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Abstract
We demonstrate high accuracy calculations for the HeH™ molecule using newly developed analytic for-
mulas for two-center two-electron integrals with exponential functions. The Born-Oppenheimer potential
for the ground electronic ' X% state is obtained in the range of 0.1 — 60 au with precision of about 1072
au. As an example at the equilibrium distance between nuclei r. = 1.463 283 au, the Born-Oppenheimer
potential amounts to —2.978 708 310 771(1). Obtained results lay the ground for theoretical predictions in

HeH™ with spectroscopic precision.

PACS numbers: 31.15.ac, 31.50.Bc



I. INTRODUCTION

HeH™ molecule is a simple two electron molecule consisting of the alpha-particle and of the
proton as nuclei. In the ground electronic !XT state, both electrons are mostly centered around
alpha-nucleus with the proton distance from alpha being about » ~ 1.46 au. The first accu-
rate variational calculations of the Born-Oppenheimer (BO) potential of HeH™ reported by Wol-
niewicz [1], Kotos and Peek [2], Kolos [3], were shortly afterwards refined by Bishop and Cheung
[4]. In these calculations authors represented the electronic wave function in terms of exponential
functions times various polynomials in interparticle distances with general nonlinear parameters
(Kotos-Wolniewicz functions) or with some parameters fixed (James-Coolidge functions). Ac-
curacy achieved in calculations by Bishop and Cheung was about 4 - 107% au. More accurate
result ~ 107% au, at the distance r = 1.46 au, have been obtained by Cencek et al. [5] using
explicitly correlated Gaussian functions. Even if the whole BO potential is known with their ac-
curacy (~ 0.02 cm™1), it will be insufficient in comparison with the most accurate (~ 107° cm™1)
measurements of rovibrational transition frequencies [6]. More recently Adamowicz et al. [7-9]
performed direct nonadiabatic calculations for HeH" including relativistic corrections, however,
only for purely vibrational states and without estimation of accuracy.

In this work we use asymptotically correct generalized Heitler-London functions, which are
the product of an exponential atomic He function times an arbitrary polynomial in interparticle
distances. Thanks to analytic formulas for the resulting two-center two-electron integrals [10], we
are able to perform calculations with a large number of ~ 20000 basis functions. The resulting
accuracy of about 102 au or better (for large distances) is at least 4 orders of magnitude improve-
ment with respect to previous values. The accuracy of BO potential is not directly transformed into
accuracy of rovibrational energy levels. It is because Born-Oppenheimer energies should be sup-
plemented by adiabatic, nonadiabatic, relativistic and QED corrections. As it has been recently
demonstrated for H, and isotopomers [11], the perturbative treatment in the electron-nuclei mass
ratio up to O(m /M )? and the fine structure constant o up to O(«)® can provide rovibrational tran-
sitions with accuracy reaching 0.000 1 cm ~!. Analogous calculations can be performed for HeH™,

and results obtained here are the first step for spectroscopically accurate theoretical predictions.



II. ECA BASIS SET

We represent the ground state nonrelativistic electronic wave function in terms of generalized
Heitler-London functions, which are the product of the atomic He exponential function with an

arbitrary polynomial in all interparticle distances,
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for some integer (2, and call them the explicitly correlated asymptotic (ECA) basis. In the above,
c{ny are linear coefficients, {n} represents a set of 5 numbers {n1, 12, 12, n4, N5}, P2 is the oper-
ator which replaces 7 with 75, indices (A, B) denote nuclei, and (1, 2) denote electrons. Matrix
elements of the nonrelativistic Hamiltonian can be expressed in terms of integrals of the form
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with nonnegative integers n,. These integrals depend on the nonlinear parameter 5 and on the
distance r = r 45 between nuclei. They are calculated as follows. When all n; = 0, the so called
master integral, which can be derived from a general expression in Ref. [10], is
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with

F(z) = e {62—76 Ei(—2z) — 6_2% Ei(22) — Ei(—x) + e > Ei(z) |, (5)
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where Ei is the exponential integral function. The one-dimensional integral in Eq. (4) is calculated
numerically using the adapted Gaussian integration. With 120 integration points one achieves 64
significant digits for all the distances. All f-integrals with higher powers of electron distances can

be obtained from recursion relations, which were derived in Ref. [10]. Since
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it is sufficient to know f-integrals at » = 1 only, values at arbitrary r are obtained by rescalling

[ and f according to above formula. As an example and demonstration of the computational

method, we present below formulas at = 1 for all f-integrals with ). n; < 2
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where f = f(1,5) and F' = F(f3). Other f-integrals from the same shell can be obtained by

using the symmetry f(ny, ng, n3, ng,ns) = f(n1,n4, ns, no, ng). Integrals with higher powers n;

are of analogous form, they are all linear combinations of f, F, Ei, Exp, and identity functions

with coefficients being simple polynomials in 1/3. Using a computer symbolic program and

prescription from Ref. [13], we have generated a table of integrals with zz n; < 37, which

corresponds to a maximum value of {2 = 16.



III. NUMERICAL RESULTS

The matrix elements of the nonrelativistic Hamiltonian between ECA functions are obtained
as described by Kotos and Roothan in [12]. The resulting expression is a linear combination of
various ECA integrals which are calculated by using analytic formulas as presented in the previous
section. Their evaluation is fast and accurate, thus suitable for calculations involving large number
of basis functions.

Eigenvalues of the Hamiltonian matrix are obtained by inverse iteration method for various
lengths of basis sets (2 = 7 — 16). These eigenvalues, obtained at 132 internuclear distances
ranging from 0.1 au to 60 au, form the BO potential. ECA functions are especially suitable for
large distances, as they include functions for the helium atom alone. As a result, the atomic He
energy is obtained with an accuracy of about 10~!° for all the distances, in fact much better than
that for HeH'. In order to improve numerical accuracy for HeH", we used a triple basis set
(Q,Q —2,Q —4) each one with its own optimized nonlinear parameter o. Numerical calculations
are performed for r < 12 au using the quadruple precision, whereas for » > 12 au using the
octuple precision arithmetics. In order to check numerics, we repeated calculations around the
equilibrium distance 7. = 1.463 283 au by using James-Coolidge basis set, for which analytic
formulas have been developed in Ref. [13]. This basis has a slower convergence but is numerically
more stable, so we could use even larger number of 27 334 basis functions. Obtained results have
similar accuracy and are in perfect agreement with that obtained with ECA functions. The most
accurate variational result reported at the distance r = 1.46 au is compared in Table I to all the

previous results obtained so far in the literature.

TABLE I: Variational Born-Oppenheimer potential for the HeH+ molecule at 7 = 1.46 au

Authors energy|au]

1965 L. Wolniewicz [1] —2.978 666 7

1994 W. Kotos and L. Peek [2] —2.978 68906
1979 D.M. Bishop and L.M. Cheung [4] —2.978702 62
2006 W. Cencek, J. Komasa and J. Rychlewski [5] —2.978 706 591
2012 this work —2.978 706 600 341

In performing extrapolation to a complete basis set (2 — o0), similarly to the previous Hy

case [13], we observe the exponential e=?¢* convergence, in other words the log of differences
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in energies for subsequent values of €2 fits well to a linear function. This makes extrapolation to
infinity quite simple. Extrapolated results for the whole BO potential curve in the range 0.1 — 60

au are presented in Table II.

TABLE II: Numerical values for the BO potential at different internuclear distance r, shifted by the He
ground state energy & = —2.903 724 377 034 120 au. Results are obtained by extrapolation to the complete

set of basis functions, . = 1.463 283 au is the equilibrium distance.

r/au E r/au E r/au E r/au E
0.10 15.765 275 621 061(3) 1.60 —0.072566613147(4) 3.25 —0.01050599334515(2) 5.80 —0.00068427483349(5)
0.20 6.050 585 7775879(4) 1.65 —0.070782049442(4) 3.30 —0.00980529191624(2) 5.90 —0.00063495982145(7)
0.30 3.0351040043129(1) 1.70 —0.068 681986 181(4) 3.35 —0.00915388696624(2) 6.00 —0.000590 184 8250(1)
0.40 1.6767983404776(1) 1.75 —0.066346472331(4) 3.40 —0.00854857708950(2) 6.20 —0.0005122781835(1)
0.50 0.9612242449748(1) 1.80 —0.063841750276(3) 3.45 —0.00798630494094(2) 6.40 —0.0004472165356(6)
0.60 0.5514259232109(2) 1.85 —0.061222573648(3) 3.50 —0.00746416162698(2) 6.60 —0.000392 456561 3(6)
0.70 0.3051378074536(3) 1.90 —0.058534109374(3) 3.55 —0.00697938883337(2) 6.80 —0.0003460392485(6)
) ( )
) ( )
) (
(
(
(
(

0.80 0.1530613400494(5) 1.95 —0.055813503899(3) 3.60 —0.00652937904223(2) 7.00 —0.000306 439 2939(6

0.90 0.0580773622033(8) 2.00 —0.053091177182(2) 3.65 —0.00611167415771(2) 7.20 —0.0002724566819(6

0.95 0.024 964 4484740(9) 2.05 —0.050391895330(2) 3.70 —0.00572396282547(2) 7.40 —0.00024313796003(5
1.00 —0.001080054475(1
1.05 —0.021440483674(2
1.10 —0.037213297730(2
1.15  —0.049273330916(2
1.20  —0.058 323089 351(2
1.25 —0.064929882196(3
1.30 —0.069 554101 696(3
1.35 —0.072570979391(3
1.38  —0.073739700599(4
1.40 —0.074287476582(4
1.41  —0.074497742079(2

2.10 —0.047735662718(2) 3.75 —0.00536407670123(2) 7.60 —0.00021771854245(4

()
(4)
2.15 —0.045138466 546(2) 3.80 —0.00502998589214(2) 7.80 —0.00019558000355(3)
2.20 —0.042612900482(1) 3.85 —0.00471979376831(2) 8.00 —0.00017621814692(3)
2.25 —0.040168689007(1) 3.90 —0.00443173131403(2) 8.50 —0.00013741695904(5)
2.30 —0.0378131300178(9) 3.95 —0.00416415116585(2) 9.00 —0.000108799429 7(1
2.35 —0.0355514699706(7) 4.00 —0.00391552146065(2) 9.50 —0.000 087296 3414(7
2.40 —0.0333872231696(6 4.10 —0.00346952601047(2) 10.0 —0.000070874764(5)
2.45 —0.0313224446629(5 4.20 —0.00308356365879(2) 10.5 —0.000058152803(6)
2.50 —0.0293579644214(4 4.30 —0.00274890776176(2) 11.0 —0.000048170045(4)
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4.60 —0.00198357622838(2) 13.0 —0.00002453952511(1
1.43  —0.074799949 340(2 2.70  —0.022487 308864 0(1
2.75 —0.0210065870435(1) 4.80 —0.00161973663404(3) 15.0 —0.00001379385865(1

(
(
(
(
(
(
( 4.70 —0.00178985693404(3) 14.0 —0.00001820696042(1
1.44  —0.074895 257 253(1
1.45 —0.074 955506 003(1 2.80 —0.01961500560925(9) 4.90 —0.00146990547475(3) 16.0 —0.00001064172404(1
1.46  —0.074 982223 308(1

Te —0.074983933 737(1
1.47  —0.074976 879 155(1

1.48 —0.074940888099(1

1.49 —0.074875611446(1

1.50 —0.074782359346(1

1.52 —0.074516 925580(3
1.55 —0.073938987047(4

(
(
(
(
2.85 —0.01830918258272(7) 5.00 —0.00133755348543(4) 17.0 —0.00000834146147(1
2.90 —0.01708554252564(6) 5.10 —0.00122029375156(4) 18.0 —0.000006 630920 31(1
2.95 —0.01594038076426(5) 5.20 —0.00111609689545(4) 19.0 —0.00000533749757(1
3.00 —0.01486991851472(4) 5.30 —0.00102323543423(4) 20.0 —0.000004 344 797 44(1
3.05 —0.01387034988266(3) 5.40 —0.00094023668533(4) 30.0 —0.000000 855679 62(1
3.10 —0.01293788159548(3) 5.50 —0.00086584301273(5) 40.0 —0.00000027047679(1
3.15 —0.01206876623641(3) 5.60 —0.00079897833242(5) 50.0 —0.00000011073851(1
(

)
)
)
)
)
)
)
)
)
)
)
3.20 —0.01125932967692(2) 5.70 —0.0007387199404(4) 60.0 —0.000000053 391 46(1)

IV. SUMMARY

We have demonstrated applications of analytic formulas for two-center two-electron exponen-

tial integrals in high precision calculations of Born-Oppenheimer potential for the ground elec-
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tronic state of HeH™, similarly to previous calculations for H, [13]. The use of ECA basis with as
many as 20 000 functions provided energies with precision of about 10712 — 10~ au for internu-
clear distances up to 60 au.

The extension of this approach to calculations of excited states of diatomic molecules such as
H, and HeH™ is not difficult. As long as, the trial function includes at most two different nonlinear
parameters (in the exponent), the analytic formulas for corresponding integrals are not exceedingly
large. Such two parameter exponential functions can represent well an arbitrary electronic state of
a diatomic molecule. In fact, we aim to develop a general code for calculation of BO potential of
the diatomic molecule, using quad and the arbitrary precision arithmetics. The extension to adia-
batic, nonadiabatic and relativistic corrections is more problematic. For their evaluation one needs
integrals with inverse powers of interparticle distances, for which formulas can be quite compli-
cated. We think that their derivation for James-Coolidge basis is within the reach, therefore for
small internuclear distances, where this basis works quite well, all relevant corrections, including
yet unknown o* QED correction can be calculated to a high precision, thus improving theoretical

predictions for Hy and other two-electron diatomic molecules to about 107% cm ™,
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