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electrons and muons, and of electrons bound in hydrogen-like ions. We discuss applications
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[Traduit par la ŕedaction]

1. Introduction

A triumf of Dirac’s relativistic theory was to explain the relationship between the electron’s mag-
netic momentµ and its spins. For any spin 1/2 particle chargeq and massm one has

~µ = g
q

2m
~s, (1)

where the proportionality coefficientg is known as the Land́e factor or a gyromagnetic ratio. For a
pointlike particle, Dirac’s theory predictsg = 2.

In 1948 a deviation ofg from 2 was first observed [1]. An almost simultaneous calculation by
Schwinger [2] showed how the electron self-interaction explains this deviation. Together with an ob-
servation and evaluation of a shift of the hydrogen spectrum due to a similar effect, those studies gave
rise to Quantum Electrodynamics (QED). Detailed theoretical and experimental efforts extended those
pioneering works, and we now know the values ofg − 2 with very high accuracy not only for a free
electron but also for the muon, as well as for an electron bound in various atoms and ions.

In this talk we review the status of the theoretical knowledge ofg − 2 of free electrons and muons,
and of electron bound in hydrogen-like ions such as the precisely studied five-fold ionized carbon. We
also discuss how those quantities are used to determine fundamental physical constants and to search
for new interactions.
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2. Free electron g − 2 and the determination of α

The QED contribution to the electrong − 2 is fundamental for the knowledge of the anomalous
magnetic moments of all other leptons of interest. The differences which arise between the muon and
the electron, or because of the binding of an electron in a light ion or atom, are small corrections to that
dominant QED picture1. Thus it is crucial to know this part with the maximum possible accuracy.

Schwinger’s calculation included a single virtual photon exchange – a one-loop contribution to
the electrong − 2. It was followed by studies of two- and three-loop effects which arrived at exact
analytical results [3, 4, 5, 6, 7]. The four-loop contribution is known only numerically [8, 9].

Among contributions tog − 2 there is a class universal for all charged leptons: those involving
only virtual photons and closed charged lepton loops of the same fermion generation as the reference
particle, but without particles of other flavors. Their characteristic feature is that the external lepton
mass is their only mass scale. Thus they are given by numbers rather than functions of mass ratios and,
sinceg − 2 is dimensionless, contributions of analogous diagrams to theg − 2 of other leptons are
given by the same numbers. In addition, there are diagrams containing particles of different flavors –
they are functions of those additional masses and are different for each lepton.

For the electron, the first class dominates because diagrams containing other flavors are suppressed
by powers of the small ratios of masses of the electron and the other particles.

It is convenient to introduce a notation for the deviation ofg from the Dirac value of 2,

a ≡ g − 2
2

(2)

and we will use various sub- and super-scripts such asaQED
e to denote contributions to various lep-

tonic magnetic anomalies from various physical effects. Thus, the theoretical prediction for the QED
contribution to the electrong − 2 is given by a (truncated) series in the fine structure constant,

aQED
e =

4∑
n=1

An

(α

π

)n

+ [B2(e, µ) + B2(e, τ)]
(α

π

)2

+ B3(e, µ)
(α

π

)3

+O (
α5,m2

eα
4/m2

µ

)
. (3)

HereAn are the universal, “pure QED” effects, andBn(l, l′) describe how the loops containing lepton
l′ affectal. The universal contributions are [2, 3, 5, 7, 9]:

A1 =
1
2

A2 =
3
4
ζ3 − π2

2
ln 2 +

π2

12
+

197
144

≈ −0.3284789656

A3 =
83
72

π2ζ3 − 215
24

ζ5 − 239
2160

π4 +
139
18

ζ3 +
25
18

[
24Li4

(
1
2

)
+ ln4 2− π2 ln2 2

]

−298
9

π2 ln 2 +
17101
810

π2 +
28259
5184

≈ 1.1812415
A4 = −1.7283(35). (4)

The non-universal coefficientsB can be found, for example, in [10, 11]. Their effect is dominated by
the two-loop diagram containing a muon loop.

1 However, as we will see later, the binding corrections grow likeZ2 and for a hydrogen-like carbon ion are about half the size
of the QED effect. Fortunately this leading part of binding effects is known to all orders inZα, see Eq. (9).
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In addition,ae is slightly affected by the electron interactions with virtual weak bosonsW andZ,
and by hadronic loop insertions in the photon propagator. Those effects are much more important for
the muon and will be discussed below. For the electron, they increaseae by 1.7× 10−12 [9].

The prediction forae is dominated by the coefficientsA given in eq. (4). We see that it is given by
a sign-alternating and thus very well convergent series in the small parameterα/π. We can compare
this prediction with the measurement results [12],

aexp
e− = 1159652188.4(4.3)× 10−12,

aexp
e+ = 1159652187.9(4.3)× 10−12, (5)

to get the best present value of the fine structure constant,

α = 1/137.035 998 83(51). (6)

The error is at present dominated by the experimental uncertainty. However, the theoretical errors due
to A4 and even more important due to the unknown five-loop effects, are on the order of1/15 of the
present experimental error. A new measurement is expected soon [13] and is planned to reach just that
precision level. It is very important to improve the theoretical prediction.

3. Bound electron g and the determination of me

Here we discuss how theg factor of an electron is modified not only by the electron self-interaction
but also by its interactions with an external Coulomb field, for example in a simple atom. We also show
how one uses this knowledge to obtain the best determination of the electron mass.

The electron massme is a fundamental physical constant which sets the scale of all atomic energy
levels. Its accurate value, together with the fine structure constantα, are necessary for precise predic-
tions of atomic transition spectra, line widths and transition rates.me expressed in terms of the atomic
mass unitu, equal to the 1/12 of the12C atom mass, is also sensitive to the possible time variation
of the strength of fundamental interactions, sinceme is, as is presently believed, determined by the
electron Yukawa coupling to the Higgs field, while the atomic mass is primarily due to strong interac-
tions. It is of great value to improve our knowledge ofme as far as allowed by the present experimental
capabilities and theoretical knowledge.

Until recently, the best determination ofme was possible by measuring the cyclotron frequency
νc(free) of a single electron observed in a Penning trap,

νc(free) = −eB

me
. (7)

HereB is the magnetic field acting on the electron ande is the physical charge of the electron,e < 0.
Since theB field in general is relatively poorly known, one usually measures the cyclotron precession
νc of another particle such as a carbon ion in the same field and determines the ratio of masses of the
electron and that particle. The disadvantage of this method is that it is difficult to maintain the same
strength of theB field for the measurements of both frequencies. The best electron mass value obtained
with this method is accurate to 2.2 parts per billion (ppb) [14].

It has recently been discovered that one can improve the knowledge ofme using hydrogen-like
ions. A five-fold ionized12C atom in the Penning trap allows one to study the Larmor precession
frequency of the electronνL and the cyclotron frequency of the ionνc(12C5+). The electron and ion
mass ratio (and thusme/u) is found by taking the ratio of both frequencies,

me

m(12C5+)
=

gbound

10
νc(12C5+)

νL
. (8)
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Since both frequencies are measured simultaneously, there is no difficulty in maintaining the magnetic
field strength. Thus, a recent measurement [15, 16] (see also [17]) has reached the experimental preci-
sion of one half part per billion, 0.5 ppb – four times better than that of the free electron determination.
However, the gyromagnetic factorgbound of the electron bound in the ion is modified by the binding
effects and is not nearly as well known as that of the free electron.

Although the theoretical interest ingbound has greatly increased only recently in connection with
the determination ofme, its first study goes back two decades before Schwinger’s calculation of the
one-loop QED effect. In 1928, in one of the first calculations using the Dirac equation, Breit [18]
determined the magnetic moment of the electron in a hydrogen-like atom with the atomic numberZ
and found

gbound(Dirac eq.) =
2
3

(
1 + 2

√
1− (Zα)2

)
, (9)

a result notable for being exact to all orders in binding effects. In the limitZα → 0 we getg = 2, the
prediction of the Dirac theory.

With the onset of QED, it became clear that the so-called loop effects, due to the self-interaction
of the electron, free or bound, modify itsg factor, as we discussed in Section 2. The bound electrong
factor can be described as a series inα/π, but in contrast to the free electron case the coefficients are
now functions of the binding effects parametrized byZα,

∆g(QED) = f1(Zα)
α

π
+ f2(Zα)

(α

π

)2

+ f3(Zα)
(α

π

)3

+ . . . (10)

The values of the coefficient functionsf1, f2, . . . atZα → 0 describe the anomalous magnetic moment
of a free electron. As we have already seen, the first three of them are known exactly and the fourth
one numerically. The main challenge in the theory ofgbound is to determine the dependence off1 and
f2 onZα (for the presently planned experiments the free values of further coefficients are sufficient).

The linear and cubic terms in the expansion of the coefficient functions vanishes and the quadratic
term is universal [19]. The coefficient functions differ only in the quartic term,

fj(Zα) = 2Aj

[
1 +

(Zα)2

6n2

]
+ (Zα)4

(
h

(j)
41 ln

1
Zα

+ h
(j)
40

)
+O (

(Zα)5
)
. (11)

In writing down this equation we have assumed that the electron is in thenS state. The known coef-
ficientsAj are listed in Eq. (4). The functionf1 has been determined numerically to all orders inZα
[20, 21, 22, 23, 24]. However, because of the limited numerical accuracy, it was essential to analytically
determine the fourth-order term in theZα expansion, valid for low-Z systems such as the carbon ion
(Z = 6). Such a study was performed very recently [25].

For the functionf2, a numerical study has not been performed. In [25, 26], the coefficienth
(2)
41 of

the logarithmic term and the value ofh
(2)
40 were found. These result shift the central value ofme and

remove the main source of its theoretical uncertainty.
The only known way of analytically determining high-order effects such as those contributing to

h
(2)
40 is to study the various photon energy regions separately, using a non-relativistic effective theory

based on QED, known as NRQED [27]. However, that separation of scales is plagued by technical
difficulties, some of which have been solved only recently.

The hard-photon effects are evaluated neglecting the binding of the electron in an atom, using the
scattering amplitude of a free electron in external magnetic and electric fields. That scattering amplitude
determines a potential of the formZα~σ · ~Bδd(r) (σi are the Pauli matrices) whose expectation value
with the Schr̈odinger electron wave function gives the correction to the electrong factor.

There are two difficulties related to the hard-scale region. First, taken separately, its contribution is
divergent. This is because the electron binding effects that we neglect become important when photons
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γ have wavelengths similar to the atomic dimension (an infrared singularity). Second, there is a danger
of counting twice some contributions of iterated effects of orderα/π.

The first problem is best solved by applying to this atomic physics problem a tool developed in
high-energy physics: dimensional regularization (DR). The DR has been instrumental in studies of
positronium [28, 29] and helium [30]. We deal with the second, double-counting problem, by subtract-
ing from corrections to a single external field coupling a contribution of electric form factors. The form
factors must of course be calculated to the appropriate order in the coupling constant and external field
momentum.

As a result we obtained [25, 26] the formula for an electron bound in a hydrogen-like atom in any
nS state,

g(nS) = g(0) + g(1) + g(2) +O (
α3

)

g(0) = 2− 2
3

(Z α)2

n2
+

(
1

2 n
− 2

3

)
(Z α)4

n3
,

g(1) =
α

π

{
1 +

(Zα)2

6n2
+

(Zα)4

n3

[
32
9

ln[(Zα)−2] +
73
54
− 5

24n
− 8

9
ln k0 − 8

3
ln k3

]}
,

g(2) =
(

α

π

)2 {
2A2

(
1 +

(Zα)2

6n2

)

+
(Z α)4

n3

[
28
9

ln[(Z α)−2] +
258917
19440

− 4
9

ln k0 − 8
3

ln k3 +
113
810

π2

−379
90

π2 ln 2 +
379
60

ζ(3) +
1
n

(
− 985

1728
− 5

144
π2 +

5
24

π2 ln 2− 5
16

ζ(3)
)]}

. (12)

In all the above results we have neglected terms of order(Zα)5 and higher. The numerical values of
ln k0 andln k3 for the lowest (n = 1) S state are

ln k0(1S) = 2.984 128 556,

ln k3(1S) = 3.272 806 545. (13)

Their values for several higherS states are given in [26].
In order to use our QED result to obtain the electron mass we included also small numerical cor-

rections arising from the finite nuclear size and mass, higher powers of(Zα), etc. (for a detailed
discussion and references see [26]). Using the results of measurements with carbon [15] and oxygen
[16] we found [25, 26] the following values for the electron mass (in atomic mass units):

m(12C5+) = 0.000 548 579 909 32 (29) , (14)

m(16O7+) = 0.000 548 579 909 60 (41) . (15)

The uncertainty of these results originates from the experimental value for the ratio of the electronic
Larmor precession frequency and the cyclotron frequency of the ion in the trap; the uncertainty due to
the theoretical prediction is smaller by more than an order of magnitude.

4. Free muon g − 2 and the search for new physics

Muon has the same interactions as the electron but since it is much heavier,mµ ' 207me, heavy
particles such as hadrons and the electroweak bosons affect its properties much stronger. For the same
reason,aµ ≡ (gµ−2)/2 is a much more sensitive probe of exotic phenomena (“new physics”) thanae.
Indeed, we shall see that there is a tantalizing disagreement between the Standard Model prediction and
the experiment that may be due to an intervention of yet unknown phenomena such as supersymmetry.
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Most of the muon magnetic anomalyaµ is due to QED. All but sixty parts per million inaµ arise
from pure QED contributions, that is diagrams with photons and leptons only. This poses a problem
from the point of view of searching for more exotic phenomena, because the QED prediction must
reach a very high accuracy.

The QED result can be represented in a perturbative series in the fine structure constant,

aQED
µ =

∑
Cn

(α

π

)n

. (16)

As discussed in Section 2, there is a universal part of the QED contributions (included inCn), common
to the electron and the muon. For the electrong − 2, that universal part dominated. The physics of the
muong − 2 is quite different beginning with the two-loop contributions, where the non-univeral parts
first appear as vacuum polarization insertions in the photon propagator. The higher-order QED con-
tributions toaµ are dominated by diagrams containing electron loops, and are significantly enhanced
compared to the electron case.

The source of this enhancement are logarithms of the ratio of the muon to electron mass squared,

ln m2
µ

m2
e
' 11. In the diagrams studied so far, the electron loop effects are either vacuum polarization

insertions in the photon propagator or so-called light-by-light diagrams, with four photons attached
to the electron loop. Typically, we find one power of the large logarithm for each electron loop, with
the light-by-light diagrams additionally enhanced by factors ofπ2. Having identified those leading
contributions it is possible, although still very challenging, to estimate their value at the five-loop level
and thus obtain an approximation forC5 [10, 31].

The resulting QED contribution toaµ becomes [10]

aQED
µ = 116 584 717.88(89)× 10−11. (17)

Another difference between the electron and the muong−2 is that for the latter hadronic loops are
of considerable importance. The hadronic contribution toaµ is about twenty thousand times smaller
than the QED part, but it is responsible for almost all of the Standard Model uncertainty inaµ (about a
hundred times more than the QED).

The hadronic contributions can be divided up into three parts: the leading order vacuum polariza-
tion, higher-order QED corrections to it, and the light-by-light part,

ahad
µ = ahad

µ (LO) + ahad
µ (HO) + ahad

µ (LBL).

The hadronic vacuum polarization contribution can be determined frome+e− annihilation into hadrons
or from hadronicτ -lepton decays. The connection with the muong−2 is more direct in the case of the
e+e− annihilation data, but theτ hadronic decays give better statistical information in the low energy
region, where studies of thee+e− annihilation are very difficult. Unfortunately, the theoretical input
needed for the translation of the hadronicτ decay spectrum into the muong − 2 contribution is not
fully understood, as has become clear over the last couple of years. As a result, the present consensus
is that theτ data cannot be reliably used before further theoretical progress is made [32].

Fortunately, the accuracy of thee+e− data has recently improved, thanks largely to new results
from Novosibirsk [33]. In addition, a new source of information on the low-energy annihilation has
been discovered in radiative return processes [34]. For the purpose of the present discussion we adopt
the result given in [35],

ahad
µ (LO) = 6934(64)× 10−11. (18)

The higher-order QED corrections to this result have recently been reevaluated [36]. Their updated
value is

ahad
µ (HO) = −98(1)× 10−11. (19)
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An important recent development is the analysis of the light-by-light diagrams by Melnikov and Vain-
shtein [37]. In the past, similar calculations were done using models of low-energy hadronic interac-
tions with electromagnetic currents. This involved assumptions about interactions of photons with light
hadrons, especially pions. The new study has shown that some of those assumptions were misleading.
The crucial tool is the operator product expansion and the determination of operator coefficients using
perturbative QCD calculations. One important finding concerns the interactionπ∗γ∗γ in the limit of the
soft real photon. In contrast to the previously assumed “vector meson dominance” picture, in which the
virtual photon’s interaction is described by a formfactor (involving an additional factor1/(Q2 + m2

V ),
with mV on the order of theρ meson mass), it is now found that in the soft real photon limit there
is no such formfactor present. This enhances the large-virtuality contributions atQ2 >∼ m2

ρ and thus
enhances the total light-by-light contribution.

More efforts in improving the accuracy of this part of the prediciton are clearly needed. In partic-
ular, it is important to better determine or constrain effects sub-leading in the1/Nc expansion, found
to be consistent with zero within the accuracy aimed for in [37]. Since some model calculation find
negative contributions of such effects, here we take a slightly smaller total value ofaLBL

µ (had) than in
[37] and increase its error,

ahad
µ (LBL) = 120(40)× 10−11. (20)

Taking together the three parts of the hadronic effect, Eqs. (18, 19, 20), we find

ahad
µ = 6956(75)× 10−11. (21)

The last source of the Standard Model corrections is the electroweak sector. Similarly to the QED
part, it is perturbatively calculable, with the small uncertainties arising from the unknown Higgs boson
mass and from the small hadronic contributions, primarily to the induced coupling between theZ
boson and two photons. The electroweak effects arise at one loop: there is aZ boson loop, similar to
the lowest-order QED diagram and aW contribution with the muon neutrino. Relative to the QED
contribution, they are suppressed by the factorm2

µ/M2
W ,

aEW
µ ∼ m2

µ

M2
W

aQED
µ ' 200× 10−11. (22)

There is also a one-loop diagram with the Higgs boson, but it contains two extra factors ofmµ/MW '
10−3 and is negligible. The Higgs effect is in fact much larger at the two-loop level, because those
two tiny factor are replaced by just oneα

π : at two loops the Higgs can couple once to the muon, giving
the chirality flip needed for the anomalous magnetic moment type of interaction, and once to some
virtual heavy particle. Thus, such diagrams have no light-mass suppression relative to other two-loop
diagrams.

Some of the two-loop electroweak contributions are enhanced by logarithms of the muon-to-W
mass ratio [38]. The two-loop calculation, including complete logarithmic and non-logarithmic terms
was carried out in [39, 40], and was recently confirmed [41, 42]. Even the leading-logarithmic three-
loop result is now known [43, 44]. Together, one finds

aEW
µ = 154(2.2)× 10−11. (23)

Using Eqs. (17, 21, 23) we can now put together the full Standard Model prediction for the muong−2,

aSM
µ = aQED

µ + ahad
µ + aEW

µ = 116 591 828(75)× 10−11. (24)

How does this number compare with the experimental results? We now know the final results of the
Brookhaven measurments for both negative and positive muons. For the negative muonaµ one has
[45],

a(µ−) = 116 592 140(80)(30)× 10−11, (25)
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slightly higher than the earlier measurement for the positive muon [46],

a(µ+) = 116 592 040(70)(50)× 10−11. (26)

However, the two results agree within their experimental errors. When all the measurements for positive
and negative muons are averaged, one arrives at the world averageaµ [45],

aµ(exp) = 116 592 080(60)× 10−11, (27)

where the relative error is only one half of a part per million.
We see that the theoretical prediction Eq. (24) falls short of the experimental world-average, Eq. (27),

by 252(96) × 10−11, or 2.6 standard deviation. With all the scrutiny that has been given to all parts
of the theoretical prediction and experimental inputs, it is difficult to envision that the Standard Model
can explain this difference. It is, however, still very important to make efforts to improve the theoret-
ical accuracy: the most imporant tasks seem to be an improvement of the hadronic LBL part and an
independent study of four- and five-loop QED effects. Extremely important would be a determination
of the isospin-breaking corrections, enabling us to use hadronicτ decays for the hadronic VP part.

5. Summary

Anomalous magnetic moments are of great current experimental and theoretical interest. Very pre-
cise measurements of the positive and negative muong − 2 have recently been completed in the
Brookhaven National Laboratory. A new measurement of the free electrong − 2 is under preparation
at Harvard University. Further measurements are also planned for the electron bound in hydrogen-like
ions (such as calcium) and in ions with a few electrons.

It is thus essential to continue theoretical efforts to match the improving measurements. For the free
electron, an independent evalulation of four-loop effects is crucial. It is equally important to estimate in
a reliable way the five-loop effect, perhaps by identifying the diagrams responsible for the largest con-
tributions. This requires a new theoretical insight. For the bound electron, a non-perturbative numerical
study of the two-loop effects for all values of the nuclear chargeZ would be most valuable, as well as
its matching with the known analytical terms for lowZ. It is also very interesting to further develop
methods to determineg of systems with several electrons. For the free muon, the biggest challenge is
to improve the knowledge of hadronic effects, both vacuum polarization and light-by-light. Perhaps
lattice calculations will help, but further studies of low-energy interactions are also very important.

Anomalous magnetic moments of leptons certainly remain a fascinating field of research, with
many expected experimental improvements and open theoretical questions.
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