Quantum electrodynamics ma® and ma” In o corrections to the fine splitting in Li and Be ™"

Mariusz Puchalski'? and Krzysztof Pachucki'

!Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
2Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznarn, Poland

We derive quantum electrodynamics corrections to the fine structure in three-electron atomic systems at mao
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and ma” In « orders and present their numerical evaluations for the Li atom and Be™ ion.
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I. INTRODUCTION

The fine splitting is a difference between energies of P35
and Py states. For hydrogenic systems it can be obtained
from the Dirac equation, while for many electron systems
one needs quantum electrodynamic (QED) theory to consis-
tently describe correlations with relativistic effects. The most
common many-electron Dirac-like methods [1-4] are able to
achieve two significant digits at most, while experimental pre-
cision is about 6 significant digits [5, 6]. A much more accu-
rate description of light few-electron systems relies on nonrel-
ativistic version of QED, called NRQED theory. Relativistic,
retardation, electron self-interaction, and vacuum polarization
effects can all be accounted for perturbatively by expansion of
energy levels in powers of the fine structure constant «,

E(@) =ma?EPD +ma*E® +ma® O +ma’e® 4.
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where expansion coefficients £(*) may include powers of In c.
Since these expansion coefficients are expressed in terms of
the first- and second-order matrix elements of some opera-
tors with the nonrelativistic wave function, the accuracy of the
numerical calculation strongly depends on the quality of this
function. For example, MCHF calculations [7-9] are accurate
only to three digits because the wave function is a combina-
tion of Slater determinants and does not satisfy the cusp con-
dition. A much more accurate nonrelativistic wave function
can be obtained by using an explicitly correlated basis such
as Hylleraas functions [10-13]. However, three-electron inte-
grals with explicitly correlated functions are much more com-
plicated than two-electron ones. Moreover, the required num-
ber of basis functions has to be much larger in order to achieve
similar accuracy as for two-electron systems. So the extension
of QED calculations to a three-electron system is not a sim-
ple task. In our recent works [6, 14] we performed complete
calculations of higher-order ma® and m a7 In « corrections
to Li and Be™ 2P3/9 — 2Py, fine splitting. Here we aim to
present in more detail the computational methods.

The fine structure splitting at the leading order Ef(f ) is given

by the expectation value
By = () @)

of spin-dependent operators from the Breit-Pauli Hamilto-

nian [15],
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where g is the exact electron g-factor. The mean value in
Eq. (2), (...) = (®|...|®) is calculated using the wave func-
tion ® from the stationary Schrédinger equation

(H-E)® =0 )

with the nonrelativistic Hamiltonian H in the infinite nuclear
mass limit
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The Li and Be* fine structure in the leading order, including
finite nuclear mass corrections, has been calculated by using
the Hylleraas functions in Refs. [10, 13]. rThe high accuracy
is achieved by the use of a relatively large number (about 14
000) of these functions. All matrix elements are expressed in
terms of standard and extended Hylleraas integrals, which are
obtained with the help of recursion relations [16, 17].

The situation is different with matrix elements of m o and
higher-order operators in the Hylleraas basis, where additional
classes of complicated integrals appear, for which no efficient
numerical algorithms are known. Other difficulties arise in
the evaluation of the second-order matrix element with nearly
singular operators. The Green function, or equivalently the
sum over pseudo-states, requires large values of nonlinear pa-
rameters. This causes severe problems with the numerical sta-
bility of recursive algorithms with Hylleraas integrals. We
overcome this problem by the application of another basis set,
which consists of the explicitly correlated Gaussian functions.
‘We have found [18, 19] that the second-order matrix elements
can be calculated with high precision when nonlinear param-
eters are globally optimized and a large number of Gaussian
functions is employed.

II. HIGHER-ORDER FINE STRUCTURE

(

The ma® correction Eff ) to the fine structure can be ex-

pressed as the sum of the first- and second-order matrix ele-
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ments with the nonrelativistic wave function,
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where the Breit-Pauli Hamiltonian H ) is of the form [15]
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The potentially singular second-order quadratic term with
H1(44) in Eq. (7) does not contribute to fine splitting, and thus
is excluded from further consideration. Hf(sﬁ) is an effective
Hamiltonian of order m ab. Following the derivation in Refs.

[20] and [13], H, f(f) can be represented in the following form

O =3 om,, (12)

i=1,7

3 > L
§H, = 216m4p§ega><pa-aa (13)
T = - 3 N
0Hy = ) =g Ga Pa X 0°(ras) Fa (14)
a#b m
5H4 = Z 4;3 [2p(21ﬁa’ffa +p25—'a'vax~’éfa](15)
e? > -
SH; = Zmﬁafax/la (16)
+16,L:;LS [A’axﬁa'&a_&‘a'ﬁaxﬁa7pi:|
2
e
0Hs = ) 5 A, (17)
SHy = - {Eax Tab p“}e&)
a¢b4m Tah 2M
2 . 7, 2 .
| B g, x Tk Pa || g (18)
2m Tab 2M

e, =-V, V:—Za——i—z (19)

and A’ is the vector potential at the position of particle a,
which is produced by all other particles
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In order to further improve theoretical predictions, the
higher-order m o contribution is not neglected but instead
is approximated by the numerically dominating logarithmic
part. It is obtained from the analogous correction to the he-
lium fine structure [21, 22] by dropping the o% o/ terms be-

cause they do not contribute for states with the total electron
spin S = 1/2,
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The neglected higher-order corrections are the nonlogarithmic
m a” term and the finite nuclear mass corrections to the m o

contribution. They will limit the accuracy of our theoretical
predictions for Li and Be™ fine structure.

III.  TRANSFORMATION OF MATRIX ELEMENTS

The expectation value of Hf(s6 ) in Eq. (12) is transformed
initially to a form convenient for numerical calculations with
2 P-states

3

0H, = =16 (=Z Q1+ Q2) (24)
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where ; and P; are defined in Table I. Additionally, opera-
tors @1, @2, and )4 are transformed into the sum of the sin-
gular D-term with the Dirac-9 operator and the regular R-part.



Matrix elements with D-terms are calculated with Hylleraas,
while Gaussian functions are used for R-terms, which ensures
high numerical precision.

The second-order contribution is split into parts coming
from intermediate states with specified angular momentum
and spin,

< H@ 5 E 0 H(4>> _ (30)
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where 124 is a projection into doublet or quartet state X,
respectively. These contributions are also defined in Table II.
Most of them can be calculated as they stand. Only the non-
symmetric (H ) /(E—H)H (4)> matrix element needs nu-

merical regularization due to the high singularity of H @,

This is done as follows: H1(4) is transformed to the regular

form by the following transformations
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The overall regularized form of gt A ) is
HY = [HY), +{Qa, E-H}, (37)

where

Zf—fzf (38)
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The expectation value of the regularized operator is the same

as that without regularization. What has changed is the
second-order matrix element
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where

6Xop = 2 ((HQa) — (HE)(Qa)) (40)
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These additional @; operators together with their expectation
value are presented in Table III.

The last considered term, the m «” In o correction from
Eq. (21), is represented as

B =ml(za)? |50 - 3 00 +2( 5 - )|
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where D; are defined in Table I and Y; in Table II. The
second-order matrix element Y requires numerical regulariza-
tion, similarly to the one in Eq. (39), and is transformed into
the following form

ne <H](34) ﬁ Z[5S(Ta)]r> +40Y,  (42)
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are expressed in terms of Q; from Table III.

IV. SPIN REDUCTION OF MATRIX ELEMENTS

The wave function ®* of the 2P state in a three-electron
system is of the form

O = — A[¢' (71,72, 75) [a(1) B(2) — B(1) a(2)] a(3)] ,

(46)
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TABLE I: Expectation values of operators for Li and Be™ 2%P; states, (Q)

J =1/2,3/2, correspondingly. All digits are significant.

= KV with the additional prefactor K; =

Operator Vii Vet
Q1= >, Fapa 4 XPa=—21D1— R —0.695207  —14.46431
Dy = 3,100 x o (ra)Pi 0.097 730 2.01013
Ri=Y,iGapk pa X Pa Pl 0.082895 1.83429
Q2= 3, pso Oalia T4 X Po = =27 D2 — Ry —0.502754  —11.06587
Do =3, 20 iGaPa X 6% (rap)Pa 0.044 668 0.98097
Ro=3, 010 pfi ﬁa X e a Pl 0.222 098 4.902 28
Q3= 440 OaPa 82 7 X Py = 27 Dy + Ry 0.000 421 0.73715
Ds =3, b#wa pb % 6% (rab)pb 0.017 545 0.369 31
Rs =3, 20 10aPh Do X 7P i —0.109 834 —1.58329
Qi =040 0ali ”gz X pp =2m D3+ Ry 0.281276 5.67745
Ri= 3", s0iGaph Py X rabpb Py 0.171036 3.35701
Qs = X4 p2a 0 lb 8 X P 0.161022 2.12284
Q6 = >, pza Oa ‘3— (rab Pb) 0.068 423 0.858 67
Q1= Y bsacsaOa res 8 TM X Pe 0.189 027 2.559 31
Q8 = X4 pra,craOa Tabij: (Fac - Pe) 0.052774 0.67594
Pr= 3, 1 za(Ga X Gb) ”“ai%“b’“ —0.066 977 —0.90413
Py= 3 bzacra(0a X Ob) % —0.059 905 —0.82117
Py=3", 1 2q(0a X O'b) ip; T—b X Pa 0.102 287 1.84114
Qo = X4 ppa i FaDi 7 Pa X Db —0.126 256 —3.13189
Q10 =24 401 Fapi :3—2 X (Tab - Db) Pa —0.396 739 —8.005 14
Qui = 30 pza,crb Oa tic TGZ X Pe —0.114547 —1.44191
Q12 = >, pta et Oa Tébréb‘(rbc - Pe) 0.053 650 0.682 88
Py= 3, b za, c;ﬁa(cra X Gb) %bb 0.059 905 0.82117
Qua= 20240 i - 13 X Pa —0.041132 0.03359
Q15 = > 4 420 Oa rbx,f (rab - Pa) —0.144 617 —1.28770
Q17 = X4 btareny Oa 7y %C X Pa 0.171163 2.36241
Q18 = X, psta.cns Oa %b 5 (Fab - Pa) 0.065 529 0.70097
Q19 =2, 2,104 pb Y pa X Db —0.224 280 —3.05065
Q20 = 2, 4201 Fapp 5 —0.506 006 —8.526 97

5, X (Tab pa)ﬁb

where A denotes antisymmetrization and ¢ (7, 72, 73) is a
spatial function with Cartesian index ¢ that comes from any of
the electron coordinates. The normalization we assume is

Z@/Z@Z) = Z<¢M(T1; ra, 73)[Pleis ¢ (r1,m2,13)]) =

(47)
where P denotes the sum of all permutations of 1,2, and
3. The ?Py /5 and ?P;/5 wave functions are constructed us-
ing Clebsch-Gordon coefficients. Expectation values with
these wave functions can be reduced to spatial expecta-
tion values with algebraic prefactor K; for J = 1/2,3/2.
Namely, the first-order matrix elements with auxiliary nota-

tion { Ky /2, K3/5} take the form

(@'|0|®) = {1,1} (¢'*(r1, 72, 73)|Q Pleras &' (r1, 72, 73)])

(48)

<(I>/| Zﬁa ! Qa|©>

{1,-1/2} for

= {1,—-1/2}ie* Y

(¢ (1, 2. 19) Q4P [effs 6" (r1,7a,ma)] ) (49)

(9] Z&a X O - Qab|¢> = {1,-1/2} (=2¢€7F) Z

a#b

<¢/i(rlv T2, 7"3)| (Qib

where ¢, coefficients are defined in Table IV.

ab=12,23,31

— Q)P et ¢ (1 rams) | ) (50)

The spin reduction of the second-order matrix elements is
more complicated. We shall first introduce the following aux-



TABLE 1II: Second-order contributions to Li and Be™ fine splitting X = (K3 72 — K1/2) V, the additional prefactor {K /o K30} is for
J =1/2,3/2, correspondingly. The numerical uncertainties are about 10~*

Contribution {K1/2,K3/2} VLi Viet
Xog, = (@|HD 25 gD|) {1,0} —0.293 49 ~1.0514(2)
Xaig, = (@ HY 52 gPO|p) {0,2/3} —0.44391(3)  —1.6253
Xap = (@H w2y HS + HY)|®)
@z (EIEI;U, [HP] @) {1,-1/2} —0.0217(6) —1.435(8)
6Xop  {1,-1/2} —0.086 80 —2.1690
(@ HWY ) {1,1/4} —0.7196(6)  —5.803(4)
Xap = (@(HY + HL) 725 (H“) Hé‘”)\<1>>
(®IHY 22 HD @) {1/3,5/6) —0.9012(4)  —3.4755(6)
(®IHE 22 HD @) {3,3/10} —0.00231 —0.0332
(®IHY 222 HP|®)  {—1,1/2} 0.006 97 0.1025
Xap, = (@ HY 22o 7D|D) {0,3/2} —0.50075 —1.8856(4)
Xip, = (@|(HY + HY) ple (H(4) +HY)|®)
<<I>\H(4> 2o 1) |p) {2,1} —0.73327(2)  —2.6256(2)
(@Y % H|®) {2,1} 0.000 08 0.0009
(@|HY 2o (D) {2,-1} 0.000 00 0.0001
Xap = (®IHS 222 HE|®) {0,3} —0.00071 —0.0096
Y= (O HS 5ty T 0°(ra)|®@)
(@ HY iy S0 ra)le|®) {1,-1/2} —0.02895 —0.6471
i {1,-1/2} 0.00799 0.186 0
Y = (@HY 5 L 0 (ran) |®)
(OIHY 5 a0 ran)r @) {1,-1/2} 0.00107 —0.0025
§Y.  {1,-1/2} —0.003 66 0.0535
iliary functions, Then, the spin-reduced second-order matrix elements are
U = QPlciaz ¢'(r1,72,73)] (51)
i = ZQ;P[CE’% d)j(rl,rg,rg)] (52)
a
vy = 7)[01423 (QF — Q%) ¢/ (7’177"2,7“3)} (53)
vt = 7’[0’1423( - ;]$)¢k(T17T27T3)] (54)
|
O de- Go g - Gujo) = L () &)
T H 6 E—H
= 145’0 = = {O, 2/3} i 14SU ]J
SOMAL = DAY () (56)
{1,1} /., 1lop :
@ 3) = <\1/ o \Il> 57



TABLE III: Expectation values of additional operators arising from reduction of the second-order matrix elements, (Q)

additional prefactor Ky = {1, —1/2} for J = 1/2,3/2, correspondingly. All digits are significant.

Operator Vi Vee+

Q21 = g Fo 7o T8 X P —0.849430 —9.55224
Q22 = Y, psa.c0a i 788 X Pl —-1.432170  —15.22386
Q23 = 2,4 psa.00a - :EZ X P 0.242 656 3.25048
Q21= 3, ccqFa 7m0 X —0.400 085 —4.72157
Q25 = Yy prtacedOa ﬁf Pa —0.766 998 —8.95965
Q26 = Yo psaccala %:‘ab P 0.159671 2.209 81
Q= 2, 5.638 906 7.898 02
Q= Yoch iy 2.096 405 3.23341
Q20 = 3,50 "% X Pa —0.125946 —0.969 13
Qs0= Ty 6 5 x 7, ~0.224641  —1.65949

L X pi 0.038474 0.36085

@31 = 32, pzq Oa 8 X D
Q.

TABLE IV: Symmetrization coefficients in matrix elements

= K;V with the

(ka l7 m) Ckim C;?lm cg‘l}m Cgﬁn Cg‘ﬁm Ckle
(1,2,3) 2 1 0 0 2 0
(1,3,2) 1 1 1 1 -1 1
(2,1,3) 2 1 0 0 2 0
(2,3,1) 1 1 1 1 1
(37172) -1 1 1 - -1 1
(3,2,1) 1 1 1 1 1

. 1L,-1/2} ;. 1 o
@@ Ty (E H) 2 FuQul®) = L }<‘I’Z & 2P}1)'i€”k\w> (58)
<(I>| Z(}' . Q 124 Za-'b . @b|¢> — M < Z]’ﬂlﬂ]i GMnk\I/l”L> (59)

0 By 4 6 (E— HY
= o 14Po = o {1/3 5/6} < ikt 14Po - _Imkq,lm
<<I>\Za:aa-QaE_HZb:ab~Qb\fb vy e \11A> (60)
ip _ {3,3/10} Lip,

(@ 9720 [gidi ik > 61
‘;}U“bQ“bE Hc<d e (W ey b
@IZO— -Q 14P S ool Qile) = =k 1/2}< emigmi TP wit) (62)

’ ’ —H b<c ’ . E-H

L L, o {0,3/2} /i Lap, o
SONALS o DRI (w7 P (©3)

= 14Do = o {27 1} ji 14Do ij

EONALE e DAL AL (64)



. . .. 1a L. .. 2,1 i » 14 . .k mn
(@3 1] QLo S ot iy = D (gl S0e kgl 63)
a<b c<d
L, = lip i § id {2,=1} /o lap, . 4 .
(@1 Fe- Qo gz D_otol Quel®) = (Wl P i ) (66)
- EFE—-H = 6 E—-H
i §oyii Lam, i § i 10,3} /okji Lap, gk
(@Y oio} Qi g S olos Qi) = S (e (©7)
a<b c<d

These formulas, including K ; coefficients, have been ob-
tained with a computer symbolic program.

V. NUMERICAL CALCULATIONS

The spatial function ¢ in Eq. (46) is represented as a linear
combination of the Hylleraas [23] or the explicitly correlated
Gaussians functions [24]

efalrffazr,f,70431”;‘;7a12rf27a13rf37a23r§3
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In the Hylleraas basis we use six sectors with different val-
ues of nonlinear parameters w; and a maximum value of
Q = ny1 4+ ng + ng + ng + ns = 12; details are presented in
Refs. [10, 13]. In Gaussian basis we use N = 256,512, 1024,
and 2048 functions with well-optimized nonlinear parameters
for each basis function separately. The accuracy achieved for
nonrelativistic energies is about 10~ in Hylleraas and 10~ !
in Gaussian bases.

These nonrelativistic wave functions are used in evaluation
of matrix elements. Most of the () and P operators in Tables I
and III are intractable with present algorithms with Hylleraas
functions due to difficulties with integrals with inverse powers
of electron distances, but also due to very lengthy expressions
in terms of Hylleraas integrals. Thus, we calculate them using
Gaussian functions; however, with some exceptions. There
are operators (1, (Q2, and (4, the expectation value of which
is very slowly convergent. Namely, the accuracy achieved is
as low as 1072 — 10~ with as many as 2048 well-optimized
Gaussian functions. So, to avoid loss of numerical accuracy,
we represent these operators as the sum of the singular D-
part and the regular R-part. The singular D-part, numerically
dominating, is calculated with Hylleraas functions, while the
regular R-part, free of singularities, is calculated with a Gaus-
sian basis. This leads to significant improvements in accuracy,
so the numerical uncertainties do not affect theoretical predic-
tions for the fine structure. Numerical results for all first-order
matrix elements obtained with the largest basis are presented
in Table I and III. The achieved precision is at least 1072,
which is one digit better in comparison to second-order ma-
trix elements described in the following.

The evaluation of second-order matrix elements is much
more computationally demanding. First of all, they are ob-
tained only in the Gaussian basis, due to its high flexibility.

The resolvent 1/(F — H) for each angular momentum is rep-
resented in terms of functions with the appropriate Cartesian
prefactor, as follows

¢s, = epririrt ¢ (69)
dp, =14 (70)

i _ [em ;€m0 m| k1 1
D, = T+ To — ——€mki T |Tq TH® 71

2 ¢ 3

i 7
_ j.k gk "o gk gk
F, — 7<T.brc + rcrb) + E(rarc + rcra>
c ik J k
2 (rdrk 4 ek
ko 1.1 0,000 il
i % 7
- 15 ( aTvTec + TpTaTe + rcrarb)
5M

Y gl gl gl
15 (Tarbrc + TpTalc + Tcrrarb)

=)

—1—5( Eplel 4rfrlel 4 rfréré) 6 (72
where subscripts a, b, and c¢ refer to any of the electrons in-
cluding the same one. Nonlinear parameters for intermediate
states are extensively optimized for each second-order sym-
metric matrix element. Moreover, one takes all possible rep-
resentations of angular factors for intermediate states in ap-
propriate proportions to ensure the completeness of the basis.
Most importantly, the number of Gaussian functions for inter-
mediate states is chosen to be sufficiently high to saturate the
matrix element. Namely, for a given size N of the external
wave function, we use 3/2 N elements for all D,- and quar-
tet F,-states, N elements for quartet P,-states, and 1/2 N for
S,-states. Among all matrix elements, the most demanding
in terms of optimization was that with intermediate states of
symmetry 2p, . as the external wave function. Here, the ba-
sis set for the resolvent is divided into two sectors. The first
sector is built of the known basis functions with the nonlinear
parameters determined in the minimization of F(22P). For
this purpose we took one of the previously generated basis
sets of W of size equal to N/2. The nonlinear parameters of



this basis remain fixed during the optimization in order to en-
sure the accurate representation of the states orthogonal to W.
The second sector, of size equal to 3/2N or N for the matrix
element involving Hp or [H 4], respectively, consists of basis
functions that undergo optimization. For the asymmetric ma-
trix elements the basis is combined from two corresponding
symmetric ones.

The most computationally demanding matrix element was
the ((Hal, 1/(E — H)" Hg) term, and it has the slowest nu-
merical convergence in the Gaussian basis. Numerical results
for matrix elements are summarized in Table II. The achieved
precision is about 10~%, one digit less than the first-order ma-
trix elements. In addition, we observe significant cancella-

TABLE V: Summary of m o contributions to fine splitting.

Contribution Li Be™
Xzg, 0.29349 1.0514(3)
Xag, —0.29594(2) —1.0835(1)
Xop, 0.7350(18) 11.912(24)
Xap, —0.4235(2) —1.3405(3)
Xop, —0.75113(2) —2.828 4(6)
Xap, 0.73334(2) 2.6257(2)
Xap, —0.00213 —0.0289(1)
total second order 0.28916(19) 10.308(24)
0H, —0.4452(16)  —13.160(3)
0H> 0.026 31 0.5778
0H4 0.10563 2.4055(1)
0Hs 0.150 52 3.186 6
0Hs —0.01160 —0.1307
0H7 —0.02783 —0.7578(3)
total first order —0.2021(16) —7.879(3)
total m a® 0.087 1(24) 2.429(24)

tions between S = 1/2 and S = 3/2 intermediate states,

and between the first- and second-order terms, see Table V.
The final numerical result for the m o contribution in Table
V is relatively quite small. Regarding the m o contribution,
the second-order term Y is numerically dominant, and con-
tributions from D, terms are an order of magnitude smaller.
Altogether this correction is only three times smaller than the
m a® contribution, which is certainly not negligible.

VI. SUMMARY

We have performed accurate calculations of the fine struc-
ture in Li and Be™t using the nonrelativistic QED approach
combined with explicitly correlated basis functions. Relativis-
tic and QED corrections are represented in terms of matrix
elements of effective operators, which are calculated with a
highly accurate nonrelativistic wave function. Numerical re-
sults are summarized in Table VI. We observe an agreement
with the experimental values. However, our result for Li lies
below, while for Be™ above experiments of [5] and [6] re-
spectively. As the sign of all corrections is the same for Li
and Be™, this may suggest that one of these experiments un-
derestimated its uncertainty.

The extension of presented computational approach to other
systems with more electrons is problematic, due to a lack
of formulas for the four-electron Hylleraas integrals. There-
fore, achieving similar accuracy for the four electron systems
would be very challenging.
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Appendix A: Quantum mechanics of three identical particles

Consider a wave function of three identical particles
¢(71,72,73). Eigenstates of the nonrelativistic Hamiltonian
can be classified by representation of the permutation group
S3. Two of them, id and sgn, are one dimensional, and the
third is two dimensional. The wave functions corresponding
to one-dimensional representations are

[p(71, T2, 73) 4+ (T2, 73,71) + (Al)

(73,71, 72) + ¢(72, 71, 73) + d(73, 7%, T1) + G(71, 73, 72)]

g (71,79, 73) =

Sl

and

- 1 - T
Ya(r1,72,73) = 7 [p(71,72,73) + ¢(72,75,71) + (A2)
o(75, 71, 72) — (72, 71, 73) — G753, 72, 71) — A7, 73, 72)]
In order to construct the wave functions corresponding to

the two-dimensional representation, let us consider the spin-
dependent wave function for a three-electron system for the

®=:%AMWME%HMDM%—MDM®MBH
1
= o)A a@) vr + S o) a(3) v2 +
a(1) a(2) A(3) vs] (A3)

Y1 = (7,72, 73) — ¢(7%,73,71) + ¢(7, 71,73) —
B(73,72,71) (A4)

Yy = ¢(75,71,72) — @(7%, T1,73) — @(71,T2,73) +
(71,73, 72) (AS)

VY3 = (7%, 73,71) — ¢(73,71,7) + ¢(73,72,71) —
(71,75, 72) (A6)

1; functions form a two-dimensional representation of Ss,

> i =0.

Let us denote the standard matrix element

(¢'|¢)s = (¢'*(r1, T2, 73)[Pleias ' (11,72, 13)]) (A7)

where P denotes the sum of all permutations of 1,2, and 3.
Then

(@'|®) = (¢'|})s (A8)

and the scalar products between 1); is

Wilw;) = (¢'|d)s (—1 + 343;) (A9)

The two orthogonal and normalized functions can be chosen
as ¥y =1 /vV2and ¢ = (2 — ¥3)/V6.

The first-order matrix elements of the spin-independent op-
erator () are

(BIQI®) = S(5IQM) = GIQle)s,  (A10)



and the second-order matrix elements with () and Q- are

1
E-H

1
E-H

1
7 Q2l0)s (AL

(BIQ1 1 @B = L(iIQ1 = Qalui)

= <¢|Q1

In the numerical evaluation of second-order matrix elements
with doublet S = 1/2 intermediate states, the resolvent

J

1
EF-H

(@|Q1 Q2[®)

10

1/(E — H) is represented on the basis of functions of proper
S3 symmetry, namely ¥ and ¥y

(WFIE — HlYE) = (W5 |E — Hwh,) (A12)
= (¢"|E - H|¢!)s = ENw — Hu

Hence, the second-order matrix element using Eq. (A7) be-
comes

SOIQUYE) (BN — H) wh1Qalyn) + Sl Qi) (AT~ H) (i1 Qalii) (A1)

= (3|Q110")s (EN — M)/ (¢'Q2l0)s

and the last form is used in the numerical calculations.

(Pleias ¢(r1,72,73)|Q1|0") (EN — H) 1)t (6| Qa|Plerzs d(r1,72,73))

(



