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Abstract. The dynamic atomic polarizability describes the response of the atom to incoming electromag-
netic radiation. The functional form of the imaginary part of the polarizability for small driving frequencies
w has been a matter of long-standing discussion, with both a linear dependence and an w® dependence
being presented as candidate formulas. The imaginary part of the polarizability enters the expressions
of a number of fundamental physical processes which involve the thermal dissipation of energy, such as
blackbody friction, or non-contact friction. Here, we solve the long-standing problem by calculating the
imaginary part of the polarizability in both the length (“d- E”) as well as the velocity-gauge (“p-A”) form
of the dipole interaction, verify the gauge invariance, and find general expressions applicable to atomic
theory; the w® form is obtained in both gauges. The seagull term in the velocity gauge is found to be

crucial in establishing gauge invariance.
PACS: 31.30.jh, 12.20.Ds, 31.30.J-, 31.15.-p

1 Introduction

The “susceptibility” of an atom toward the generation of
an atomic dipole moment is described by the dynamic
atomic (dipole) polarizability. Alternatively, the atomic
polarizability describes photon absorption from a field of
photons and subsequent emission of a photon into the
same or a vacuum mode of different wave vector but the
same frequency. The external oscillating field can be a
laser field (and this is the intuitive picture we shall use in
this paper). In this case, the real part of the polarizability
describes the ac Stark shift [1]. The atomic polarizability
has both a real as well as an imaginary part. Physically,
this can be illustrated by considering the relative permit-
tivity €.(w) of a dilute gas and its relation to the dynamic
dipole polarizability a(w) of the gas atoms,

@) =1+ “La(w), (1)
€0

where ¢ is the vacuum permittivity and Ny is the volume
density of gas atoms [2]. The Kramers—Kronig relations
dictate that the real part of ¢(w) should be an even func-
tion of the driving frequency w, while the imaginary part
of €(w) cannot vanish and should be an odd function of
w. These considerations are valid upon an interpretation
of the dielectric constant in terms of the retarded Green
function GGg which describes the relation of the dielectric
displacement D(7,t) to the electric field E(r,t),

D(r,t) = e E(r,t) + € /0°° dr Gr(t)E(r,t—71). (2)

The Fourier transform is

Ny

€0

a(w). (3)

The symmetry properties of the imaginary part of the po-
larizability have been discussed at various places in the
literature [3-7]. The conventions used here and also the
result of our calculation of the non-resonant contribution
to the imaginary part, to be reported in the following,
are consistent with the interpretation as a retarded Green
function and, notably, with the conclusions of Ref. [4] [see
Eq. (2) and the text following Eq. (31) of Ref. [4]].

The imaginary part of the polarizability enters the de-
scription of processes such as the black-body friction [8,9],
where an atom is decelerated by interaction with a thermal
bath of black-body photons. The blackbody (BB) friction
force Fgg = —npp v is linear in the velocity,

pR? 7dw w® Im|a(w)]
C1272¢0 SinhZ(%ﬁhw) ’

(4)
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Here, 8 = 1/(kp T) is the Boltzmann factor, c¢ is the speed
of light, and A is the quantum unit of action (reduced
Planck constant), while the integration is carried out over
the entire blackbody spectrum of angular frequencies w.
This force is due to dissipative processes; the atom absorbs
an incoming blue-shifted photon from the front, and emits
photons in all directions. The friction force at a distance Z
above a surface composed of a dielectric material, due to
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the dragging of the mirror charges inside the electric with
frequency-dependent dielectric constant e(w), is calculated
as For = —nqrv. According to Ref. [10], the result for
the non-contact quantum friction (QF) coefficient in the
relation is given by a Green-Kubo formula,

351 7’ dwlmfa(@)] {e(w) ~1

T T 39n2¢025 | sinh(phw)  Lew) + 1
0

}. (5)

The formulas (4) and (5) raise the question what could
be deemed to be the most consistent physical picture be-
hind the imaginary part of the polarizability. The imagi-
nary part of the polarizability involves a spontaneous pho-
ton emission process, and this spontaneous emission can
only be understood if one quantizes the electromagnetic
field. From a quantum theory point of view, the reference
state in the calculation of the leading-order polarizability
is given by the atom in the reference ground state and np,
photons in the laser field. The virtual states for the cal-
culation of the polarizability involve the atom in a virtual
excited state, and ny £ 1 photons in the laser field. The
dipole coupling leads to the creation or annihilation of a
virtual laser photon.

Let us try to calculate the imaginary part of the po-
larizability on the basis of an energy shift calculation. In
many cases, the imaginary part of an energy shift describes
a decay process, with the spontaneous emission of radi-
ation quanta. If one includes the energy of the emitted
quanta into the energy balance, one sees that the final
quantum state of the decay process actually has the same
same energy as the initial state. We consider as an exam-
ple the spontaneous emission of a photon by an atom.
The initial quantum state has the atom in an excited
state, and zero photons in the radiation field. In the fi-
nal state of the process, the atom is in the ground state,
and we have one photon in the radiation field, with an
energy that exactly compensates the energy loss of the
atom. The imaginary part of the self-energy of an ex-
cited state describes the decay width of the excited ref-
erence state, against one-photon decay [11]. This consid-
eration has recently been generalized to the two-photon
self-energy [12], which helped clarify the role of cascade
contributions which need to be separated from the coher-
ent two-photon correction to the decay rate [13].

How can this intuitive picture be applied to the imag-
inary part of the polarizability? From a quantum theory
point of view [1], the initial state/reference state in the
calculation of the polarizability involves the atom in the
ground state, and ny photons in the radiation field. The
laser photons are not in resonance with any atomic tran-
sition, but rather, in a typical calculation, of very low
frequency. One may ask what is the energetically degen-
erate state to which the reference state could “decay”.
In the case of the ground-state atomic polarizability, one
may additionally point out that the atom already is in
the ground state and cannot go energetically lower. How
could the “decay rate” be formulated under these condi-
tions? The answer is that a quantum state with the atom
in the ground state, n; — 1 laser photons of energy wy,

and one photon of wave vector k and polarization A\, with
energy wiy = wy, (but not the same polarization or prop-
agation direction) is energetically degenerate with respect
to the reference state (with the atom still in the ground
state, and ny, laser photons). The reference state in our
calculation will thus be the product state of atom in the
reference state (in general the ground state) |¢), the laser
field in the state with n; photons, and zero photons in
other modes of the quantized electromagnetic field. We
denote this state as

|po) = [¢,nL,0). (6)

The calculation of the energy shift then proceeds in anal-
ogy to the self-energy calculation: One inserts radiative
loops into the diagrams that describe the ac Stark shift
and calculates the decay to the state

9f) = [d,nr — 1, 1K) - (7)

The notation adopted here involves the occupation num-
bers of the laser mode (subscript L), and the mode with
wave vector k and polarization A.

The remainder of this paper is organized as follows.
In Sec. 2, we discuss the derivation of the imaginary part
of the polarizability in the length gauge, where the in-
teraction of the atom with the laser field, and also the
interaction of the atom with the quantized radiation field,
are modeled on the basis of the dipole interaction —er- E.
Gauge invariance (see Sec. 3) is used as a method to verify
our results. In the velocity gauge, we use the “dipole” cou-
pling —ep- A/m and the “seagull term” e? A% /(2m). Here,
A is the vector potential, while E = —0; A is the electric
field. We employ the dipole approximation throughout the
paper and work in SI mksA units (with the exception of
a few illustrative unit conversions in Sec. 4).

2 Length Gauge

We start with the length-gauge calculation. The laser is z
polarized, and we consider the electric dipole interaction
which is the dominant interaction for an atom. The electric
field operators for the laser field (subscript L) and for the
quantized field interaction (subscript I) read as follows,

.| hwr .
Ep=e, eV (ap +af)=e.Ep, (8a)
Twg x n
Er= kZ;\/ SegV * (aex+agy,) , (8b)

HLZ sz—er-EI. (8C)
We employ the dipole approximation, setting the spatial
phase factors exp(ik - r) equal to unity. The use of an ex-
plicit normalization volume Vy, for the laser mode (and V
for the modes of the quantized field) allows for a consistent
normalization of the laser intensity [see Eq. (11) below].
The sum over the modes of the vacuum in Hj explicitly

excludes the laser mode, in the sense of the requirement

—ezFEp,
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k X # L. However, the absence of the one mode does not
enter the matching condition

d3k
2= [ G ©

because the one highly occupied laser mode does not fea-
ture prominently in the sum over all modes, and the sum
over polarizations can be carried out using the relation

R
Z%,\Gi,\:w— L 2
A

(10)

The quantity Vy, is the normalization volume for the laser
field, whereas V is the corresponding term for the quan-
tized field mode. The laser field intensity is

nLth C
Iy, =——. 11
=" ()
The unperturbed Hamiltonian is given as follows,
Ho=Ha+ Hgwm , (12a)
Hao=Y_ Enl|dm) (éml, (12b)
Hpn = Z hwie xa s akx + hwp af ar . (12¢)

kAAL

Here, the subscript A stands for atom, while the subscript
EM denotes the (quantized) electromagnetic field. The
unperturbed state is given by

‘¢0> = |¢7 nLaO>7 HA ‘¢> = E|¢> .

denoting the atom in the reference state |¢) (notably, the
ground state), ny, photons in the laser mode, and the vac-
uum state for the remaining modes of the electromagnetic
field. We should add that the Fock state of the laser field is
just a calculational device for our derivation of the imagi-
nary part of the polarizability. (Of course, in a Fock state,
the occupation number is precisely ny,, which is in contrast
a coherent state which is a superposition of Fock states.)

The atomic Hamiltonian (Schrédinger Hamiltonian) is
denoted as H 4, and we do all calculations for hydrogen,
here, whereas for many-electron atoms, in the nonrelativis-
tic approximation, one would replace z — Y z,, where a
denotes the ath electron. All results below will be reported
for atomic hydrogen with a single electron coordinate, but
the results hold more generally, with the only necessary
modification for a many-electron atom being the addition
of the coordinates of the other electrons. The reference
state fulfills the relations

Hy |¢o) = Eo [¢o) ,

where ny, is the number of laser photons.
In the quantized formalism [1], the second-order energy
shift, which we use for normalization, can be calculated as

1
5E(2><H —  _H > ,
L(HO_EO)/ L

(13)

Ey=FE+nphwy,, (14)

(15)

where the prime denotes the reduced Green function. (Re-
placement of Hy by Hj leads to the low-energy part of
the Lamb shift, see Ref. [14]. Here, the Lamb shift is ab-
sorbed into a renormalized reference state energy F.) In
the matrix elements used in this paper, the reference state
is the full quantized-field reference state |¢o) unless indi-
cated differently. After tracing out the photon degrees of

freedom, one obtains
1
(o] () -

- (HA—El—th> ’ ¢>> ’

which is a matrix element that involves only the atomic
Green function, and is evaluated on the atomic reference
state |¢). With the identification (11) of the laser intensity,
the second-order ac Stark shift can be expressed in terms
of the dipole polarizability a(w), which we write as

TLLth
2€0VL

SE@ = —¢2

(16)

SE? = — %c a(wr), (17a)
e? i 1 i
a(W):3g<¢x <HAEi7ML)QIj ¢>7
(17h)

for a radially symmetric atomic reference state |¢) which,
in general, is the ground state. The x? are the Cartesian
components of the electron coordinate (the summation
convention is used for i), while the sum over the two terms
with both signs +w will be encountered several times in
the following; it is denoted by the symbol >~ here.

The polarizability of an atom can be written as
the sum of “positive-frequency” and “negative-frequency”
components a4 (wr,) and a_(wy,), according to the formu-
las

a(wp) = ag(wr) + a—(wr), 18a)

arten) = 5 (o

(
v (HA—E+th+ie)”T o)
(18b)
3

(18c¢)

a_(wr) = % <¢>

v (HA—E—th—ie) v

where the infinitesimal imaginary parts are introduced in
accordance with the paradigm that the poles of the po-
larizability, as a function of wy,, have to be located in the
lower half of the complex plane. This is consistent with
the fact that the polarizability corresponds to a causal
(retarded) Green function. We take note of the identity

1

T — i€

= (P.V,)é +imé(x). (18d)

We the help of this relation, one easily shows that the
resonant, tree-level imaginary part of the polarizabilty



4 U. D. Jentschura, K. Pachucki: Imaginary Part of the Atomic Polarizability

Im [ag(wr)] is an odd function of the driving frequency
WL,

tin [ ()] = 5

3 (’<¢’$7|¢n>’2 §(E, — E — hwr)

n,i

S ol 60 A~ B+ )

o fno0(E, — E — hwr)
_QZ E,—F

n

(18e)

where E,, — E is the resonant frequency for the excita-
tion of the ground state to the excited virtual state |¢,,)
of energy FE,, and we have implicitly defined the dipole
oscillator strength f,o according to Ref. [15]. The second-
order contribution to the polarizability Im [ag(w)] is in
itself gauge invariant, and it constitutes a sum of resonant
peaks, which are relevant as the laser frequency is tuned
across an atomic resonance. Note that the contribution
Im [ag(wr)] corresponds to the cutting of the following
Feynman diagram,

according to the Cutkosky rules [16]. Wiggly lines denote
photons (here, the interactions with the photons of the
laser field).

However, there is an additional contribution to the
imaginary part of the polarizability, created by the inser-
tion of a virtual photon into the second-order diagram, as
shown in Fig. 1. The terms with paired interactions with
the laser and the radiation field, in the fourth order, are
given by

SEW = — (H; G'(Ey) Hy, G'(Eo) Hy G (Eo) Hy)
— (Hy G'(Eo) H; G'(Eo) Hy G'(Eo) Hp)

— 2 (H;G'(Ey) H, G'(Eo) H; G'(Eo) Hy) (19)
where G’ (Ey) = [1/(Ho — Ep)’] is the reduced Green func-
tion. Written in this form, the terms correspond to the
entries in Fig. 1, (a) and (b), and the last term to the sum
of (¢) and (d), while the photon loop involves a photon in
the mode k A. The propagator denominators in Fig. 1(a)
in the “outer” legs of the electron line read as H — F+wg
(twice) because the spontaneously emitted photon is part
of the virtual state of atom-+field. By contrast, the prop-
agator denominators in the “outer” lines in Fig. 1(b) read
as H— F —wy, (twice) because the spontaneously emitted
photon is not present. In all cases, one photon is “taken
from” the laser field. For Figs. 1(c) and (d), we have a
mixed configuration with two propagators, with denomi-
nators (H — E 4+ w) and (H — F — w).

— (UJL <~ —wL),

() (b)

(c) (d)

Fig. 1. (Color online.) Feynman diagrams contributing to the
imaginary part of the polarizability in length gauge. Wiggly
lines denote photons, straight lines denote the bound electron.
A laser photon (interactions with the external laser field are
denoted with a cross) is absorbed from the laser field, while
the self-energy loop describes the self-interaction of the atomic
electrons. When the virtual state denoted by the internal line
becomes resonant with the reference state, a pole is generated
in the integration over the degrees of freedom of the virtual
photon (Cutkosky rules [16], indicated by the vertical dashed
lines).

In the spirit of Ref. [17], the diagram (a) in Fig. 1
entails the following energy shift,

4 hwr, hwg »
0B, = —e¢ %/\: 2e0VL m <¢0
1
X -5, "
1
XHO — Eo

(érx-7) (aff\ +axnr)

(af +ar) z(af, +ar)

1
Hy — E,

(ék)\ ~’I”) (aﬁ)\‘f'ak)\) ’¢0> . (20)

We now use the matching condition (9) and calculate the
sum over polarizations using Eq. (10). Isolating the terms
which describe the absorption of a photon from the laser
field and emission into the field mode k A, we obtain the

following expression,
SE. ~ — 64/ ddk nLth hka 5”- B kl kj
“ (27‘(‘)3 260VL 260 k 2
1 . 1
X <¢ ¢

z X
Hjp—F+hogy Ha—FE— hop + hwgy,
Xxj

1
HA—E+hx,uk)\Z‘¢>' (21)
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The ~ sign implies that the terms which involve the vir-
tual state |, ny, —1, 1g) still need to be isolated. We have
traced out the photon degrees of freedom. We can isolate
the imaginary contribution created by the virtual state
[, np — 1, 1gn), with wgy = wr,, as follows,

1
Hp— F — hwr, + hwg x
1
%HA—E—ML—i-hwk)\—ie
|9} (¢ im

_ﬁwL +hwk>\ — ie - %5((4%/\ _UJL) |¢> <¢‘

(22)

Here, an infinitesimal imaginary part has been introduced
according to the Feynman prescription for the positive-
energy, virtual atomic states. Keeping track of the prefac-
tors, one finally obtains

IL w3
iIm(0E,) = —i—— L 23
ifm(3E%) 12600 {67reoc3 (23)

(e )}

where the Einstein summation convention is used for re-
peated indices. The term in curly brackets, upon compar-
ison with Eq. (17), can be identified as the imaginary part
of the polarizability associated with diagram (a) of Fig. 1.
The imaginary part Im(0E,) of the energy shift associ-
ated with Fig. 1(a) is negative, as it should be for a decay
process, while the imaginary part of the polarizability is
positive [see the overall minus sign in Eq. (17)].

i %

HA—E—i—thx

Diagram (b) in Fig. 1 generates an imaginary part in
much the same way, but the “outer” virtual states have
one virtual laser photon less than the intermediate state
which generates the imaginary part, hence

. IL w3
B lfoc { 67Te§03 (24)
2
<(5(¢ )}

Finally, the sum of diagrams (c) and (d) generates the
following expression,

iIm((SEb) =

% i

Y Hy—FE—hw, "

I

iIm(6F = —
Hm(0Eeta) 12600

etw?
27mepc3
i 1 i
-7
HA —E+ hUJL

‘)
o)} e

xJ

J
H - FE — hwy,

The end result for the imaginary part of the polarizability,
generated by the fourth-order diagrams in Fig. 1, reads as

iTm(6EW) = ilm(JE ) = L de [ @
arbretd 6regcd

After matching with Eq. (17), it can be summarized in
the following, compact result,

OJ3
[o(wr))?,

Im[a(wy)] = Im[ag(wr)] + (27a)

6mepc®
where Im[ag(wy,)] is the sum of the resonance peaks, ac-
cording to Eq. (18e), and in the last term, the square of
the polarizability is calculated using propagators without
any added “damping terms” for the virtual state energies,
i.e., under the identification [a(wr)]? = Re[a(wr)]? [see
Eq. (26)]. The result (27) is manifestly odd in the argu-
ment wr,, as it should be [see Eq. (1)].

Let us dwell on the precise form of this result a little
more. As shown below in Eq. (48), the second term on the
right-hand side of Eq. (27a) is a correction of relative order
a%ED, where aqgp is the fine-structure constant. Further-
more, the contribution given in Eq. (18e) can be identified,
in terms of a quantum electrodynamic formalism, as the
“tree-level” contribution to the imaginary part, or, as the
imaginary part of the “tree-level” polarizability arr,(w)
itself. If we absorb in our definition of carr,(w) relativistic
corrections to the dipole polarizability of relative order
adep (see Ref. [18]) and all radiative corrections with-
out cuts in the self-energy photon lines (of relative order
adup, see Refs. [16,19-21]), then we can write Eq. (27a)
alternatively as

Im[a(w)]  Imf[ary(w)] w3

a(w) arr(w)

arr(w) + O(aéED) .

(27b)
We can “sum” the second term into a denominator,

6megcd

oL () . (27¢)

w Q7L (w)

v
6mepcd

The latter functional form is in agreement with various
results for polarizabilities of nanoparticles (not atoms)
and other structures, corrected for “radiation damping”
[see Eq. (5) of Ref. [22], Eq. (27) of Ref. [23], Eq. (5) of
Ref. [24], Eq. (4) of Ref. [25], and Eq. (34) of Ref. [26]].
The term from the denominator in Eq. (27c) has the re-
quired functional from for “radiation damping” due to
the Abraham-Lorentz radiation reaction force [see Eq. (1)
and (10) of Ref. [27], and Refs. [28,29]]. The tree-level
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term is identified with the “damping by absorption” of
the nanoparticle,

w3

Im[arr, (w)] ~ Im[a(w)] et (@)]*. (28)

6megcd

¢

or, as the “non-radiative” imaginary part in the sense of
Ref. [22]. Note that the “tree-level” for a nanoparticle term
is denoted as ap(w) in Ref. [22], which however, for an
atom, would be associated with the “monopole” polar-
izability which is vanishing (canonically, one denotes by
ay(w) the 2°-pole polarizability of an atom, see Ref. [30]).

A possible interconnection of the imaginary part of the
polarizability with the square of the polarizability has pre-
viously been formulated in Refs. [29] and [31]. A term with
the square of the polarizability is added to the imaginary
part of the polarizability in Egs. (G2) and (G3) of Ref. [29]
[see also Eq. (49) of Ref. [28]. Within QED, the term with
the square of the polarizability is identified as being due
to a one-loop correction, while the resonant term is added
to the results given in Refs. [28,29,31] and constitutes a
tree-level contribution.

3 Velocity Gauge

The question of the choice of gauge in electrodynamic in-
teractions has been raised over a number of decades [32],
with a particularly interesting analysis being presented in
Ref. [33]. In general, and in accordance with the now fa-
mous remark by Lamb on p. 268 of Ref. [34], the wave
function of a bound state therefore preserves its proba-
bilistic interpretation only in the length gauge, and it is
this gauge which should be used for off-resonance excita-
tion processes [33,35]. According to Table 1 of of Ref. [36],
the dipole matrix elements for dipole transitions from
state |i) to state |f) in the dipole approximation are re-
lated by the

il a) i Er

as can be shown with the help of the commutation relation
p= %[H 4,7]. The two forms are equivalent only at res-
onance hw = E¢ — F;. In quantum dynamic calculations,
which often involve nonresonant driving of atomic transi-
tions, according to Lamb’s remark of p. 268 of Ref. [34],
“a closer examination shows that the usual interpretation
of probability amplitudes is valid only in the former [the
length] gauge, and no additional factor [(Ey — E;)/(hw)]
occurs.” Namely, the momentum operator p = —iAV de-
scribes the mechanical momentum of the matter wave in
the length gauge, where the kinetic and canonical momen-
tum operators assume the same form [14,33]. In the veloc-
ity gauge, the canonical momentum p — e A assumes the
role of the conjugate momentum of the position operator
in the equations of motion. One can also argue that the
electric field used in the length-gauge interaction is gauge
invariant, while the vector potential in the velocity-gauge
term is not [14,33,37—40]. However, for processes such as

(fler- Eli), (29)

energy shifts, where the initial and final states have the
same energy and the sum of the exchanged photon ener-
gies need to add up to zero, both gauges should lead to the
same results (see Sec. 3.3 of Ref. [14], and Refs. [41-44]).
While limits of gauge invariance have recently been dis-
cussed in Ref. [45], it is a nontrivial exercise to check the
gauge invariance of the imaginary part of the polarizabil-
ity. Similar questions have been discussed in the context of
the QED radiative correction to laser-dressed states (Mol-
low spectrum, see Refs. [14,38-40]).

In the velocity gauge, the interactions are formulated
in terms of the vector potentials A; and A;, which de-
note the laser field and the interaction with the quantized
radiation field. We denote the corresponding interaction
Hamiltonians, in the dipole approximation, by the lower-
case letters hy, and h; and write

. |/ h : : .
AL = €, m (laL - I(Zz) — €, AL 5 (303)
h
A= é — (i —ia} 30b
1 kz;m V 2w eV (iakx —iag ) (30Db)
hy = - ALee oy cArp (30¢)
m m

From the seagull term, we isolate the terms which involve
at least one interaction with the laser mode and write

Ap +Ap)?
hSZGQ#%hLI‘FhLL’

Ar- A A2
hL[:62%, hLLZQQﬁ' (31)

In the length gauge, the second-order shift in the laser field
is given by Eq. (17). In the velocity gauge, one obtains an
additional term, as follows,

1
@) — _
OF (hrr) <hL —T hL> .

We trace out the laser photon degrees of freedom and ob-

tain
hw 1
_ 2 Lin = (¢
2¢0Vr \wj,

(32)

SE®) —

p- 1 p-
m \Has—FE+hvr, )] m

1
¢>mwz>’

(33)

GPe (L e
m HA—E—FIAUL m

where p, is the z component of the momentum operator.
One might conclude that this form is manifestly different
from Eq. (17). Using the operator identity

Y2

p_i

= H — E+ hwp,r" 34
m h [ + L,T ] ; ( )
one may show the relation
1 P’ 1 P 1
= _—— — = — 35
3<¢mH—E+thm¢> 2m (35)

1

i i

_wL 2 wr N
3 (@lrtlo)+ H—F+ oy

2
ol

).




U. D. Jentschura, K. Pachucki: Imaginary Part of the Atomic Polarizability 7

(d) (e)

Fig. 2. (Color online.) Additional Feynman diagrams involv-
ing the seagull graph which have to be considered in the veloc-
ity gauge, in order to show the gauge invariance of the imagi-
nary part of the polarizability.

where 72 = 2% 2. With the help of this relation, and as-
suming a spherically symmetric atomic reference state |¢),
one may confirm that the second-order shifts (33) and (17)
are equal.

In the additional diagrams which persist in the velocity
gauge (see Fig. 2), the seagull graph enters “in disguise”,
with the virtual photon of the self-energy loop and the
laser photon emerging from the same vertex. We may an-
ticipate that diagram (a) in Fig. 2 generates a constant
term, while diagrams (b) and (c) generate terms with one
propagator, with a propagator denominator of the form
H—FE+uwp, (the spontaneously emitted photon is present in
the “outer” lines). By contrast, the diagrams in Fig. 2 (c)
and (d) generate propagator denominators H — E'—wy, for
the internal line of the diagram.

From the diagram in Fig. 2(a), we have the energy shift

).

After tracing out the photon degrees of freedom, the imag-
inary part can be extracted as follows,

hrr hrr

66, = — <¢0

o Ey (36)

. IL 64

—i )
2¢gc 6meg 3 miwy,

Im(6&,) = (37)

From the diagram in Fig. 2(b) and (c), we have the energy

shift
1 1
0Eptec =2 <¢0

h h h
I LHO—EO LI

T ¢o> . (38)

The imaginary part of the energy, generated by the dia-
grams Fig. 2(b) and (c), can conveniently be written as
follows,

In(0€se) =i 2b —©
m ) =1— ————
b+ 26()0 37T€()03m

o2 P 1 P

8 (:m% <¢ m H—FE+hop, m ¢>> '
Finally, from the diagrams in Fig. 2(d) and (e), we have
the energy shift

0Eqte =2 <¢0

wr, (39)

1 1
h h
L IHo—Eo

hrr

o, Ey ¢0> (40)

where the sequence of the dipole coupling hy, and h; is re-
versed in comparison to the diagrams in Fig. 2(b) and (c).
The imaginary part of the energy shift is the same,

Im(6€4c) = (68, .) . (41)

The diagrams in Fig. 2 all involve at least one occurrence
of the combined laser-quantized-field seagull term hp ;.
Finally, we can write the additional imaginary part
due to the seagull terms, denoted by Im(6&) =
Im(0€u+prerdre), in the velocity gauge as follows,

IL 1 64
Im(6&) = —1i
m(0&2) 12606 6megc® m2 wr,
. IL 62
j L ©
2¢pc 3megcdm “r
62 pi 1 pi
<[5 (ol e )
wi m H—FE+ hwr m

i 1 7
+ (b pfig
m H—FE — hwr, m
g e2 e2
i
2¢gc bmegedm | mwy,

We have used the identity (35). To this result we have to
add the contribution of the diagrams in Fig. 1, this time
evaluated with the dipole Hamiltonians replaced by their
velocity-gauge counterparts (Hy, — hy, and H; — hy),

s 1 1

)

+ 2wL a(wL)] . (42)

ilm(6&) = —i— —— —
iTm(0¢1) 12600 6mege® wr,
2
o2 i 1 i
X JE— s —
(o e o)
(43)
Again, with the help of (35), we can write this as
I e? e?
iIm(6&;) = —i 2
iTm(91) 12600 6mregcdm {me e a(w)}
) 1
—i— i [a(we))?. (44)

i ——w
2epc 6megC
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Finally, one obtains in the velocity gauge

I 1 3 9
2¢epc 6megc wi le(wn)l”,

confirming the result (26) once more [the oscillator
strength in Eqgs. (18) is in itself gauge invariant, and the
resonant contribution (18e) needs to be added to the off-
resonant contribution (45)].

4 Conclusions

Our main result concerns the imaginary part of the
atomic polarizability, which is the sum of a resonant term
Im[ag(wy)] and of an off-resonant driving of an atom
with the dynamic dipole polarizability a(w). According
to Eq. (27), the result is given as follows,

“L_Refafu)?
a\w .
6mepcd L

Im[a(wy)] = Im[ag(wr )] + (46)

The clarification of the functional dependence of the non-
resonant contribution to the imaginary part for small w
has been a matter of discussion in the past (see Chap. XXI
of Ref. [46] and Refs. [9,47]), with both a linear depen-
dence on w and an w? dependence being discussed as can-
didate formulas. Initially, one would assume that the w?
dependence is favored in the “length gauge”, whereas the
linear term is obtained in the “velocity gauge” (see the
discussion in Ref. [9]), but the formulation presented here
in terms of the imaginary part of a (necessarily gauge-
invariant) fourth-order energy shift removes the ambigu-
ity. So, our result (46) settles the question. While the cal-
culations have been described for a single-electron atom
(hydrogen atom), the results hold more generally because
one may simply add, in the calculation of the polarizabil-
ity, the dipole couplings of the other electrons, according
to the replacement z* — Y~ ! where a denotes the sub-
script of the electron. The full inclusion of all diagrams
given in Figs. 1 and 2 is crucial in confirming the gauge
invariance (see Secs. 2 and 3).

Our results indicate that the imaginary part of the
atomic polarizability cannot be obtained on the basis of a
replacement in the propagator denominators of the polar-
izability function,

B — E £ s
e [(0]a'] om) "
73 Zi:Em—%Fm—Eihw' “n

The latter prescription cannot possibly lead to a consistent
result for the imaginary part of the polarizability, no mat-
ter how one extrapolates the decay width I}, = [}, (w)
off resonance. However, we may at least observe that if
the I, represent the one-photon decay widths of the vir-
tual states, then the replacement (47) generates the right

order-of-magnitude for the imaginary part off resonance,
in agreement with Eq. (46).

The specification of the real part of the square of the
polarizability in Eq. (46) serves to maintain the relevant
symmetry: Namely, Im[a(wy,)] needs to be an odd func-
tion under a sign change of its argument. However, the
off-resonant (one-loop) contribution to the imaginary part
of the polarizability is in itself a radiative correction and
should thus be suppressed by powers of the fine-structure
constant aqrp. Hence, to leading order in agrp, we can
leave out the additional specification of the real part in the
second term in Eq. (46). To put this statement into con-
text, we switch to natural units with A = ¢ =€y = 1 and
refer to Ref. [48] where it is shown that the imaginary
part of the one-loop self-energy describes an imaginary
energy contribution of order a%ED m, where aqgp is the
fine-structure constant [in contrast to a(w) which denotes
the polarizability]. The radiative correction is of relative
order a%ED in comparison to the Schrédinger energy; the
latter is of order aéED m in natural units.

Let us apply this program to the polarizability. Taking
into account that the Bohr radius is of order 1/(aqep m)
in natural units (i.e., about 137 times larger than the re-
duced Compton wavelength of the electron), we obtain the
following order-of-magnitude estimates:

QQED 1 1

a\WwW) ~ = .
) (aqepm)? agppm  (aqepm)®

(48)

In order to perform the estimate for Im[a(w)] ~ m ™3, we

need to take into account that a typical atomic driving
frequency is of order wy, ~ aéED m, and the ratio again is
of the order of

Im(a(w)]

) (49)

~ O‘%ED )
as it should be for a one-loop radiative correction [here,
Im[a(w)] is restricted to the second term in Eq. (46)].

Because of the general nature of the obtained result, it
is useful to discuss the conversion to other unit systems. In
natural units (n.u.), with i = ¢ = ¢y = 1, the result (46)
simplifies to

+ wg |Il.ll

nfa(w)]| o g

[a(@)?],,.. -

(50)
Using the relation e? = 4maqep, we can write the dipole
polarizability, in natural units, as follows,

= Im[ag(w)]|

n.u.

47raQED
0], = g 2D
QED
1 . a{Epm :
- § j_ _QED" J
x{3 . <¢ QQED M X H—E:l:wLaQEDmx ¢ .

(51)

Here, the sum over the signs + denotes the two terms gen-
erated by virtual absorption and emission of the laser pho-
ton, as in Eq. (17b). For an atom, all quantities in the term
in curly brackets are of order unity; e.g., aqep ma? =
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xd Jag = pj where ag is the Bohr radius. The numerical
values (reduced quantities) associated with the polariz-
ability, in atomic units (a.u.) and natural units (n.u.), are
thus related by

4 (52)

a(w)ln.u. = a(w)‘a.u. :

3
AOED
Atomic transition frequencies are measured in Hartrees in
atomic units, and thus we have

o, = 0 | (53)
WLlpu = aQED m Wrigy, -

So, in atomic units, our main result given in Eq. (27)
and (50) reads as

3
ZQQED

tmfa(w)] o+ —

= Im[ag(w)]|

a.u. [w?’ az(w)”a.u. :

(54)
The imaginary part of the polarizability enters the de-
scription of a number of dissipative processes, such as the
quantum friction due to interaction with a bath of black-
body photons (4), or, with a dielectric surface [see Eq. (5)].
The imaginary part of the polarizability is manifestly non-
vanishing off resonance and, for small driving frequency w,
is proportional to w?.
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