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I. INTRODUCTION

In spite of many advantages of exponential bases for molecular systems, it is very rarely
employed due to difficulties in performing two-electron two-center integrals [1, 2]. The best-
known accurate calculations with exponential functions have been performed by Kotos and
coworkers for a hydrogen molecule, starting with the seminal work in [3]. They used the
Neumann expansion of 1/rjy in spheroidal coordinates and its slow convergence was the
main limiting factor for accurate results. This expansion has recently been improved in Ref.
[4] with calculations for the Bes molecule. In the present work we overcome the problem
of slow convergence of this expansion by direct calculation of all integrals with electronic

functions of the type

¢A = e T4 nAY (TA)TB Y/m/(fB),

o = TP TR Vi (75) 1 Yim(Pa), (1)

where A, B are indices of the nuclei, r4,rp the electron distance from the corresponding
nucleus, « and [ are fixed nonlinear parameters, ny > [,ng > [’ are arbitrary non-negative
integers. Matrix elements of non-relativistic Hamiltonian in this basis can all be expressed

in terms of the following integrals over powers of inter-particle distances

dgrl d37’2 e~1ma—firip—azraa—Parep pno—1 m—1,me—1 ns—1 ,mn4—1
f(n())nl)nQa N3, Ny, T T2

"ta TiB T2a Top

(2)
where 7 is the distance between nuclei. Note that products of spherical harmonics can be
expressed as a polynomial in electron distances as in the above equation. Due to the choice
of basis functions in Eq. (1), the nonlinear parameters may take the following values (up to

1<+ 2 and A <> B symmetries)
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We propose here to generate an explicit analytic expression for all integrals up to some
Q =ng + ny + ng + ng + nyg with the help of a computer symbolic program and the rest of

this work explains how to achieve this. Due to presence of only two independent nonlinear



parameters, the analytical expressions are not excessively large and can be stored in a few
GB volume for €2 as large as 37.
Let us start from the integral with all n, = 0, it will be called the master integral f(r)

/d3T1 /d37’2 1 e UsTiA g~ U2T1B o~W2T24 o~W3T2B (4)

41 rig T1B T2A T2B

where we changed the notation for nonlinear parameter to synchronize it with our former
papers and introduced for convenience an extra factor of r. The function f(r) satisfies the

following differential equation [5]:

d d
[020%7"% + 000 r] f(r)=F(r), (5)
where o coefficients are
090 = —(u%—ug) (w3 —w}) =16uwry (6)

oo = (uy — uz +wy —ws) (uywy —uzws) = 16 (wa —uy) (ur —wy) (ww —=xy) (7)
and notation for subscripts is specified below. The new parameters y, x, u, w
Wo=wW+T, W3=wW—2T, Uy =U—1Y, U3=1UFY, (8)
are adapted to the symmetry of the master integral, namely

f(y’ x7u7 w) = f(aj7 y? u’ w) = f(y7 ‘/'E’ w’ u) = f(w7 y? w7 u) (9>
The inhomogeneous term in the differential equation (5) is the following

F(r) =2uwzr—uvwy—uzxy+wzy) - +2uwr —uvwy+uzxy —wazy) Fh
2uwr+tuwyturzy+wzy) F3_+2uwr+uwy —ury —wzxy) Fy_,
(10)

Fio = Ei(=27ru)e" 0= 4 Ej(—27w) " (Turwte=y),
Foy = Ei(—2rw) er (Tutw—aty) 4 Ei(—2ru)e" (u—wtz—y)

.. . . uw (2 + P\ L urwraty)
Fsyp = |Ei(2r2) + Ei(2ry) — Ei(27r (z + +ln | ————2£ || e " HTWTETY
s = [Bi2ra) + EiC2rg) - Ei2r (o) +n (S0
+Ei(—27 (u + w)) " vrotety)

. . . ww (z+y) o (ubw—z—g)
Fip = |Ei(—2r2)+Ei(-2ry) — Ei(=2r (x + +In| ——————Z )| e " \WTWTTTY
s = [BiC-2r0) + Bi(-2ry) - Bi(-2 (04 9) (xy(ww))}
+Ei(—27 (u 4 w)) e" (re=2=y), (11)




and Ei is the exponential integral function. This differential equation is supplemented by

the boundary conditions, namely f(r) vanishes at small and large 7.

II. INTEGRAL REPRESENTATION FOR THE MASTER INTEGRAL

Since the homogeneous differential equation (5) has solutions Iy and K modified Bessel

functions, the inhomogeneous equation can be expressed as [5].

fr) = —— [fo@r) / T4 () Kolpr') + Kolpr) / O L], (2)

where p = \/—000/020, However, a more elegant integral representation for f(r) is the
following [6]

f(?") = /O_Oo dt e” ﬁ [Q(tl — t) lnﬁl + 9<t2 — t) hlﬁg

where 0 = gy + 12 099 and

1 =us+wy =ut+y+w+ua,
—lo= Us+w3 =u—y+w-—uzx,
—tl3=us+ws =ut+y+w-—ux,
—ty= us+wy =u—y+w+uw, (14)
and where
Bi = —\/__%, (15)
Vo +

with the following ~; coefficients

7 = —4dvwrtuwy—ury—wry),
Yo =4d(vwr+uwyt+ury+wry),
v3 = —1l6uwry/(t+u+w—x+y)+4(vwr—uwwy+ury+wzry),

Yy = —16uwzry/t+utw+z—y) —4(uwr —uwy —ury —wry), (16)



The evaluation of the logarithms in Eq. (13) proceeds as follows [7]

_%7 forc =0,
1 ol
1 _ ——= arctanh (—U> , for o > 0, |y| < /o,
Re{ ln(\/— 7)} = v v 17)
2Vo Vot _\/LE arctanh <‘/TE> , for o >0, |y > /o,
1 v—o
\ ﬁ[arctan< > >+k7r],fora<0.

In the last line, the phase pre-factor k£ = 0, +1 is introduced, which is determined as follows.
On an integration path where o is negative, the parameter v may change a sign. At this
point, a phase factor +7 is introduced so as to make the integrand continuous. Since
changes sign twice, the correction term vanishes at the integration point where o = 0.

In the special case of the direct integral

us = «@
wy = f
U = W9 = 0 (18)

the integral representation becomes

flr) = /O_Oodt [B(—a—t) B+ 0(—B— 1) In By — O(—a — B 1) Infy — In 3] (19

o = 042/82(062—|—52—t2)

m=—-a*p
Y2 = —a52
2 02
= —aBla+h)+ L
2 02
n=20 (20)

In the case of an exchange integral w = u, * = y, 0y vanishes and the master integral

becomes
1 % t+ 2 — tr
f(r) = (/ gt | H 2@ =) e
8wx \J_2(w+is) t—2(w—ux)| t
—0o0 t—2 tr
+/ it m‘ﬂ e
~9 (w—a) t+2(w+az)| t
—0o0 2 _ tr
9 / gt |t 2w =) ey (21)
Cow t+2(w+z)| t
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This integral cannot be expressed in terms of standard functions but its derivative can,

namely

1
27 (u? — w?)

f'ir) = {Ei[—Qr(u%—w)] [exp(27u) — exp(27w)]

+(Ei[2r(w—U)] — 2Eilr (w—w)] +In|

Z D exp(—27w)
ZD eXp(—Qru)} (22)

Two other cases of Eq. (3) are similar, so the master integral can be calculated as accurately

_(Ei[zf,n(u_w)] — 2Eilr (u—w)] +In| "

as the one-dimensional integral and we found that Gaussian integrations adapted to the

logarithmic singularity at the end point [8] converge very quickly.

III. RECURENCE RELATIONS FOR THE GENERAL INTEGRAL WITH oy # 0

In order to obtain the molecular integrals with higher powers of rs,

3 3 - - -
B d 1 d 9 n TU3TIA pTU2TIB oTW2T24 o~ W3T2B
f(r,n)=r (23)
A ™B 24 2B

we consider a more general function f(r), which includes exp(—w; r12), see Eq. (Al). Its
properties are very similar to that of f(r). In particular it satisfies the master differential
equation Eq. (A2) [6, 9], several other differential equations (A10,A11), and it can also
be represented as a one-dimensional integral [6]. The recurrence relations for f(r,n) have
already been presented in Refs. [5, 6]. Here we re-derive them in a compact way, namely
let us take Eqgs. (13) and (15), and differentiate them with respect to wy, n and n — 1 times

respectively at w; = 0
r oo f(r,n) + o f'(r,n) +royw f(r,n) + (n—1)nrog f(r,n—2)
+(n—=Dnoy f(r,n—2)+n—1Dnrowf'(rn—2)+20n—1)nfrn—2)
+(n=D)nrfYrn—2)+n-3)(n-2)(n—1)nf(rn—4)
+(n—3)(n—2)(n—1)nrf”(r,n—4):Ful(r,n), (24)
ooo f(r,n) + a9 f'(r,n) + (n — 1)? 00 f(r,n —2) + (n — 1)*09s f(r,n — 2)
+n=12fYrn-2)+nm-3)(n—-22%n—-1) f"(rrn—4)=F, (r,n—1). (25)

These are two linear equations for three unknowns f(r,n), f'(r,n), f”(r,n). The third equa-

tion is obtained by elimination of f”(r,n) and further differentiation with respect to r. The
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solution of these three equations for f(r,n) is

frn) = — [~(n—2) (n—1)oes f(rn—2) + (n— 1)1 00s f'(r,n — 2)

+2(n— 1) ag f'(r,n —2) + (n— 1) rog fO(r,n —2)

+n—=1)(n+2) fDrn—-2)+n—-1)7rfOrn-2)

+4n-3)n—=2)(n—1)f"(rn—4)+2(n—-3)(n—2)(n—1)r fO(r,n —4)

+2Fy, (r,n—1)+rF, (r,n—1) = F, (r,n)], (26)
where

0" Fx(r), (27)

FX(n n) = (_1)” "
1 lw;=0

for X = wy, u;. Equation (26) allows one to obtain f(r,n) in terms of f(r), exponential and

exponential integral functions, for example

f(r,0) = f(r),
flr,1) = TZ ho(r w) ho(r w) Jo(r x) jo(ry),
£:2) = —[row '(r) + 20 /() + 70w S9) + 4 £O0) + 1O

+2 Fy, (r,1) + 7 F,, (r,1) — F, (r, 2)},

7”5

f(r,3) = 21|73 ha(ru) hy(rw) ji(rz) ji(ry) — ho(ru) ho(r w) jo(r ) jo(ry)

+ho(r w) ha(ru) jo(r x) jo(ry) + ho(r w) he(rw) jo(rx) jo(ry)
+ho(ru) ho(rw) j2(rz) jo(ry) + ho(r u) ho(rw) jo(rx) ja(ry)|, (28)

where j, and h,, are (up to the sign) the modified spherical Bessel functions [10]

inz) = o <1 i)n sinh(x)

T do x
hn(z) = 2" <i %)n @. (29)

Note that f(r,n) for odd n can be expressed in terms of j,, and h,, only, so their numerical
evaluation is straightforward.
What remains are the derivatives of f with respect to a = u, w, z,y at w; = 0. We adapt

here the derivation of the corresponding formulas from Ref. [5]. One takes fundamental



differential equations in u; and «

T Opo f(’f’) + 090 f/(T’) + T 0920 f//(T) = Ful (7’) (30)
1 do af(r do29 ., af"(r
58—00;]f(7”)+000 Jac((l)—i-; 50 2 f"(r) + o2 f&o(z ) = —Fy(r) (31)

differentiates the first equation with respect to «, eliminates 0f”(r)/Ja and differentiate
resulting equation again with respect to . The obtained equation for the derivative of f,

using Jogy/da = 099/ is

of 1 r{ 1 Oogpy 1Y , Gao(r)
== N\ — = —— 32
oLt + (2T 2 gy 4 S )
where
G 1 ( H, H,
— = + +
000 16w \wr —uy wy—uzx uw—xy
G, 1 H, H,
oo 16u \uy—wz ux—wy uw—:py
G, 1 H, H,
o 16z wx—uy UT — Wy :vy—uw
G 1 H H.
il - 1 2 (33)
000 16y \uy —wx wy—ux TY—UW
and where
Hy = —Fiy + Foy — F3 + Fyy
Hy = Fiy —Foy — I3y + Fyy
Hy = Fiy+ oy — F3y — Fuy (34)

The formula (32) allows one to obtain integrals with arbitrary powers of electronic distances,

but it requires that ogg # 0

IV. RECURRENCE RELATIONS AT o090 =0

When ogp = 0, as it is for an exchange integral, one derives recurrence relations not
for f(r), but for f'(r), and afterwards integrates analytically the expression. This analytic
integration is possible, since r f/(r) is a simple combination of exponential and exponential

integral functions, see Eq. (22).



The recurrence relations for f'(r) in powers of 71 is obtained from Eqs (24,25), in anal-
ogous way as for f(r), and the result is
1
f'(r,n) = - [(n=1)ropf(rrn—2)+nm-3)(n—2)(n—1)nf(rn—4)
20
+n—Dnop f/(rm—2)+2n—-3)(n—2)(n—1)r f"(r,n —4)
+n—=Dronf'(rn—2)+2n—)nfSrn—-2)4+n—-1rfDrn-2)

+r Fy (r,n — 1) = Fy, (r,n)], (35)

The derivatives of f’(r) with respect to nonlinear parameters, can be obtained from
Eq.(32), by taking the derivative over r and using the master equation (5). Alternatively,
one can use general equations (A12) and set w; = 0 there. The result is

4

ow 2 Ow 2 ’
4o 8];’137“) T 2(r) 8{;722 2 () — Fi_ —FQ_gFg_ —Fy |
A2 82’3(67") T 2(7") @gxog o ) — Fi +F2_QF3_ + Fy_ 7
4y 8](;1(/7") _ T];(T) 8.;7;2 L ory f(r) — —-F_ - F2_2— Fs_ + Fy | (36)

where o9 is defined in Eq. (A7) and F,_ in Egs. (11).

V. JAMES-COOLIDGE INTEGRALS 03 =0

This is the simplest case where all f’s can be obtained explicitly [11, 12]. It is related to
the fact that the Neumann expansion of 1/rj5 in spheroidal coordinates is finite when z = 0

or y = 0, what corresponds to g99 = 0 [3]. Let us use one of Egs. (A12) from the Appendix

af'(r) rf(r) do - Fi_+F_ —F_ +F,_
(w? — 4 2?) 5 = 2( ) axOZ—QTxf”(T)—I— ! 2 5 E = @31
If we set wy =z = 0 it becomes an algebraic equation for f(r), namely
inh
f(r)]e=0 = % {—Ei[—ZTu] exp[r (v —w)] — Ei[—27rw| exp[r (w — u)] (38)

+Ei[—27 (u + w)] exp[r (u + w)] + (’7 +In [ir uZ:)D exp[—r (u + w)]}

To obtain f(ng,ny,7) defined as

o) = () (~5) T (39

awl



one takes derivatives of the above differential equation, and remaining derivatives can be

taken directly on f(ng,ng,r).

VI. CONCLUSION

We have presented an approach to perform calculations for diatomic systems in the
exponential basis. Assuming the nonlinear parameter is fixed for any center, all integrals
can be explicitly derived from differential equations using any computer symbolic program
and stored on the hard disk. Such calculations have already been performed for Hy [11] and

HeH™ molecules [13], demonstrating the computational applicability and high accuracy.
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Appendix A: Master integral

The master integral f is defined by

)

T'12 1A ™B 24 2B

/d37“1 /d3T2 e WIT12 o~ USTIA ~U2TIB p~W2T24 o~ W3T2B
=T

(A1)

where 7 = 745 is the distance between the nuclei. f(r) satisfies several differential equations.

The master differential equation is [6, 9]

> d? d d . 5
[04(1 d - T QETd——i—JOT f(r) = F(r),

where o = 0¢ + u? 0y + uj 04 and o being the sixth order polynomial

2.2 2,2 2,2 2 2

_ 2 2 2
o u1u2w3+u2u3w1+u1u3w2+w1w2w3+u1w1

(u1+w1 Uy — Uz — Wy

2 2 2 2 2 2

Using the following new parameters which reflect symmetries of f
W =W+T, W3=W—T, Ug=U—Y, U3=1UTY,

o polynomials are

_ 2
0-4 — wl’

oy = w} — 2w (U +w® + 2% +y*) + 16uway
= wi +wj o2 + 00,
op = wi(utw—r—y)(u—w+r—y)(u—w—x+y)(utw+z+y)
+16 (wx —uy) (ux —wy) (vw — xY)

2
= wj 092 + Ogo,

11

(A2)

)

2)- (A3)

2 9/ 9 2 2 2 9/ 9 2
+u2w2(u2+w2—u1—u3—w1—w3)+u3w3(u3+w3—u2—u1—w1—w2

(A4)



and the inhomogeneous term is

F’(/]ﬂ) _ wl(l +2w1+u+w+x_y) e—r(u+w+w1+x—y)

72 r

1 2w +utw—z+
Fwy (ﬁ‘i‘ w1 U w x y) efr(u+w+w1fx+y)

,
1 o
N G e )
T2 r
—wy i+“+w+m+y o7 (utwta+y)
72 r
- T
+ %(u—w+x—y)—|—2uw(y—x)+2xy(w—u) Fi_
-y T
+ %(w—u+x—y)+2uw(y—x)+2xy(u—w) Fy
g :
w ~
— 71(u+w+x+y)+2uw(x+y)+2xy(u+w) F5_
i, T
— %(u+w—x—y)—2uw(x+y)+2xy(u+w) F,_, (A8)

Fi_ = Ei[-r (w1 +2u)] exp[r (u — w + 2 — y)] — Ei[—r (w1 4+ 2w)] exp[r (w —u — 2 +y)],
Fy, = Ei[—r (w; +2w)] exp[r (w —u+ x — y)] — Ei[—r (w; + 2u)] exp[r (v —w — z + y)],

Fs_ = —Ei[-2r (u+w)] exp[r (u +w+2z+y)| + {—Ei[Zr (x +y)] + Ei[—r (w, —22)]

(w1 +2u) (wy +2w) (z +y)
(u+w) (wy —2) (wy —2y)

Bl (w0, — 29)] +h{ ]} expl—r (u+w+ 7 +1)],

Fy. = —Ei[-2r(u+w)] exp[r (u+w —z —y)] + {—Ei[—27’ (z +y)] + Ei[—r (w1 + 21)]

(w1 + 2u) (w +2w) (x +y)
(u+w) (wy +22) (w1 +2y)

+Ei[—r (wy + 29)] + ln[ } } exp[—r (u+w—z—y)],

(A9)
and Ei is the exponential integral function.

The complementary differential equations are [6]

(1 9% 160 -2 )f(r>+<1 0% 1o i) f”(r>+(w1+w? a%) FO(r) = =Fy,(r), (A10)

2 0w " dwy 20w, dw

where F,, (1) is given in Appendix B, and that for an arbitrary parameter a = u, w, x,y

1 dog 0 1 dos N 2 0 L
- — — —— — — = — . 1
(2 90, T 00 804> flr)+ (2 55 T 02 8a> () w5 fO(r) = —Fu(r) (A11)
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From the master differential equation (A2) and from Eq. (A11) one derives [7] the following

simple formulas for derivatives with respect to nonlinear parameters

Gf’( ) ’f‘f( ) 80'02 _Fl— + FQ_ — Fg_ — F4_

(wi —dw?) =5 = ——5—= 5= = 2rw [(r) + 5 :

(wy — 4u )a‘gi) = —sz(”%—sz"(rwFl—_F2—;F3—‘F4—,

(wi — 4z )8{91(;) = —TJ;(T) agf—2rxf”(?“)+F1_+F2_;F3_+F4_,

(w} — y2)%;) = —%m%—ww”(rw _FI_F22_ Fa- T Fae 1)

where o is defined in Eq. (A7), the inhomogeneous F; terms are given by Eq. (A9) and

prime in f’(r) means derivative with respect to 7.

Appendix B: Inhomogeneous terms

The inhomogeneous terms in the master differential equation (A2) and in the supplemen-

tary differential equations (A10,A11) are the inverse Laplace transform of P, for o = u;, w;.

1 1 00+€
F,=— dte'” P, (B1)
2710 ) joore uy=t
P, are related to each other by
Pwl = P(w17U17U)2,U2,UJ3,U3)
= P(wl,ul,wg,Ug,,wg, 2)
P, = P(U Wy; W2, Ug; Uz, W 3)
Py, = P(wsq,us;ws, us; wy,u)
Py, = P(U Wa; W3, Uz; U, W 1)
Pw3 = P(w3,u3,w1,u1,w2, 2)
P,, = P(uz,ws;uy, wy;ws, us) (B2)
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The expression for P was obtained in [5] and is the following

P<wlaul§w27u2;w3;u3)
uy wy [(ug + wy)* — g { uz + uz + wq }
(—u1+u3—w2)(u1+u3+w2) Uy + U + Wi + Wa

uy wy [(ug + u3)? — w3 { wy 4 Wy + ws }
(—uy — usz + we) (u1 + ug + wo) U + uz + wy + w3

2,92 2090 200 2,2 2
_ujwi 4 uz wy — uzws + wi ws (ug +up — w3) ln{ uy + ug + ws }

(—wy — wy + w3) (wy + wy + w3) Uy + ug + wy + wo

L ufwi — uj w4 uiwi 4wy ws (uf +ui — w3) Uy + Uz + wo
(—w1+w2—w3) (w1+w2+w3) ’LL1+U3+’LU1+U)3

+u2(U2+w1)(u%+u§—w§)—u%(u%—i—u%—w%)1[ U1 + ugz + wy }

(—UQ+U3—U}1>(U2+U3+UJ1) U1 + Ug + W1 + Wa

ug(ug—irwl)(u%%—u%—wg)—u%(u%—l—u%—w%)1[ Uy + ug + ws ]
(ug — uz — wy) (ug + ug + wy) Uy + uz + wy + ws

Cwy [wy (uf — uj + w3) + ws (uf — uf + w3)] [ ug + ug + wy }

(wl—wg—wg)(w1+w2+w3) Uz + U3 + Wa + W3

wy [ug (u? + u3 — w3) + uz (uf + ul — wi)] { wy + Wy + ws } (B3)

(—ug — uz + wy) (ug + ug + wy) U + U3 + We + W3

In the case the nonlinear parameter « is the combination of w;, w; as in Eq. (8), P, is given

by

P, = Py, + P,
P, = P,, — P,
P, = Py, + P,
P, = P,, — P, (B4)
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In particular, F,,, = F(r) is given by Eq. (A8), and F,, is

F, {{ u—l—w+x+y)+1(2_ we  ww W )
2ut+w; 2w4w, w—2r w;—2y
g((u+w)(u+x)(u+y)+(u+w)(w+x)(w+y)
T 2u + wy 2w+ wy
C(ut )(w+$)(w+y)_(U+y)(w+y)(l‘+y)_(U+w+:r+y)2)}
wy — 2 wy — 2y 2
x o~ (utwtzty)
+{r(u+w+w13—a:+y)+1(_2+ Wy N wq N Wy N wq )
T 2u4+w;  2w+w  w—2x  w+2y

w 1
+T—21+;(w%+4(xy+ux+wx—uy—wy—uw)+(w1+u+w—m+y)2

_Q(u—w)(u—l—:zc)(u—y)+2(u—w)(w—|—a¢)(w—y)

2u+ w,y 2w+ wn
+2 (U + x) (U} + ZL’) (ZL’ + y) + 2 (u - y) (U} - y) <_'T - y) efr(u+w+w17:v+y)
wy — 2w wy + 2y
—|—{x — =T,y — —y} (B5)

Note that F),, involves only the exponential and rational functions.
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