 −E2 =
(Q+

1 −Q−
1 )P2(r[nc]) + (Q−

2 −Q+
2 )P1(r[nc])

2
∫∞
0

P1 P2 dr
,

(A16)
where symbol ± stands for the value of function Q(r) at
the turning point r[nc] obtained either using Eq. (A13)
from the left or using Eq. (A14) from the right. We
assume that energy E2 is the next step in the iteration of
the algorithm and we also assume that for this step the
difference Q−

2 −Q+
2 is zero, i.e. the discontinuity of Q(r)

at the turning point vanish. Then, since P1 ≈ P2,

E2 ≈ E1 +
(Q−

1 −Q+
1 )P1(r[nc])

2
∫∞
0

P 2
1 dr

. (A17)

We thus calculate the difference δE = E2 − E1 given
by Eq. (A17) and add this to the current iteration of the
energy until δE is smaller than the desired limit. To that
end, we have to calculate the normalization of the radial
function∫ ∞

0

P (r)2 dr ≈
∫ r[n∞]

0

P 2(r) dr =

∫ n∞h

0

P 2(t)
dr

dt
dt .

(A18)
Here, r[n∞] is the boundary point of the grid which we
choose in such a way that the ratio of the wave function
at this point and maximum value of the wave function on
the grid is less than 10−12 [22]. The expression in the last
equality is calculated on a uniform grid. To evaluate this
integral numerically, we use the l step trapezoid formula∫ mh

0

f(x) dx ≈ h

(
b1(f [0] + f [m]) + b2(f [1] + f [m− 1])

+ . . .+ bl(f [l − 1] + f [m− l + 1]) + f [l]

+ . . .+ f [m− l]

)
, (A19)

where bi are coefficients of the method. The algorithm for
the numerical calculation thus runs in the following way:
first, we use the estimate for the nonrelativistic energy
given by the formula E = −Z2/2n2. With this energy
we obtain the wave function and its derivative and cal-
culate the correction δE. If this correction is larger than
the desired accuracy, we shift E by this correction and
recalculate again the wave function and its derivative.
With these new values we obtain again the correction
δE and repeat this procedure until the desired accuracy
is achieved, or in other words, until the discontinuity of
Q(r) = P ′(r) at the turning point is sufficiently small.
Once we obtain the nonrelativistic energy E, we normal-
ize the wave function and proceed to calculate relativistic
corrections. For expectation values of operators in the
Breit Hamiltonian we again calculate the corresponding
radial integrals using the trapezoid formula in Eq. (A19).


