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We present results of high-precision calculations for a boron atom’s properties using wave functions expanded
in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable
a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions
with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear
properties of boron including the charge radius of the proton halo in the 8B nucleus.

PACS numbers: 31.15.ac, 31.30.J-

INTRODUCTION

While for hydrogenic ions the nonrelativistic wave func-
tion is known exactly, for all larger atomic systems it has to
be obtained numerically, most often with the help of the vari-
ational principle. The numerical precision achieved for a few
electron systems can, nevertheless, be very high. For exam-
ple, nonrelativistic energies of the He atom are known with
more than 20 digits of accuracy [1–3], of Li with 15 dig-
its [4, 5], and very recently the precision achieved for the
Be atom reached 11 significant digits [6–8]. The computa-
tional approach employed in all those atomic studies is based
on explicitly correlated functions of the exponential or Gaus-
sian form, which are the best known representations of the
nonrelativistic wave function. For three-electron systems, the
most accurate solution of the Schrödinger equation is obtained
with the Hylleraas (exponential times polynomial) basis func-
tions [4, 5, 9]. In such systems, the accuracy of the theoretical
predictions for transition energies and isotope shifts is limited
by the approximate treatment of higher-order ∼mα6,7 QED
corrections rather than by numerical inaccuracies of the non-
relativistic wave function. Methods with Hylleraas functions
have been extended to four-electron atomic systems but only
for some restricted selection of basis functions, because of sig-
nificant difficulties in evaluation of matrix elements [10, 11].
Even more difficult integrals appear in the matrix elements
of relativistic operators. Unquestionably, significant efforts
have to be made to improve the Hylleraas approach, in or-
der for it to be practical for the four and more electron sys-
tems. Therefore, at present, the method of choice for such
systems is that based on explicitly correlated Gaussian (ECG)
functions. The effectiveness of the ECG functions in treat-
ing few-electron problems has already been demonstrated by
high-precision calculations of the nonrelativistic energies of
atomic and molecular systems [12–17]. In particular, for the
beryllium atom the highest accuracy has been obtained us-
ing the ECG functions [7, 18–21]. The main advantage of
the ECG method is that the underlying integration is manage-
able and very fast in numerical evaluation due to the compact
formulas involving only elementary functions. On the other
hand, the Gaussian functions have the drawback of improper

asymptotic behavior since they decay too fast at long inter-
particle distances. They also have an incorrect short-range
form and fail to correctly describe the Kato cusp. However,
these two flaws can be overcome if one employs a sufficiently
large and well-optimized ECG basis set. The issue is subtler
in calculations of relativistic and QED properties, in which
the local inaccuracies of the wave functions result in signif-
icant numerical loss of mean values. One has to carefully
optimize over a large number (oftentimes exceeding 105) of
variational parameters matching local behavior of the exact
wave function and employ dedicated techniques which accel-
erate the convergence of nearly singular matrix elements [22].
An additional drawback of the approach based on fully corre-
lated functions is the cost resulting from antisymmetrization
of the wave function which grows like N ! with the number of
electrons N .

In this paper we demonstrate that in spite of this high eval-
uation costs, the methods based on ECG functions may give
a spectroscopic accuracy for five-electron systems, such as
the boron atom, in a realistic computational time. We report
on the calculation of nonrelativistic energies of the ground
22P and the excited 32S levels, and the leading relativistic
corrections including the fine and hyperfine structure of the
ground state. The achieved numerical accuracy is several or-
ders higher than those of any previous calculations and not
always in agreement with them. In addition, we provide accu-
rate results for a four-electron B+ ion needed to determine the
ionization potential of the boron ground state.

NONRELATIVISTIC HAMILTONIAN AND CORRECTIONS

The determination of accurate wave functions correspond-
ing to the nonrelativistic, clamped nucleus Hamiltonian (in
natural units)

H0 =
∑
a

p2a
2m
−
∑
a

Z α

ra
+
∑
a>b

α

rab
. (1)

is the main subject of this paper. If the wave function Φ is
determined, all the corrections to the energy E0 in the fol-
lowing perturbative expansion in the fine-structure constant
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α ∼ 1/137

E = E(2) +E(4) +E(5) +E(6) + . . . , E(n) ∼ mαn (2)

can be expressed in terms of expectation values 〈Φ| . . . |Φ〉 ≡
〈. . .〉 of known operators. Complete nonrelativistic energy
E(2) consists of the clamped nucleus energy E0 and the ki-
netic energy of the nucleus HN, which can be calculated in
the center of mass frame as a small perturbation,

HN =
p2N

2mN
=

m

mN

(∑
a

p2a
2m

+
∑
a<b

~pa · ~pb
m

)
, (3)

where mN is the nuclear mass. The leading relativistic E(4)

correction is calculated as the mean value of the Breit-Pauli
Hamiltonian given by

H(4) = Hns +Hfs +Hhfs , (4)

Hns ≡
∑
a

[
− p4a

8m3
+
Z απ

2m2
δ3(ra)

]
(5)

+
∑
a>b

[
π α

m2
δ3(rab)−

α

2m2
pia

(
δij

rab
+
riab r

j
ab

r3ab

)
pjb

]
,

Hfs ≡
∑
a

Z α

4m2 r3a

[
(g − 1)~ra × ~pa

]
· ~σa

+
∑
a6=b

α

4m2 r3ab
~σa ·

[
g ~rab × ~pb − (g − 1)~rab × ~pa

]
+
∑
a>b

α g2

16m2 r3ab
σi
a σ

j
b

(
δij −

3 riab r
j
ab

r2ab

)
. (6)

The leading order Hamiltonian for the hyperfine splitting is

Hhfs ≡
∑
a

[
1

3

Z α g gN
mmN

~σa · ~I π δ3(ra)

+
Z α gN
2mmN

~I · ~ra
r3a
× ~pa

−Z α g gN
8mmN

σi
a I

j

r3a

(
δij − 3

ria r
j
a

r2a

)
+
QN

6

α

r3a

(
δij − 3

ria r
j
a

r2a

)
3 Ii Ij

I (2 I − 1)

]
, (7)

where ~I is the nuclear spin, g is the electron g factor, QN is
the electric quadrupole moment of the nucleus, and gN is the
nuclear g factor

gN =
mN

Z mp

µ

µN

1

I
. (8)

It is convenient to rewrite the expectation value of the hyper-
fine splitting Hhfs Hamiltonian in terms of commonly used
AJ and BJ coefficients,

〈Hhfs〉J = AJ
~I · ~J +

BJ

6

3 (Ii Ij)(2)

I (2 I − 1)

3 (J i Jj)(2)

J (2 J − 1)
, (9)

where ~J is the total electronic angular momentum. For this
purpose we decompose Hhfs

Hhfs = ~I · ~G+
Gij

6

3 (Ii Ij)(2)

I (2 I − 1)
, (10)

and these coefficients are

AJ =
1

J (J + 1)
〈 ~J · ~G〉 , (11)

BJ =
2

(2 J + 3) (J + 1)
〈J iJj Gij〉J . (12)

Higher-order corrections to the atomic energy originate
from QED. They are significantly smaller then E(4) because
of the higher powers of α:

E(5) =
4Z α2

3m2

[
19

30
+ ln(α−2)− ln k0

] ∑
a

〈δ3(ra)〉

+
α2

m2

[
164

15
+

14

3
lnα

] ∑
a<b

〈δ3(rab)〉 (13)

− 7

6π
mα5

∑
a<b

〈
P

(
1

mαr3ab

)〉
,

E(6) ≈ π Z2 α3

m2

[
427

96
− 2 ln(2)

]∑
a

〈δ3(ra)〉. (14)

REDUCTION OF MATRIX ELEMENTS

We represent the wave function Φi of the five-electron 2P
atomic state in the form

Φi =
1√
5!
A
[∑

n

tnφ
i
n({~ra})χ{a}

]
(15)

where tn is a linear coefficient, χ{a} is the spin wave function

χ{a} = (α1 β2 − β1 α2) (α3 β4 − β4 α3)α5 (16)

and {a} and {~ra} denote the sequences 1, 2, 3, 4, 5 and
~r1, ~r2, ~r3, ~r4, ~r5, respectively. The symbol A denotes anti-
symmetrization and φi({~ra}) is a spatial function with Carte-
sian index i that comes from one of the electron coordinates

φi({~rk}) = rim exp

[
−

N∑
k=1

ak r
2
k −

N∑
l>k=1

bkl r
2
kl

]
. (17)

The normalization we assume is∑
i

〈Φi|Φi〉 =
∑
n

∑
m

t∗ntm
∑
i

〈
φin|φim

〉
S

= 1 (18)

where〈
φ′ i|φi

〉
S

=
〈
φ′ i({~rb})|P{a}[c{a} φi({~ra})]

〉
(19)

and where P{a} denotes the sum over all permutations of {a}.
From now on we will assume that a repeated Cartesian index
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is implicitly summed up. We introduce also another type of a
matrix element, which will be used later〈
φ′ i|Q|φk

〉
F

=
∑
c

〈
φ′ i({~ra})|Qc P{b}

[
cFc
{b} φ

k({~rb})
]〉
.

(20)
The c coefficients are integers and depend on the permutation
{a}. Since the number of permutations is 5! = 120, we cannot
explicitly write them down here. What is important is that all
the matrix elements are either of the standard form 〈. . .〉S with
the constant coefficients c or of the Fermi interaction form
〈. . .〉F with the cF coefficients.

The 2P1/2 and 2P3/2 wave functions are constructed using
Clebsch-Gordan coefficients. Expectation values with these
wave functions can be reduced to spinless expressions with an
algebraic prefactor KJ for J = 1/2 and 3/2. Namely, for an
operator Q, the first-order matrix elements with an auxiliary
notation {K1/2,K3/2} take the form

〈Φ|Q|Φ〉 = {1, 1}
〈
φi|Q|φi

〉
S
, (21)

〈Φ|
∑
c

~σc · ~Qc|Φ〉 = {1,−1/2} ı εijk
〈
φi|Qj |φk

〉
F
, (22)

1

J(J + 1)
〈Φ| ~J ·

∑
c

~σcQc|Φ〉 = {−2/3, 2/3}
〈
φi|Q|φi

〉
F
,

(23)

1

J(J + 1)
〈Φ| ~J · ~Q|Φ〉 = {−2/3,−1/3} ı εijk

〈
φi|Qj |φk

〉
S
,

(24)

1

J(J + 1)
〈Φ|J i

∑
c

σj
c Q

ij
c |Φ〉 = {4/3,−2/15}

×
〈
φi|Qij |φj

〉
F
, (25)

2

(2 J + 3) (J + 1)
〈Φ|J i Jj Qij |Φ〉 = {0,−1/5}

×
〈
φi|Qij |φj

〉
S
. (26)

The above spin reduced matrix elements involve only scalars
built of spatial variables ~ra, and therefore they all can easily
be expressed by Gaussian type integrals.

NUMERICAL CALCULATIONS AND RESULTS

In the numerical calculations we employed the ECG basis
functions of progressively doubled size from 1024 to 8192
terms for the B atom, and from 512 to 4096 terms for the B+

ion. The nonlinear parameters were optimized variationally
with respect to E0 until the energy reached stability in a de-
sired number of digits. The sequence of energies obtained for
consecutive basis sets enables estimation of the basis trunca-
tion error. The convergence for the 22P and 32S levels of B,
and the 21S state of the B+ ion is presented in Table I. The
variational energies obtained from the largest expansion are
lower than the best results previously reported in [23, 24].

TABLE I: Convergence of the clamped nucleus energy E0 (in a.u.) of the ground (22P ) and the lowest excited (32S) states of boron atom. At
the bottom, several results reported in literature are given.

Basis size 22P 32S 21S(B+) Ref.

1024 −24.653 755 522 −24.471 358 195 −24.348 883 829 93
2048 −24.653 844 393 −24.471 386 316 −24.348 884 352 93
4096 −24.653 864 204 −24.471 391 933 −24.348 884 458 05
8192 −24.653 867 537 −24.471 393 366 —

∞ −24.653 868 05(45) −24.471 393 68(32) −24.348 884 479(14)

5100 −24.653 866 08(250) −24.471 393 06(50) [24]

Full CI −24.653 837 33 [25]

10000 −24.348 884 446(35) [23]

In a similar way, i.e. from the convergence with the
growing basis set size, the truncation errors of the expecta-
tion values of various operators were estimated. Particular
care was taken for the singular or nearly singular operators

(
p4a, δ

3(ra), δ3(rab), P (r−3ab )
)
, which exhibit a slow numer-

ical convergence of their mean values. This undesirable ef-
fect is particularly pronounced for the ECG functions having
improper short-distance behavior. The solution is to employ
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the regularized matrix elements following Drachman’s recipes
[26]. Previously [22], this approach enabled the accuracy of
the expectation values to be increased by several orders of
magnitude.

The expectation values of all the operators involved in the
determination of the fine structure states energy are collected
in Table II. All the entries are accompanied by their esti-
mated uncertainty. Table III contains the α-expansion com-
ponents and the final values of the measurable quantities: the
32S1/2−22P1/2 transition energy, the fine-structure splitting,
and the ground state ionization potential for the most abun-
dant 11B isotope of the boron atom. In the table, the theo-
retical predictions are compared with recent calculations [27–
29] and with the experimental values collected by Kramida
and Ryabtsev [30]. The agreement of the new values with the
experimental results is apparent and the remaining discrepan-
cies are consistent with estimated uncertainties due to the ap-
proximate value of the Bethe logarithm and due to neglected
higher-order O(α6) corrections. In contrast, significant dif-
ferences are observed with all the previous calculations. Al-
though none of the cited theoretical values caries uncertainty,
it is clear that the number of digits quoted there is by far too
high. One may conclude, that the standard configuration inter-
action (CI), multiconfiguration Dirac-Fock (MCDF) or cou-

pled clusters (CC) methods based on one-electron functions
are not capable of supplying results with controlled precision.

The numerical results for the hyperfine splitting are pre-
sented in Tables IV and V. The former table collects the ex-
pectation values of individual operators comprising the Hhfs
Hamiltonian and include the Fermi contact, orbital term, spin-
dipole term as well as the term describing the interaction
of the nuclear electric quadrupole moment with the electric-
field gradient produced by electrons. The head of this table
presents a relation of the expectation values to the commonly
used hyperfine parameters and the corresponding prefactors
used in their evaluation. We observe significant discrepan-
cies for individual contributions in Table IV with the results
from the previous calculations by Chen [27]. This is partic-
ularly pronounced in the case of the Fermi-contact parameter
ac, for which this discrepancy is over 25 %. Surprisingly, the
differences between Chen’s results and the previously estab-
lished experimental A-hyperfine constants are much smaller
(see Tab. V). Moreover, the difference between our result
and the experimental values is consistent with the O(Z α)2

unknown relativistic correction, namely it is about 50% of
(Z α)2 times the corresponding A or B coefficient. The final
values for both the 22P levels and both 11B and 10B isotopes
are presented in Table V.

TABLE II: Expectation values of various spinless and fine-structure operators for 22P and 32S states of boron atom. To obtain the mean
values for 22PJ , the value for 22P state has to be multiplied by the relevant {K1/2,K3/2} coefficient in curly bracket i.e. {1,− 1

2
} following

Eqs. (21) – (26).

Operator 22P 32S 21S(B+)

H0 −24.653 868 1(5) −24.471 393 7(3) −24.348 884 479(14)
~pa · ~pb 0.271 175(2) 0.607 784(3) 0.595 137 52(4)

p4a 5 546.924(3) 5 602.919(2) 5598.710 4(3)

δ(ra) 71.864 97(3) 72.544 82(2) 72.506 327(3)

δ(rab) 3.538 453 2(14) 3.582 111 2(7) 3.577 866 33(12)

pia
(
δij

rab
+
riab r

j
ab

r3
ab

)
pjb 2.171 606(3) 2.995 875(3) 3.025 198 47(14)

~ra
r3a
× ~pa · ~σa −1.494 336(5) — —

~rab

r3
ab
× ~pa · ~σa −2.855 953(3) — —

~rab

r3
ab
× ~pb · ~σa 0.568 459(4) — —

P (r−3
ab ) −27.874 22(6) −29.391 67(4) −29.459 453 0(3)

ln k0 6.195(5)a 6.195(5)a 6.194 4(9)b

a estimated from ln k0[2
1S(B+)]

b Ref. [23]

CONCLUSIONS

We calculated the energy levels, isotope shifts, and fine and
hyperfine structure in the atomic boron with numerical pre-

cision of a few parts per million. We demonstrated that the
majority of the previous calculations were not as accurate as
claimed—instead of five to six digits only the first two were
significant. This is particularly apparent for the fine structure
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TABLE III: Components of the 32S1/2 − 22P1/2 transition energy, the fine structure splitting, and the ionization potential (IP) for 11B atom
and of the ground level energy for 11B+. For comparison, previous theoretical predictions and the experimental results are given at the bottom.
All entries in cm−1.

Component 32S1/2 − 22P1/2 22P3/2 − 22P1/2 IP(22P1/2) 21S0(B
+)

mα2 40 048.50(5) 66 936.15(5) −5 343 962.445(3)
mα2 η 1.686(0) 0.207 6(0) 272.846(0)

mα4 −12.424(3) 15.287 8(1) −10.131(2) −1410.050(0)
mα5 1.66(24) 1.59(20) 173.68(4)

mα6 0.10(3) 0.000(2) 0.10(3) 10.851(0)

Total 40 039.52(24) 15.288(2) 66 927.91(21)

Theory, 2011 [24]a 40 049.887(200)

Theory, 2015 [27] 40 008.67 15.523

Theory, 2012 [29] 39 892.82 19.75 66 886.58

Theory, 2004 [28] 40 005.27 15.39

Experiment [30] 40 039.656(3) 15.287(3) 66 928.036(22)

a without relativistic and QED corrections

TABLE IV: Expectation values of hyperfine splitting operators for 22P state of boron atom ∞B, in relation to standard hyperfine parameters.

Reference ~σa δ
3(ra) (≡ ac

4π
) ~ra

r3a
× ~pa (≡ −2 al) σi

a
r3a

(
δij − 3

ria r
j
a

r2a

)
(≡ 10 asd)

1
r3a

(
δij − 3

ria r
j
a

r2a

)
(≡ 5 bq)

This work 0.007 536(2) −1.560 155(5) −1.677 193(11) −1.417 48(12)

Theory, 2015 [27]a 0.010 13 −1.557 6 −1.684 −1.400 5
Theory, 1993 [31]a 0.006 828 −1.561 4 −1.672 −1.422

a values calculated for 11B

TABLE V: Hyperfine splitting parameters (in MHz) for the ground state 22P state; relativistic and finite mass corrections are not included so
the uncertainties are purely numerical; magnetic moments are [32] µ(11B) = 2.688 648 9(10)µN and µ(10B) = 1.800 644 78(6)µN.

Reference A1/2(
11B) A3/2(

11B) B3/2(
11B) A1/2(

10B) A3/2(
10B) B3/2(

10B)

This work 365.710 1(18) 73.395 3(15) 2.704 0(4) 122.462 4(6) 24.577 8(6) 5.635 1(8)

Theory, 2015 [27] 365.91 73.41 2.675 122.21 24.92 5.575

Theory, 2012 [29] 373.3 72.7

Theory, 1996 [33] 366.1 73.24

Experiment, 1960 [34] 366.076 5(15) 122.585 1(9)

Experiment, 1972 [35] 73.349 6(4) 2.692 7(10)

splitting and for the Fermi contact interaction, the last one
being exceptionally small for the 2P ground state. The small-
ness of the Fermi contact term makes the hyperfine splitting
insensitive to the not-well-known nuclear finite size effects,
thus the comparison with experimental hfs will be a good test
of the atomic computational methods. Moreover, the precise
value for the mass polarization correction (see Tab. II) permits
the accurate determination of the isotope shift in the 2P − 3S
transition, which paves the way for determination of the nu-

clear charge radius of the proton halo in the 8B nucleus, as we
have already demonstrated for the beryllium atom [8].
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