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I. INTRODUCTION

The fine splitting is a difference between energies of P3/2

and P1/2 states. For hydrogenic systems it can be obtained
from the Dirac equation, while for many electron systems
one needs quantum electrodynamic (QED) theory to consis-
tently describe correlations with relativistic effects. The most
common many-electron Dirac-like methods [1–4] are able to
achieve two significant digits at most, while experimental pre-
cision is about 6 significant digits [5, 6]. A much more accu-
rate description of light few-electron systems relies on nonrel-
ativistic version of QED, called NRQED theory. Relativistic,
retardation, electron self-interaction, and vacuum polarization
effects can all be accounted for perturbatively by expansion of
energy levels in powers of the fine structure constant α,

E(α) = mα2 E(2)+mα4 E(4)+mα5 E(5)+mα6 E(6)+ . . .
(1)

where expansion coefficients E(i) may include powers of lnα.
Since these expansion coefficients are expressed in terms of
the first- and second-order matrix elements of some opera-
tors with the nonrelativistic wave function, the accuracy of the
numerical calculation strongly depends on the quality of this
function. For example, MCHF calculations [7–9] are accurate
only to three digits because the wave function is a combina-
tion of Slater determinants and does not satisfy the cusp con-
dition. A much more accurate nonrelativistic wave function
can be obtained by using an explicitly correlated basis such
as Hylleraas functions [10–13]. However, three-electron inte-
grals with explicitly correlated functions are much more com-
plicated than two-electron ones. Moreover, the required num-
ber of basis functions has to be much larger in order to achieve
similar accuracy as for two-electron systems. So the extension
of QED calculations to a three-electron system is not a sim-
ple task. In our recent works [6, 14] we performed complete
calculations of higher-order mα6 and mα7 lnα corrections
to Li and Be+ 2P3/2 − 2P1/2 fine splitting. Here we aim to
present in more detail the computational methods.

The fine structure splitting at the leading orderE(4)
fs is given

by the expectation value

E
(4)
fs = 〈H(4)

fs 〉 (2)

of spin-dependent operators from the Breit-Pauli Hamilto-

nian [15],

H
(4)
fs =

∑
a

Z α

4m2 r3a
~σa
[
(g − 1)~ra × ~pa

]
(3)

+
∑
a6=b

α

4m2 r3ab
~σa
[
g ~rab × ~pb − (g − 1)~rab × ~pa

]
,

where g is the exact electron g-factor. The mean value in
Eq. (2), 〈. . .〉 ≡ 〈Φ| . . . |Φ〉 is calculated using the wave func-
tion Φ from the stationary Schrödinger equation

(H − E)Φ = 0 (4)

with the nonrelativistic Hamiltonian H in the infinite nuclear
mass limit

H =
∑
a

~p 2
a

2m
+ V (5)

V ≡
∑
a

−Z α
ra

+
∑
a>b

α

rab
(6)

The Li and Be+ fine structure in the leading order, including
finite nuclear mass corrections, has been calculated by using
the Hylleraas functions in Refs. [10, 13]. rThe high accuracy
is achieved by the use of a relatively large number (about 14
000) of these functions. All matrix elements are expressed in
terms of standard and extended Hylleraas integrals, which are
obtained with the help of recursion relations [16, 17].

The situation is different with matrix elements of mα6 and
higher-order operators in the Hylleraas basis, where additional
classes of complicated integrals appear, for which no efficient
numerical algorithms are known. Other difficulties arise in
the evaluation of the second-order matrix element with nearly
singular operators. The Green function, or equivalently the
sum over pseudo-states, requires large values of nonlinear pa-
rameters. This causes severe problems with the numerical sta-
bility of recursive algorithms with Hylleraas integrals. We
overcome this problem by the application of another basis set,
which consists of the explicitly correlated Gaussian functions.
We have found [18, 19] that the second-order matrix elements
can be calculated with high precision when nonlinear param-
eters are globally optimized and a large number of Gaussian
functions is employed.

II. HIGHER-ORDER FINE STRUCTURE

The mα6 correction E(6)
fs to the fine structure can be ex-

pressed as the sum of the first- and second-order matrix ele-
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ments with the nonrelativistic wave function,

E
(6)
fs =

〈
H(4) 1

(E −H)′
H(4)

〉
+ 〈H(6)

fs 〉, (7)

where the Breit-Pauli Hamiltonian H(4) is of the form [15]

H(4) = H
(4)
A +H

(4)
B +H

(4)
C (8)

H
(4)
A =

∑
a

{
−~p

4
a

8
+
π Z

2
δ3(ra)

}
(9)

+
∑
a<b

{
π δ3(rab)−

1

2
pia

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

}
.

H
(4)
B =

∑
a

Z

4 r3a
~σa · ~ra × ~pa

+
∑
a 6=b

1

4 r3ab
~σa
(
2~rab × ~pb − ~rab × ~pa

)
. (10)

H
(4)
C =

∑
a<b

σia σ
j
b

4 r3ab

(
δij − 3

riab r
j
ab

r2ab

)
. (11)

The potentially singular second-order quadratic term with
H

(4)
A in Eq. (7) does not contribute to fine splitting, and thus

is excluded from further consideration. H(6)
fs is an effective

Hamiltonian of order mα6. Following the derivation in Refs.
[20] and [13], H(6)

fs can be represented in the following form

H
(6)
fs =

∑
i=1,7

δHi , (12)

δH1 =
∑
a

3

16m4
p2a e

~Ea × ~pa · ~σa (13)

δH2 =
∑
a6=b

− i π

8m4
~σa · ~pa × δ3(rab) ~pa (14)

δH4 =
∑
a

e

4m3

[
2 p2a ~pa · ~Aa + p2a ~σa · ∇a × ~Aa

]
(15)

δH5 =
∑
a

e2

2m2
~σa · ~Ea × ~Aa (16)

+
i e

16m3

[
~Aa × ~pa · ~σa − ~σa · ~pa × ~Aa , p2a

]
δH6 =

∑
a

e2

2m2
~A2
a (17)

δH7 =
∑
a6=b

α

4m2

{
−i
[
~σa ×

~rab
rab

,
p2a

2m

]
e ~Eb

+

[
p2b

2m
,

[
~σa ×

~rab
rab

,
p2a

2m

]]
~pb

}
(18)

where Ea is the static electric field at the position of particle a

e ~Ea ≡ −∇aV = −Z α ~ra
r3a

+
∑
b 6=a

α
~rab
r3ab

(19)

and Aia is the vector potential at the position of particle a,
which is produced by all other particles

eAia ≡
∑
b 6=a

α

2 rab

(
δij +

riab r
j
ab

r2ab

)
pjb
m

+
α

2m

(
~σb × ~rab

)i
r3ab

,

(20)
In order to further improve theoretical predictions, the

higher-order mα7 contribution is not neglected but instead
is approximated by the numerically dominating logarithmic
part. It is obtained from the analogous correction to the he-
lium fine structure [21, 22] by dropping the σi σj terms be-
cause they do not contribute for states with the total electron
spin S = 1/2,

E
(7)
fs,log = 〈H(7)

fs,log〉+ 2
〈
H

(4)
B

1

(E0 −H0)′
H

(5)
log

〉
(21)

H
(5)
log = α2 ln[(Z α)−2]

[
4Z

3

∑
a

δ3(ra)− 7

3

∑
b<a

δ3(rab)

]
(22)

H
(7)
fs,log = α2 ln[(Z α)−2]

[
Z

3

∑
a

i ~pa × δ3(ra) ~pa · ~σa

−3

4

∑
b 6=a

i ~pa × δ3(rab) ~pa · ~σa
]
. (23)

The neglected higher-order corrections are the nonlogarithmic
mα7 term and the finite nuclear mass corrections to the mα6

contribution. They will limit the accuracy of our theoretical
predictions for Li and Be+ fine structure.

III. TRANSFORMATION OF MATRIX ELEMENTS

The expectation value of H(6)
fs in Eq. (12) is transformed

initially to a form convenient for numerical calculations with
2P -states

δH1 = =
3

16
(−Z Q1 +Q2) (24)

δH2 = −π
8
D2 (25)

δH4 = −1

4
(Q3 +Q4) (26)

δH5 =
1

4

[
−Z(Q5 +Q6) +Q7 +Q8

]
+

1

8

(
−ZP1 + P2

)
+

1

8

(
Q9 −Q10 −Q3

)
− 1

16
P3 (27)

δH6 = −1

4

(
Q11 +Q12

)
+

1

16
P4 (28)

δH7 =
Z

4

(
Q14 −Q15

)
− 1

4

(
Q17 +Q18

)
(29)

+
1

4

(
−Q4 +Q19 −Q20

)
where Qi and Pi are defined in Table I. Additionally, opera-
tors Q1, Q2, and Q4 are transformed into the sum of the sin-
gular D-term with the Dirac-δ operator and the regular R-part.
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Matrix elements with D-terms are calculated with Hylleraas,
while Gaussian functions are used for R-terms, which ensures
high numerical precision.

The second-order contribution is split into parts coming
from intermediate states with specified angular momentum
and spin,〈

H(4) 1

(E −H)′
H(4)

〉
= (30)〈

H(4) 12,4So
+ 12,4P + 12,4Do

+ 14F

(E −H)′
H(4)

〉
=

X2So
+X4So

+X2P +X4P +X2Do
+X4Do

+X4F

where 12,4X is a projection into doublet or quartet state X ,
respectively. These contributions are also defined in Table II.
Most of them can be calculated as they stand. Only the non-
symmetric 〈H(4)

B /(E − H)′H
(4)
A 〉 matrix element needs nu-

merical regularization due to the high singularity of H(4)
A .

This is done as follows: H(4)
A is transformed to the regular

form by the following transformations

4π δ3(ra) = 4π [δ3(ra)]r −
{

2

ra
, E −H

}
(31)

4π [δ3(ra)]r =
4

ra
(E − V )− 2

∑
b

~pb
1

ra
~pb (32)

4π δ3(rab) = 4π [δ3(rab)]r −
{

1

rab
, E −H

}
(33)

4π [δ3(rab)]r =
2

rab
(E − V )−

∑
c

~pc
1

rab
~pc (34)

∑
a

p4a =
∑
a

[p4a]r + 4
{
V,E −H

}
(35)∑

a

[p4a]r = 4 (E − V )2 − 2
∑
a<b

~p 2
a ~p

2
b (36)

The overall regularized form of H(4)
A is

H
(4)
A = [H

(4)
A ]r +

{
QA, E −H

}
, (37)

where

QA =
Z

4

∑
a

1

ra
− 1

2

∑
a<b

1

rab
. (38)

The expectation value of the regularized operator is the same
as that without regularization. What has changed is the
second-order matrix element〈

H
(4)
B

1

(E −H)′
H

(4)
A

〉
=〈

H
(4)
B

1

(E −H)′
[H

(4)
A ]r

〉
+
δX2P

2
(39)

where

δX2P = 2
(
〈H(4)

B QA〉 − 〈H(4)
B 〉〈QA〉

)
(40)

=
Z

8

(
Z 〈Q21〉+ 2 〈Q23〉 − 〈Q22〉

)
−1

4

(
Z 〈Q24〉+ 2 〈Q26〉 − 〈Q25〉

)
−
(
Z

4
〈Q29〉+

1

2
〈Q31〉 −

1

4
〈Q30〉

)
×
(
Z

2
〈Q27〉 − 〈Q28〉

)
These additional Qi operators together with their expectation
value are presented in Table III.

The last considered term, the mα7 lnα correction from
Eq. (21), is represented as

E
(7)
log = ln[(Z α)−2]

[
Z

3
〈D1〉 −

3

4
〈D2〉+ 2

(
4Z

3
Y1 −

7

3
Y2

)]
(41)

where Di are defined in Table I and Yi in Table II. The
second-order matrix element Y requires numerical regulariza-
tion, similarly to the one in Eq. (39), and is transformed into
the following form

Y1 =

〈
H

(4)
B

1

(E −H)′

∑
a

[δ3(ra)]r

〉
+ δY1 (42)

Y2 =

〈
H

(4)
B

1

(E −H)′

∑
b<a

[δ3(rab)]r

〉
+ δY2 (43)

where

δY1 = − 1

2π

∑
a

(〈 1

ra
H

(4)
B

〉
− 〈H(4)

B 〉
〈 1

ra

〉)
=

1

8π

(
−Z 〈Q21〉+ 〈Q22〉 − 2 〈Q23〉

+〈Q27〉 (Z 〈Q29〉 − 〈Q30〉+ 2 〈Q31〉)
)

(44)

δY2 = − 1

π

∑
b<a

(〈 1

rab
H

(4)
B

〉
− 〈H(4)

B 〉
〈 1

rab

〉)
=

1

4π

(
−Z 〈Q24〉+ 〈Q25〉 − 2 〈Q26〉

+〈Q28〉 (Z 〈Q29〉 − 〈Q30〉+ 2 〈Q31〉)
)

(45)

are expressed in terms of Qi from Table III.

IV. SPIN REDUCTION OF MATRIX ELEMENTS

The wave function Φi of the 2P state in a three-electron
system is of the form

Φi =
1√
6
A
[
φi(~r1, ~r2, ~r3) [α(1)β(2)− β(1)α(2)]α(3)

]
,

(46)
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TABLE I: Expectation values of operators for Li and Be+ 22PJ states, 〈Q〉 = KJ V with the additional prefactor KJ = {1,−1/2} for
J = 1/2, 3/2, correspondingly. All digits are significant.

Operator VLi VBe+

Q1 =
∑

a ~σa p
2
a

~ra
r3a
× ~pa = −2πD1 −R1 −0.695 207 −14.464 31

D1 =
∑

a i ~σa ~pa × δ3(ra)~pa 0.097 730 2.010 13
R1 =

∑
a i ~σa p

k
a ~pa × 1

ra
~pa p

k
a 0.082 895 1.834 29

Q2 =
∑

a,b 6=a ~σa p
2
a

~rab

r3
ab
× ~pa = −2πD2 −R2 −0.502 754 −11.065 87

D2 =
∑

a,b 6=a i ~σa ~pa × δ3(rab)~pa 0.044 668 0.980 97

R2 =
∑

a,b 6=a i ~σa p
k
a ~pa × 1

rab
~pa p

k
a 0.222 098 4.902 28

Q3 =
∑

a,b 6=a ~σa p
2
a

~rab

r3
ab
× ~pb = 2πD3 +R3 0.000 421 0.737 15

D3 =
∑

a,b 6=a i ~σa ~pb × δ3(rab)~pb 0.017 545 0.369 31

R3 =
∑

a,b 6=a i ~σa p
k
b ~pb × 1

rab
~pb p

k
b −0.109 834 −1.583 29

Q4 =
∑

a,b 6=a ~σa p
2
b

~rab

r3
ab
× ~pb = 2πD3 +R4 0.281 276 5.677 45

R4 =
∑

a,b 6=a i ~σa p
k
b ~pb × 1

rab
~pb p

k
b 0.171 036 3.357 01

Q5 =
∑

a,b 6=a ~σa
1

rab

~ra
r3a
× ~pb 0.161 022 2.122 84

Q6 =
∑

a,b 6=a ~σa
~ra×~rab

r3a r3
ab

(~rab · ~pb) 0.068 423 0.858 67

Q7 =
∑

a,b 6=a,c 6=a ~σa
1

rac

~rab

r3
ab
× ~pc 0.189 027 2.559 31

Q8 =
∑

a,b 6=a,c 6=a ~σa
~rab×~rac

r3
ab

r3ac
(~rac · ~pc) 0.052 774 0.675 94

P1 =
∑

a,b 6=a(~σa × ~σb)
~ra×~rab

r3a r3
ab

−0.066 977 −0.904 13

P2 =
∑

a,b 6=a,c 6=a(~σa × ~σb)
~rac×~rab

r3ac r3
ab

−0.059 905 −0.821 17

P3 =
∑

a,b 6=a(~σa × ~σb) i p
2
a

~rab

r3
ab
× ~pa 0.102 287 1.841 14

Q9 =
∑

a,b 6=a i ~σa p
2
a

1
rab

~pa × ~pb −0.126 256 −3.131 89

Q10 =
∑

a,b 6=a i ~σa p
2
a

~rab

r3
ab
× (~rab · ~pb) ~pa −0.396 739 −8.005 14

Q11 =
∑

a,b 6=a,c 6=b ~σa
1

rbc

~rab

r3
ab
× ~pc −0.114 547 −1.441 91

Q12 =
∑

a,b 6=a,c 6=b ~σa
~rab×~rbc
r3
ab

r3
bc

(~rbc · ~pc) 0.053 650 0.682 88

P4 =
∑

a,b 6=a,c 6=a(~σa × ~σb)
~rac×~rbc
r3ac r3

bc
0.059 905 0.821 17

Q14 =
∑

a,b 6=a ~σa
1

rab

~rb
r3
b
× ~pa −0.041 132 0.033 59

Q15 =
∑

a,b 6=a ~σa
~rb×~rab

r3
b
r3
ab

(~rab · ~pa) −0.144 617 −1.287 70

Q17 =
∑

a,b 6=a,c6=b ~σa
1

rab

~rbc
r3
bc
× ~pa 0.171 163 2.362 41

Q18 =
∑

a,b 6=a,c 6=b ~σa
~rab×~rbc
r3
ab

r3
bc

(~rab · ~pa) 0.065 529 0.700 97

Q19 =
∑

a,b 6=a i ~σa p
2
b

1
rab

~pa × ~pb −0.224 280 −3.050 65

Q20 =
∑

a,b 6=a i ~σa p
2
b

~rab

r3
ab
× (~rab · ~pa) ~pb −0.506 006 −8.526 97

where A denotes antisymmetrization and φi(~r1, ~r2, ~r3) is a
spatial function with Cartesian index i that comes from any of
the electron coordinates. The normalization we assume is∑
i

〈Φ′i|Φi〉 =
∑
i

〈
φ′ i(r1, r2, r3)|P[c123 φ

i(r1, r2, r3)]
〉

= 1

(47)
where P denotes the sum of all permutations of 1,2, and
3. The 2P1/2 and 2P3/2 wave functions are constructed us-
ing Clebsch-Gordon coefficients. Expectation values with
these wave functions can be reduced to spatial expecta-
tion values with algebraic prefactor KJ for J = 1/2, 3/2.
Namely, the first-order matrix elements with auxiliary nota-
tion {K1/2,K3/2} take the form

〈Φ′|O|Φ〉 = {1, 1}
〈
φ′ i(r1, r2, r3)|QP[c123 φ

i(r1, r2, r3)]
〉

(48)

〈Φ′|
∑
a

~σa · ~Qa|Φ〉 = {1,−1/2} i εijk
∑
a〈

φ′ i(r1, r2, r3)|Qja P
[
cFa123 φ

k(r1, r2, r3)
]〉

(49)

〈Φ′|
∑
a6=b

~σa × ~σb · ~Qab|Φ〉 = {1,−1/2} (−2 εijk)
∑

ab=12,23,31〈
φ′ i(r1, r2, r3)| (Qjab −Q

j
ba)P

[
cP123 φ

k(r1, r2, r3)
]〉

(50)

where cklm coefficients are defined in Table IV.

The spin reduction of the second-order matrix elements is
more complicated. We shall first introduce the following aux-
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TABLE II: Second-order contributions to Li and Be+ fine splitting X = (K3/2 − K1/2)V , the additional prefactor {K1/2K3/2} is for
J = 1/2, 3/2, correspondingly. The numerical uncertainties are about 10−4

Contribution {K1/2,K3/2} VLi VBe+

X2So
= 〈Φ|H(4)

B

12So
E−H

H
(4)
B |Φ〉 {1, 0} −0.293 49 −1.051 4(2)

X4So
= 〈Φ|H(4)

B

14So
E−H

H
(4)
B |Φ〉 {0, 2/3} −0.443 91(3) −1.625 3

X2P = 〈Φ|H(4)
B

12P
(E−H)′ (2H

(4)
A +H

(4)
B )|Φ〉

〈Φ|H(4)
B

12P
(E−H)′ [H

(4)
A ]r|Φ〉 {1,−1/2} −0.0217(6) −1.435(8)

δX2P {1,−1/2} −0.086 80 −2.169 0

〈Φ|H(4)
B

12P
(E−H)′ H

(4)
B |Φ〉 {1, 1/4} −0.719 6(6) −5.803(4)

X4P = 〈Φ|(H(4)
B +H

(4)
C )

14P
E−H

(H
(4)
B +H

(4)
C )|Φ〉

〈Φ|H(4)
B

14P
E−H

H
(4)
B |Φ〉 {1/3, 5/6} −0.901 2(4) −3.475 5(6)

〈Φ|H(4)
C

14P
E−H

H
(4)
C |Φ〉 {3, 3/10} −0.002 31 −0.033 2

〈Φ|H(4)
B

14P
E−H

H
(4)
C |Φ〉 {−1, 1/2} 0.006 97 0.102 5

X2Do
= 〈Φ|H(4)

B

12Do
E−H

H
(4)
B |Φ〉 {0, 3/2} −0.500 75 −1.885 6(4)

X4Do
= 〈Φ|(H(4)

B +H
(4)
C )

14Do
E−H

(H
(4)
B +H

(4)
C )|Φ〉

〈Φ|H(4)
B

14Do
E−H

H
(4)
B |Φ〉 {2, 1} −0.733 27(2) −2.625 6(2)

〈Φ|H(4)
C

14Do
E−H

H
(4)
C |Φ〉 {2, 1} 0.000 08 0.000 9

〈Φ|H(4)
B

14Do
E−H

H
(4)
C |Φ〉 {2,−1} 0.000 00 0.000 1

X4F = 〈Φ|H(4)
C

14F
E−H

H
(4)
C |Φ〉 {0, 3} −0.000 71 −0.009 6

Y1 = 〈Φ|H(4)
B

1
(E−H)′

∑
a δ

3(ra)|Φ〉
〈Φ|H(4)

B
1

(E−H)′
∑

a[δ3(ra)]r|Φ〉 {1,−1/2} −0.028 95 −0.647 1

δY1 {1,−1/2} 0.007 99 0.186 0

Y2 = 〈Φ|H(4)
B

1
(E−H)′

∑
b<a δ

3(rab)|Φ〉
〈Φ|H(4)

B
1

(E−H)′
∑

b<a[δ3(rab)]r|Φ〉 {1,−1/2} 0.001 07 −0.002 5

δY2 {1,−1/2} −0.003 66 0.053 5

iliary functions,

Ψi = QP[c123 φ
i(r1, r2, r3)] (51)

Ψij =
∑
a

Qia P
[
cFa123 φ

j(r1, r2, r3)
]

(52)

Ψij
A = P

[
cA123 (Qi1 −Qi2)φj(r1, r2, r3)

]
(53)

Ψijk
A = P

[
cA123 (Qij13 −Q

ij
23)φk(r1, r2, r3)

]
(54)

Then, the spin-reduced second-order matrix elements are

〈Φ|
∑
a

~σa · ~Qa
12So

E −H
∑
b

~σb · ~Qb|Φ〉 =
{1, 0}

6

〈
Ψii 12So

E −H
Ψjj
〉

(55)

〈Φ|
∑
a

~σa · ~Qa
14So

E −H
∑
b

~σb · ~Qb|Φ〉 =
{0, 2/3}

6

〈
Ψii
A

14So

E −H
Ψjj
A

〉
(56)

〈Φ|Q 12Po

(E −H)′
Q|Φ〉 =

{1, 1}
6

〈
Ψi 12Po

(E −H)′
Ψi
〉

(57)
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TABLE III: Expectation values of additional operators arising from reduction of the second-order matrix elements, 〈Q〉 = KJ V with the
additional prefactor KJ = {1,−1/2} for J = 1/2, 3/2, correspondingly. All digits are significant.

Operator VLi VBe+

Q21 =
∑

a,c ~σa
1
rc

~ra
r3a
× ~pa −0.849 430 −9.552 24

Q22 =
∑

a,b6=a,c ~σa
1
rc

~rab

r3
ab
× ~pa −1.432 170 −15.223 86

Q23 =
∑

a,b 6=a,c ~σa
1
rc

~rab

r3
ab
× ~pb 0.242 656 3.250 48

Q24 =
∑

a,c<d ~σa
1

rcd

~ra
r3a
× ~pa −0.400 085 −4.721 57

Q25 =
∑

a,b 6=a,c<d ~σa
1

rcd

~rab

r3
ab
× ~pa −0.766 998 −8.959 65

Q26 =
∑

a,b 6=a,c<d ~σa
1

rcd

~rab

r3
ab
× ~pb 0.159 671 2.209 81

Q27 =
∑

a
1
ra

5.638 906 7.898 02

Q28 =
∑

a<b
1

rab
2.096 405 3.233 41

Q29 =
∑

a ~σa
~ra
r3a
× ~pa −0.125 946 −0.969 13

Q30 =
∑

a,b6=a ~σa
~rab

r3
ab
× ~pa −0.224 641 −1.659 49

Q31 =
∑

a,b 6=a ~σa
~rab

r3
ab
× ~pb 0.038 474 0.360 85

TABLE IV: Symmetrization coefficients in matrix elements

(k, l,m) cklm cAklm cF1
klm cF2

klm cF3
klm cPklm

(1, 2, 3) 2 1 0 0 2 0
(1, 3, 2) -1 -1 1 -1 -1 1
(2, 1, 3) 2 1 0 0 2 0
(2, 3, 1) -1 -1 -1 1 -1 -1
(3, 1, 2) -1 1 1 -1 -1 1
(3, 2, 1) -1 -1 -1 1 -1 -1

〈Φ|Q 12Po

(E −H)′

∑
a

~σa · ~Qa|Φ〉 =
{1,−1/2}

6

〈
Ψi 12Po

(E −H)′
i εijk Ψjk

〉
(58)

〈Φ|
∑
a

~σa · ~Qa
12Po

(E −H)′

∑
b

~σb · ~Qb|Φ〉 =
{1, 1/4}

6

〈
i εijkΨij 12Po

(E −H)′
i εlmkΨlm

〉
(59)

〈Φ|
∑
a

~σa · ~Qa
14Po

E −H
∑
b

~σb · ~Qb|Φ〉 =
{1/3, 5/6}

6

〈
i εijkΨij

A

14Po

E −H
i εlmkΨlm

A

〉
(60)

〈Φ|
∑
a<b

σiaσ
j
b Q

ij
ab

14Po

E −H
∑
c<d

σicσ
j
dQ

ij
cd|Φ〉 =

{3, 3/10}
6

〈
Ψijj
A

14Po

E −H
Ψikk
A

〉
(61)

〈Φ|
∑
a

~σa · ~Qa
14Po

E −H
∑
b<c

σibσ
j
c Q

ij
bc|Φ〉 =

{−1, 1/2}
6

〈
i εjmlΨml

A

14Po

E −H
Ψjkk
A

〉
(62)

〈Φ|
∑
a

~σa · ~Qa
12Do

E −H
∑
b

~σb · ~Qb|Φ〉 =
{0, 3/2}

6

〈
Ψji 12Do

E −H
Ψij
〉

(63)

〈Φ|
∑
a

~σa · ~Qa
14Do

E −H
∑
b

~σb · ~Qb|Φ〉 =
{2, 1}

6

〈
Ψji
A

14Do

E −H
Ψij
A

〉
(64)
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〈Φ|
∑
a<b

σiaσ
j
b Q

ij
ab

14Do

E −H
∑
c<d

σicσ
j
dQ

ij
cd|Φ〉 =

{2, 1}
6

〈
i εijkΨlij

A

14Do

E −H
i εmnkΨlmn

A

〉
(65)

〈Φ|
∑
a

~σa · ~Qa
14Do

E −H
∑
b<c

σibσ
j
c Q

ij
bc|Φ〉 =

{2,−1}
6

〈
Ψlk
A

14Do

E −H
i εkmnΨlmn

A

〉
(66)

〈Φ|
∑
a<b

σiaσ
j
b Q

ij
ab

14Fo

E −H
∑
c<d

σicσ
j
dQ

ij
cd|Φ〉 =

{0, 3}
6

〈
Ψkji
A

14Fo

E −H
Ψijk
A

〉
(67)

These formulas, including KJ coefficients, have been ob-
tained with a computer symbolic program.

V. NUMERICAL CALCULATIONS

The spatial function φ in Eq. (46) is represented as a linear
combination of the Hylleraas [23] or the explicitly correlated
Gaussians functions [24]

φ =

{
e−α1r

2
1−α2r

2
2−α3r

2
3−α12r

2
12−α13r

2
13−α23r

2
23

e−α1r1−α2r2−α3r3 rn1
23 r

n2
31 r

n3
23 r

n4
1 rn5

2 rn6
3

(68)

In the Hylleraas basis we use six sectors with different val-
ues of nonlinear parameters wi and a maximum value of
Ω ≡ n1 + n2 + n3 + n4 + n5 = 12; details are presented in
Refs. [10, 13]. In Gaussian basis we useN = 256, 512, 1024,
and 2048 functions with well-optimized nonlinear parameters
for each basis function separately. The accuracy achieved for
nonrelativistic energies is about 10−13 in Hylleraas and 10−11

in Gaussian bases.
These nonrelativistic wave functions are used in evaluation

of matrix elements. Most of the Q and P operators in Tables I
and III are intractable with present algorithms with Hylleraas
functions due to difficulties with integrals with inverse powers
of electron distances, but also due to very lengthy expressions
in terms of Hylleraas integrals. Thus, we calculate them using
Gaussian functions; however, with some exceptions. There
are operators Q1, Q2, and Q4, the expectation value of which
is very slowly convergent. Namely, the accuracy achieved is
as low as 10−2 − 10−3 with as many as 2048 well-optimized
Gaussian functions. So, to avoid loss of numerical accuracy,
we represent these operators as the sum of the singular D-
part and the regular R-part. The singular D-part, numerically
dominating, is calculated with Hylleraas functions, while the
regular R-part, free of singularities, is calculated with a Gaus-
sian basis. This leads to significant improvements in accuracy,
so the numerical uncertainties do not affect theoretical predic-
tions for the fine structure. Numerical results for all first-order
matrix elements obtained with the largest basis are presented
in Table I and III. The achieved precision is at least 10−5,
which is one digit better in comparison to second-order ma-
trix elements described in the following.

The evaluation of second-order matrix elements is much
more computationally demanding. First of all, they are ob-
tained only in the Gaussian basis, due to its high flexibility.

The resolvent 1/(E −H) for each angular momentum is rep-
resented in terms of functions with the appropriate Cartesian
prefactor, as follows

φSo
= εijkr

i
ar
j
br
k
c φ (69)

φiPo
= ria φ (70)

φijDo
=

[
εikl
2
rjc +

εjkl
2
ric −

δij

3
εmkl r

m
c

]
rka r

l
bφ (71)

φijkFo
=

[
ria
6

(rjbr
k
c + rjcr

k
b ) +

rib
6

(rjar
k
c + rjcr

k
a)

+
ric
6

(rjar
k
b + rjbr

k
a)

−δ
jk

15

(
riar

l
br
l
c + ribr

l
ar
l
c + ricr

l
ar
l
b

)
−δ

ki

15

(
rjar

l
br
l
c + rjbr

l
ar
l
c + rjcr

l
ar
l
b

)
−δ

ij

15

(
rkar

l
br
l
c + rkb r

l
ar
l
c + rkc r

l
ar
l
b

)]
φ (72)

where subscripts a, b, and c refer to any of the electrons in-
cluding the same one. Nonlinear parameters for intermediate
states are extensively optimized for each second-order sym-
metric matrix element. Moreover, one takes all possible rep-
resentations of angular factors for intermediate states in ap-
propriate proportions to ensure the completeness of the basis.
Most importantly, the number of Gaussian functions for inter-
mediate states is chosen to be sufficiently high to saturate the
matrix element. Namely, for a given size N of the external
wave function, we use 3/2N elements for all Do- and quar-
tet Fo-states, N elements for quartet Po-states, and 1/2N for
So-states. Among all matrix elements, the most demanding
in terms of optimization was that with intermediate states of
symmetry 2Po, as the external wave function. Here, the ba-
sis set for the resolvent is divided into two sectors. The first
sector is built of the known basis functions with the nonlinear
parameters determined in the minimization of E(22P ). For
this purpose we took one of the previously generated basis
sets of Ψ of size equal to N/2. The nonlinear parameters of
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this basis remain fixed during the optimization in order to en-
sure the accurate representation of the states orthogonal to Ψ.
The second sector, of size equal to 3/2N or N for the matrix
element involvingHB or [HA]r, respectively, consists of basis
functions that undergo optimization. For the asymmetric ma-
trix elements the basis is combined from two corresponding
symmetric ones.

The most computationally demanding matrix element was
the 〈[HA]r 1/(E −H)′HB〉 term, and it has the slowest nu-
merical convergence in the Gaussian basis. Numerical results
for matrix elements are summarized in Table II. The achieved
precision is about 10−4, one digit less than the first-order ma-
trix elements. In addition, we observe significant cancella-

TABLE V: Summary of mα6 contributions to fine splitting.

Contribution Li Be+

X2So
0.293 49 1.051 4(3)

X4So
−0.295 94(2) −1.083 5(1)

X2Po
0.735 0(18) 11.912(24)

X4Po
−0.423 5(2) −1.340 5(3)

X2Do
−0.751 13(2) −2.828 4(6)

X4Do
0.733 34(2) 2.625 7(2)

X4Fo
−0.002 13 −0.028 9(1)

total second order 0.289 16(19) 10.308(24)

δH1 −0.445 2(16) −13.160(3)
δH2 0.026 31 0.577 8
δH4 0.105 63 2.405 5(1)
δH5 0.150 52 3.186 6
δH6 −0.011 60 −0.130 7
δH7 −0.027 83 −0.757 8(3)

total first order −0.202 1(16) −7.879(3)

total mα6 0.087 1(24) 2.429(24)

tions between S = 1/2 and S = 3/2 intermediate states,

and between the first- and second-order terms, see Table V.
The final numerical result for the mα6 contribution in Table
V is relatively quite small. Regarding the mα7 contribution,
the second-order term Y is numerically dominant, and con-
tributions from Di terms are an order of magnitude smaller.
Altogether this correction is only three times smaller than the
mα6 contribution, which is certainly not negligible.

VI. SUMMARY

We have performed accurate calculations of the fine struc-
ture in Li and Be+ using the nonrelativistic QED approach
combined with explicitly correlated basis functions. Relativis-
tic and QED corrections are represented in terms of matrix
elements of effective operators, which are calculated with a
highly accurate nonrelativistic wave function. Numerical re-
sults are summarized in Table VI. We observe an agreement
with the experimental values. However, our result for Li lies
below, while for Be+ above experiments of [5] and [6] re-
spectively. As the sign of all corrections is the same for Li
and Be+, this may suggest that one of these experiments un-
derestimated its uncertainty.

The extension of presented computational approach to other
systems with more electrons is problematic, due to a lack
of formulas for the four-electron Hylleraas integrals. There-
fore, achieving similar accuracy for the four electron systems
would be very challenging.
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Neyens, R. Sánchez, and D. T. Yordanov, Phys. Rev. Lett. in
print, (2015).

[7] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein,
Phys. Rev. A 40, 2233 (1989).

[8] C. F. Fischer, M. Saparov, G. Gaigalas, and M. Godefroid, At.
Data Nucl. Data Tables 70, 119 (1998).

[9] M. Godefroid, C. Froese Fischer, and P. Jönsson, J. Phys. B 34,

1079 (2001).
[10] Z.-C. Yan and G.W.F. Drake, Phys. Rev. A 66, 042504 (2002).
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Appendix A: Quantum mechanics of three identical particles

Consider a wave function of three identical particles
φ(~r1, ~r2, ~r3). Eigenstates of the nonrelativistic Hamiltonian
can be classified by representation of the permutation group
S3. Two of them, id and sgn, are one dimensional, and the
third is two dimensional. The wave functions corresponding
to one-dimensional representations are

ψS(~r1, ~r2, ~r3) =
1√
6

[φ(~r1, ~r2, ~r3) + φ(~r2, ~r3, ~r1) + (A1)

φ(~r3, ~r1, ~r2) + φ(~r2, ~r1, ~r3) + φ(~r3, ~r2, ~r1) + φ(~r1, ~r3, ~r2)]

and

ψA(~r1, ~r2, ~r3) =
1√
6

[φ(~r1, ~r2, ~r3) + φ(~r2, ~r3, ~r1) + (A2)

φ(~r3, ~r1, ~r2)− φ(~r2, ~r1, ~r3)− φ(~r3, ~r2, ~r1)− φ(~r1, ~r3, ~r2)]

In order to construct the wave functions corresponding to
the two-dimensional representation, let us consider the spin-
dependent wave function for a three-electron system for the

total spin S = 1/2

Φ =
1√
6
A
[
φ(~r1, ~r2, ~r3) [α(1)β(2)− β(1)α(2)]α(3)

]
=

1√
6

[α(1)β(2)α(3)ψ1 + β(1)α(2)α(3)ψ2 +

α(1)α(2)β(3)ψ3] (A3)

where A denotes antisymmetrization, and

ψ1 = φ(~r1, ~r2, ~r3)− φ(~r2, ~r3, ~r1) + φ(~r2, ~r1, ~r3)−
φ(~r3, ~r2, ~r1) (A4)

ψ2 = φ(~r3, ~r1, ~r2)− φ(~r2, ~r1, ~r3)− φ(~r1, ~r2, ~r3) +

φ(~r1, ~r3, ~r2) (A5)
ψ3 = φ(~r2, ~r3, ~r1)− φ(~r3, ~r1, ~r2) + φ(~r3, ~r2, ~r1)−

φ(~r1, ~r3, ~r2) (A6)

ψi functions form a two-dimensional representation of S3,∑
i ψi = 0.
Let us denote the standard matrix element

〈φ′|φ〉S =
〈
φ′ i(r1, r2, r3)|P[c123 φ

i(r1, r2, r3)]
〉

(A7)

where P denotes the sum of all permutations of 1,2, and 3.
Then

〈Φ′|Φ〉 = 〈φ′|φ〉S (A8)

and the scalar products between ψi is

〈ψ′i|ψj〉 = 〈φ′|φ〉S (−1 + 3 δij) (A9)

The two orthogonal and normalized functions can be chosen
as ψI = ψ1/

√
2 and ψII = (ψ2 − ψ3)/

√
6.

The first-order matrix elements of the spin-independent op-
erator Q are

〈Φ|Q|Φ〉 =
1

6
〈ψi|Q|ψi〉 = 〈φ|Q|φ〉S , (A10)
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and the second-order matrix elements with Q1 and Q2 are

〈Φ|Q1
1

E −H
Q2|Φ〉 =

1

6
〈ψi|Q1

1

E −H
Q2|ψi〉

= 〈φ|Q1
1

E −H
Q2|φ〉S (A11)

In the numerical evaluation of second-order matrix elements
with doublet S = 1/2 intermediate states, the resolvent

1/(E −H) is represented on the basis of functions of proper
S3 symmetry, namely ψI and ψII

〈ψkI |E −H|ψlI〉 = 〈ψkII |E −H|ψlII〉 (A12)
= 〈φk|E −H|φl〉S = ENkl −Hkl

Hence, the second-order matrix element using Eq. (A7) be-
comes

〈Φ|Q1
1

E −H
Q2|Φ〉 =

1

6
〈ψi|Q1|ψkI 〉 (EN −H)−1kl 〈ψ

l
I |Q2|ψi〉+

1

6
〈ψi|Q1|ψkII〉 (EN −H)−1kl 〈ψ

l
II |Q2|ψi〉 (A13)

= 〈φ|Q1|φk〉S (EN −H)−1kl 〈φ
l|Q2|φ〉S

= 〈P[c123 φ(r1, r2, r3)|Q1|φk〉 (EN −H)−1kl 〈φ
l|Q2|P[c123 φ(r1, r2, r3)〉

and the last form is used in the numerical calculations.


