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We present a derivation of the finite nuclear mass corrections to the Casimir-Polder interaction
between two atomic systems in the ground state. Equivalently, we show how the long-range asymp-
totics of the adiabatic correction is modified due to the finite speed of light. We show that in
addition to the contribution resulting from the finite-mass correction to atomic polarizabilities, a
further contribution exists.

PACS numbers: 31.30.jh, 31.30.J-, 34.20.Cf

I. INTRODUCTION

The finite nuclear mass corrections to the long-range
retarded interactions between atomic systems have not
yet been studied in the literature. For most of atomic sys-
tems both the finite speed of light and the finite nuclear
mass lead to small corrections to the interaction energy.
Their non-additive combination could be expected to be
even smaller. Additionally, there has been no theoretical
framework in which retardation and the adiabatic correc-
tion could be combined. While the Born-Oppenheimer
(BO) potential at large distances is replaced by the
Casimir-Polder (CP) interaction [1] which incorporates
the retardation effects, it has not been known how the
adiabatic correction to the BO potential is modified by
these retardation effects. Here we present a complete
derivation of the atom-atom interaction potential includ-
ing both the retardation and finite nuclear mass effects.
We demonstrate that besides the Casimir-Polder poten-
tial modified by finite mass corrections to atomic polar-
izabilities, there exists an additional effect, which leads
to a modification of the CP formula. The obtained re-
sults, together with the previously obtained relativistic
corrections to the Casimir-Polder potential [2], have an
application to the accurate description of long-range in-
teractions between atomic systems. While we derive the
lowest order results only, the formalism we present can
also be applied to higher orders of perturbation theory
and to higher orders of the multipole expansion.

II. SEPARATION OF THE ATOMIC MASS

CENTER

In order to derive the finite nuclear mass corrections
to the long range interaction, one has to separate out
the total atomic coordinates from the internal degrees
of freedom in the presence of the electromagnetic field.
We follow here Ref. [3] and consider a general system of
N nonrelativistic charged particles, electrons and nuclei,
placed in the electromagnetic field. For consistency we
use the natural system of units (~ = c = 1), and the con-
version to the atomic units is done using the Bohr radius
a0 = 1/(mα) and the Hartree energy Eh = mα2. The
initial Hamiltonian of a nonrelativistic system of charged

particles is

H =
∑

a

(

~π 2
a

2ma

+ ea A
0
a

)

+
∑

a>b

ea eb
4π rab

, (1)

where ~πa = ~pa − eaA(~ra), and the summation goes over
electrons and nuclei. We now introduce global variables,

the center of mass ~R, and the total momentum ~Π

~R =
∑

a

ma

M
~ra , (2)

~Π =
∑

a

[

~pa − ea ~A(~R)
]

= ~P − eΣ ~A(~R) , (3)

where M =
∑

a ma and eΣ =
∑

a ea, and the relative
coordinates are

~xa = ~ra − ~R , (4)

~qa = ~pa −
ma

M
~P , (5)

such that

[

xi
a , q

j
b

]

= i δij
(

δab −
mb

M

)

, (6)

[

Ri , P j
]

= i δij , (7)

[

xi
a , P

j
]

=
[

Ri , qja
]

= 0 . (8)

Next, we perform a canonical transformation φ

H ′ = e−i φ H ei φ + ∂tφ , (9)

with

φ =
∑

a

ea

∫ 1

0

du ~xa · ~A
(

~R + u ~xa

)

. (10)

Assuming that the characteristic wavelength of the elec-
tromagnetic field is larger than the size of each of the
interacting systems, φ can be expanded into multipoles:

φ =
∑

a

ea

[

xi
a A

i(~R)+
1

2!
xi
a x

j
a

∂Ai(~r)

∂rj

∣

∣

∣

~r=~R
+ . . .

]

. (11)
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The scalar potential is transformed to

∑

a

ea A
0
a + ∂tφ = eΣA0 − di Ei , (12)

where d is the dipole moment

di =
∑

a

ea x
i
a , (13)

A0 ≡ A0(~R), ~E ≡ ~E(~R), and ~B ≡ ~B(~R). The kinetic
momentum is transformed to

e−i φ πj
a e

i φ = π̃j
a +

ma

M
Πj , (14)

where

π̃a = ~qa +
1

2

(

ea ~xa +
ma

M
~d
)

× ~B, (15)

and the kinetic energy is

e−i φ
∑

a

π2
a

2ma

ei φ =
Π2

2M
+

~Π

M
· ~d× ~B +

∑

a

π̃2
a

2ma

. (16)

The total Hamiltonian after the transformation φ takes
the form

H ′ =
∑

a

π̃2
a

2ma

+
∑

a>b

ea eb
4π rab

+
~Π2

2M
+ eΣA0 − ~d · ~E + ~d · ~B ×

~Π

M

(17)

From now on we assume that the external magnetic field

and the total charge both vanish ( ~B = 0, eΣ = 0), where-
upon the transformed Hamiltonian simplifies to

H ′ =
∑

a

~q 2
a

2ma

+
∑

a>b

ea eb
4π rab

+
~P 2

2M
− ~d · ~E (18)

III. EFFECTIVE HAMILTONIAN APPROACH

Let assume for a moment that this atomic system is

placed in the inhomogeneous electric field ~E(~R) and we
would like to find out an effective wave function for the
center of mass motion ~R. Because of the ~d · ~E(~R) cou-
pling, the center of mass motion can not be completely
separated from internal degrees of freedom, and therefore
one can not uniquely define this effective wave function.
Consequently, the effective Hamiltonian is not unique
and we will use this freedom to transform it to its simplest
possible form. Let us return now to the main topic of this
work, which is the long range interaction between atomic
systems. The effective Hamiltonian Heff is obtained by
taking the matrix element of the resolvent between the
ground atomic states

1

E −Heff
=

〈

φA, φB, 0

∣

∣

∣

∣

1

E + EA + EB −HA −
~P 2

A

2MA
−HB −

~P 2

B

2MB
− ~dA · ~E(~rA) − ~dB · ~E(~rB) −HEM

∣

∣

∣

∣

0, φA, φB

〉

(19)

where HEM is the Hamiltonian for the electromagnetic
field, and |0〉 is the electromagnetic vacuum state. EA,
EB are the ground state energies, φA, φB the correspond-
ing wave functions, MA, MB the total masses of atoms A
and B. HA, HB are the internal Hamiltonians of atoms
A and B respectively, The first two terms of Eq. (18),

HA =
∑

a

~q 2
a

2ma

+
∑

a>b

ea eb
4π rab

(20)

=
∑

a

′ ~q 2
a

2m
+

(
∑

′

a ~qa)2

2mA
+
∑

a>b

ea eb
4π rab

(21)

where
∑

′

denotes the sum over electrons only, mA and
mB are masses of nuclei A and B correspondingly.

One calculates Heff by taking the power series of
both sides of Eq. (19) in the fine structure constant
α = e2/(4π). In the zeroth order

H
(0)
eff =

~P 2
A

2MA
+

~P 2
B

2MB
(22)

Neglecting the self-interaction, the leading correction
comes from the two-photon exchange

1

E −Heff
=

1

E −H
(0)
eff

+
1

E −H
(0)
eff

H
(2)
eff (E)

1

E −H
(0)
eff
(23)

where
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H
(2)
eff (E) =

〈

φA, φB, 0

∣

∣

∣

∣

[

~dA · ~E(~rA) + ~dB · ~E(~rB)
] 1

E −H0

[

~dA · ~E(~rA) + ~dB · ~E(~rB)
] 1

E −H0

[

~dA · ~E(~rA) + ~dB · ~E(~rB)
] 1

E −H0

[

~dA · ~E(~rA) + ~dB · ~E(~rB)
]

∣

∣

∣

∣

0, φA, φB

〉 (24)

and where

H0 = HA −EA +
~P 2
A

2MA
+HB −EB +

~P 2
B

2MB
+HEM (25)

The main issue is the elimination of dependence of Heff

on E. This is achieved as follows. The atomic excitation
energy is the largest among all the energy scales, so one
can expand the matrix element in Eq. (24) in powers of

E − P 2
A/(2MA) − P 2

B/(2MB) = E −H
(0)
eff . At the zeroth

order, it is the well known Casimir-Polder interaction
VCP. We will be interested in the first order term in this
expansion, which can be represented as

H
(2)
eff (E) = VCP+V ′

CP+
(

E−H
(0)
eff

)

Q+Q
(

E−H
(0)
eff

)

(26)

with some Hermitian operator Q. The last two terms do
not change the position of a pole of the resolvent of the
effective Hamiltionian

1

E −Heff
=

1

E −H
(0)
eff

+Q
1

E −H
(0)
eff

+
1

E −H
(0)
eff

Q (27)

but only change the residuum, namely |φ〉〈φ|, where φ is
the effective (unnormalized) wave function for the center
of mass of each atom A and B. As we have already empha-
sized, this wave function is not a well defined quantity,
so we can change its definition to simplify the effective
Hamiltonian. We therefore define a new effective wave
function

φ′ = (1 −Q)φ (28)

for which the stationary Schrödinger equation takes the
form

(E −H ′

eff)φ′ = 0 (29)

with the new effective Hamiltonian

H ′

eff =
P 2
A

2MA
+

P 2
B

2MB
+ VCP + V ′

CP (30)

which does not depend on energy and includes the
Casimir-Polder potential VCP and an additional correc-
tion V ′

CP due to the finite atomic masses.

IV. CP INTERACTION WITH THE FINITE

NUCLEAR MASS

The leading Casimir-Polder interaction VCP comes

from the two-photon exchange with the interaction ~d · ~E.

It is given by Eq. (24), but it can also be derived from
the scattering amplitude [4, 5] using Feynman diagrams.
Two diagrams for two-photon exchange (Fig. 1) con-
tribute and the corresponding expression for the energy
is:

VCP(R) = −
1

2

∫

∞

−∞

dω

2πi
αik
A (ω)αjl

B (ω) gij(~R) gkl(~R) ,

(31)
where

gij(~R) =

∫

d3k

(2π)3
ei

~k·~R (ω2 δik − ki kk)

ω2 − k2
, (32)

αij
A(ω) = −

〈

di
1

EA −HA + ω
dj+

+ dj
1

EA −HA − ω
di
〉

,

(33)

where R is the distance between mass centers of atoms
A and B, and H is the Hamiltonian from Eq. (21).

a)

b)

FIG. 1: The only Feynman diagrams contributing, in the low-
est order, to the atom–atom interaction energy

The ω-integration in Eq. (31) is assumed along the
Feynman contour. Would this integration be performed,
the resulting expression corresponds to the standard
Rayleigh-Schrödinger perturbation theory, but becomes
much more lengthy. Instead, this integration contour
is deformed to the imaginary axis by the replacement
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ω = iλ. The k-integral leads to

gij(~R) =

(

λ2δij −
∂2

∂Ri ∂Rj

)

e−λR

4πR

=
e−λR

4π R3

[

δij
(

λ2R2 + λR + 1
)

−
RiRj

R2

(

λ2R2 + 3λR + 3
)

]

.

(34)

For atomic and molecular states with spherically sym-
metric polarizability tensors αij

A = δijαA, αij
B = δijαB

the CP formula simplifies to:

VCP(R) = −
1

16π3

∫

∞

0

dλαA(iλ)αB(iλ)
λ4 e−2λR

R2

×

(

1 +
2

λR
+

5

(λR)2
+

6

(λR)3
+

3

(λR)4

)

.

(35)

This result for infinite nuclear masses has been derived by
Casimir and Polder [1]. At short distances, the potential
simplifies to −C6/R

6

VCP(R) ≈ −Eh

(a0
R

)6

C6 (36)

C6 =
3

π

1

(4πa30)2

∫

∞

0

dλαA(iλ)αB(iλ)

=
2

3

Eh

a40

〈

diA djB
1

HA − EA + HB − EB
diA djB

〉 (37)

For large distances, the potential depends on the static
polarizabilities only

VCP(R) ≈ −Eh

(a0
R

)7

K7 (38)

K7 =
27

4πα

αA(0)αB(0)

(4πa30)2
(39)

The finite nuclear masses enter through the second
term in Eq. (21). For the pair of hydrogen atoms, this
terms leads to the reduced mass (1/µ = 1/me + 1/M)
scaling of the atomic polarizability

αH(ω) =
(me

µ

)3

αH

( µ

me

ω
)∣

∣

∣

M=∞

(40)

and the leading order coefficient of the small-R and large-
R asymptotic expansions

CH
6 =

(me

µ

)5

CH
6

∣

∣

∣

M=∞

KH
7 =

(me

µ

)6

KH
7

∣

∣

∣

M=∞

This result was first obtained by Dalgarno and Caroll
in [6]. The next terms in the 1/R expansion of the
adiabatic correction to Born-Oppenheimer energies has
been considered by Marinescu and Dalgarno [7] but in
their derivation, only part of the higher order terms have
been included. The complete expressions for the coef-
ficients of the 1/R6, 1/R8 and 1/R10 terms have been
derived by Przybytek and Jeziorski [8] and their results

are in agreement with the direct numerical calculation of
the adiabatic correction performed in Ref. [9]. It should
be pointed out, that the adiabatic correction is usually
computed as a function of the distance between nuclei,
and not of the distance between atomic mass centers.
This difference leads to different finite mass correction
for higher order terms in 1/R expansion of the adiabatic
energy, like that for the A8 coefficient [8].

The finite nuclear mass correction due to the atomic
kinetic energy can be obtained in an analogous way. Let
us include at the beginning the finite mass of the atom A
only and consider the corresponding scattering amplitude

V ′

CP(R) = −
1

2

∫

∞

−∞

dω

2πi
βik
A (ω)αjl

B (ω)

× gij(~R)

(

Ekin
A −

P 2
A

2MA

)

gkl(~R)

(41)

where Ekin
A is the kinetic energy and ~PA the momentum

operator of the atom A, and

βij
A (ω) =

〈

di
1

(EA −HA + ω)2
dj+

+ dj
1

(EA −HA − ω)2
di
〉 (42)

Due to the symmetry of αij and βij in cartesian indices
only the symmetric (in simultaneous interchange of i, k
and j, l indices) component of the integrand contributes
to the integral (41) and thus we can use the following
identity

gij(~R)

(

Ekin
A −

P 2
A

2MA

)

gkl(~R) +

(

i ↔ k

j ↔ l

)

=

=

[

gij(~R),

[

Ekin
A −

P 2
A

2MA
, gkl(~R)

]]

+

(

Ekin
A −

P 2
A

2MA

)

gij(~R) gkl(~R)

+ gij(~R) gkl(~R)

(

Ekin
A −

P 2
A

2MA

)

Since it is the on-shell scattering amplitude, the last two
terms in Eq. (43) automatically vanish and the remain-
der evaluates to
[

gij(~R),

[

Ekin
A −

P 2
A

2MA
, gkl(~R)

]]

= −
1

MA

∂gij

∂Rn

∂gkl

∂Rn

(43)
and V ′

CP becomes

V ′

CP(R) =
1

4

∫

∞

−∞

dω

2πi

∂ gij

∂Rn

∂ gkl

∂Rn

×

(

βik
A (ω)αjl

B(ω)

MA
+

αik
A (ω)βjl

B (ω)

MB

)

(44)

Assuming the spherical symmetry of the αij and βij ten-
sors of both atoms, the potential V ′

CP(R) simplifies to
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V ′

CP(R) = −
1

32π3

∫

∞

0

dλ

[

1

MA
βA(iλ)αB(iλ) +

1

MB
αA(iλ)βB(iλ)

]

×
λ6 e−2λR

R2

(

1 +
4

λR
+

14

(λR)2
+

42

(λR)3
+

81

(λR)4
+

90

(λR)5
+

45

(λR)6

)

. (45)

The leading term in the small R expansion starts with
R−8 and takes on a form dependent on the reduced mass
of the nuclei of both interaction atoms

V ′

CP(R) ≈ −Eh

( me

MA
+

me

MB

)(a0
R

)8

C′

8 (46)

C′

8 =
45

π

1

(4πa30)2

∫

∞

0

dλαA(iλ)βB(iλ)

= 5
E2

h

a40

〈

diA djB
1

(HA − EA + HB − EB)2
diA djB

〉

(47)

This result differs from A8 in Ref. [8] which is a con-
sequence of not including the higher order (dipole-
quadrupole) term, and of a different definition of R. In
our work, the interaction potential is a function of the dis-
tance between the atomic mass centers, while in Ref. [8],
it is a function of the distance between the atomic nuclei.
In the large-R limit V ′

CP decays as R−9

V ′

CP(R) ≈ −
837

16πα

( me

MA

)βA(0)αB(0)

(4πa30)2

(a0
R

)9

− (A ↔ B)

(48)

One may observe that for atomic systems, where the typi-
cal excitation energy is of the order of Eh, and the typical
dipole moment matrix elements are of the order of e a0,
the V ′

CP(R) is smaller than VCP(R) by a factor of the
order of

V ′

CP(R) ∼
me

M

(a0
R

)2

VCP(R) (49)

so it is not expected to be a significant correction.
For example, in the case of two interacting hydrogen
atoms the ratio between V ′

CP(R) and a finite mass cor-
rection to VCP(R) (both being of the order me/M)
varies from 1.707630747 (a0/R)2 for small distances, to
12.34259259 (a0/R)2 in the retardation limit.

V. SUMMARY

This work resolves the problem of the retardation in
the adiabatic correction for diatomic molecules. Namely,
the adiabatic correction to the Born-Oppenheimer en-
ergy, at large distances, is being replaced by the sum
of two terms: the finite nuclear mass corrections in the
Casimir-Polder potential VCP(R) through reduced mass
and mass polarization corrections in the atomic matrix
elements and an additional contribution V ′

CP(R). We
also demonstrate, that in typical cases V ′

CP(R) is much
smaller then the finite-mass correction to VCP(R) and the
ratio of these two contributions behaves as 1/R2 for large
interatomic distances.
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