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Abstract

Precision tests with hydrogen molecule are presently limited by unknown higher-order quantum

electrodynamical effects. These corrections are represented by matrix elements of some effective

operators, most of which are singular. The evaluation of matrix elements of singular operators

put high demands on the quality of the representation of the nonrelativistic wave functions. The

basis of fully correlated exponential functions is well suited for representing the H2 wave function,

as it has the correct properties both at coalescent points and at asymptotic distances. Moreover,

the matrix elements of all operators can be conveniently obtained in this basis via integration or

differentiation with respect to nonlinear parameters. In this work we develop an approach that

paves the way to practical calculations with this basis.

PACS numbers: 31.15.ac, 03.65.Ge
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I. INTRODUCTION

Experimental spectroscopy of hydrogen molecules H2, D2, and HD has demonstrated an

impressive progress during the last decades. The current level of experimental accuracy is

at the 10 parts-per-billion (ppb) level [1–3] and is likely to be improved in the future. Very

good agreement with theoretical calculations [4] indicates that all physical effects relevant at

the 10−8 level (10−3 cm−1 for dissociation energies) are currently well understood. Further

progress of theory of the hydrogen molecule is, however, impeded by unknown higher-order

QED effects, particularly, the effects of order mα6, where m is the electron mass and α is

the fine structure constant.

A calculation of the mα6 QED effects for atoms and molecules is a notoriously problematic

task. One of the main difficulties is the evaluation of first-order and second-order matrix

elements of singular operators [5]. In undertaking this task, the choice of the type of the

basis functions used for solving the Schrödinger equation is of crucial importance. To date,

the most advanced calculations of the hydrogen molecule (in particular, those of Ref. [4])

were performed with explicitly correlated Gaussian (ECG) functions. The main advantage

of the ECG basis set is its simplicity, which leads to high numerical stability and accessible

analytical expressions for integrals with various operators, including the negative powers of

r’s, such as r−n12 , r−n1A , etc. The main drawback of the ECG functions is that they do not

satisfy the cusp condition, which is one of the analytical properties the exact wave function is

known to possess. This drawback is usually compensated by a careful global optimization of

(thousands of) nonlinear parameters in the basis set. However, the convergence of the ECG

basis functions becomes increasingly slower for matrix elements with increasingly singular

operators. Because of this, one might expect that a calculation of the second-order mα6

matrix elements of nearly singular operators with the ECG basis set will be very difficult.

Several other basis sets, which satisfy the cusp condition, were successfully applied in the

literature to calculations of the hydrogen molecule. In particular, explicitly correlated basis

of the form

e−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B) rn1
12 r

n2
1A r

n3
1B r

n4
2A r

n5
2B (1)

was introduced by Ko los and Wolniewicz [6] to obtain first accurate results for ground and

excited states of the H2, D2, and HD molecules. Presently the most precise results for the

Born-Oppenheimer potential curve of the H2 molecule [7] are obtained with two particular
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subsets of this general basis. At short internuclear distances, the James-Coolidge basis of

the form (1) with x = y = 0 was shown to be most effective, whereas at large distances,

the extended Heitler-London basis of the form (1) with u = y and w = −x yielded the

best results. These two sets of basis functions proved to be very effective for calculating the

nonrelativistic energy. However, their application for calculations of relativistic and QED

corrections is impeded by the absence of tractable analytic expressions for integrals with

negative powers of r’s, namely r−niA and r−n12 with n > 1.

In the present paper, we aim to solve the problem with integrals with negative powers

of r’s in the basis (1) by turning to a more general basis, namely the basis of explicitly

correlated exponential functions of the form

e−w1 r12−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B). (2)

This basis is the most general explicitly correlated two-center two-electron basis and thus

it is potentially the most flexible and the most powerful. The main advantages are that

(i) it satisfies the cusp conditions, which should result in a relatively fast convergence for

singular matrix elements, (ii) the integrals with negative powers of r’s can be easily obtained

by numerical integrations over the corresponding nonlinear parameters, (iii) it is likely to

yield the most compact representation of the electronic wave function. This basis has not,

however, been widely used in molecular calculations so far, because of overwhelming technical

difficulties in calculating the integrals with such general functions.

The aim of the present paper is to demonstrate how to calculate the nonrelativistic energy

of the H2 molecule and the matrix elements of the negative powers of r’s with the basis set

of explicitly correlated exponential functions, having in mind future application of this basis

for evaluation of higher-order QED corrections.

II. MASTER INTEGRAL

The key to any practical calculations with the explicitly correlated exponential functions

is the master two-electron two-center integral f(r),

f(r) ≡ f(r;w1, y, x, u, w) = r

∫
d3r1
4π

∫
d3r2
4 π

e−w1 r12−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B)

r12 r1A r1B r2A r2B
,

(3)
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where w1, u, w, x, and y are real nonlinear parameters, the subscripts 1 and 2 numerate the

electrons, A and B numerate the nuclei, and r ≡ rAB is the distance between the nuclei. So,

r12 is the interelectronic distance, whereas r1A is the distance between the first electron and

the nuclei A. Since the wave function should be square integrable, one obtains the following

restrictions for the nonlinear parameters: u > 0, w > 0, and w1 > max(−2u,−2w). It can

be easily seen that any additional integer positive powers of r’s can be obtained from the

master integral f(r) by differentiation over the corresponding nonlinear parameter, whereas

additional negative powers are obtained by integration over the nonlinear parameters.

This master integral f(r) is not known in a closed analytical form. It has several sym-

metries

f(r;w1, y, x, u, w) = f(r;w1, x, y, u, w)

= f(r;w1, y, x, w, u)

= f(r;w1,−y,−x, u, w) , (4)

that do not immediately follow from the definition (3). Early studies on the subject used

for its evaluation expansions of e−w1 r12 r−112 in spherical oblate coordinates or, alternatively,

in terms of spheroidal functions. Usage any of these expansions made practical calculations

of f(r) cumbersome, slow and restricted to small internuclear distances. An alternative

approach has been pursued in Ref. [9]. In that work, an analytic formula for the general

four-body integral g was found, whose inverse Laplace transform is f(r). Due to a very

complicated analytic structure of the four-body integral g, the obtained expression in terms

of the inverse Laplace transform has never been used in practical calculations so far.

In the recent works [10–12], a tractable way of calculating f(r) was found. The problem

of the calculation of the inverse Laplace transform of g has been reformulated into solving a

differential equation. The solution of this differential equation was found [11] in terms of one-

dimensional integral, which needs to be performed numerically. Moreover, the differential

equation allowed one of us to derive analytic recursion relations for integrals with positive

integer powers of interparticle distances. In the present paper, we demonstrate how this

approach works in practice.

The main result of Ref. [11] was the following compact representation of the master
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two-electron two-center integral f(r),

f(r) =

∫ −∞
0

dt et r
1

2
√
σ

[
θ(t1 − t) ln |β0,0|+ θ(t2 − t) ln |β3,3|

−θ(t3 − t) ln |β3,1 β3,3| − θ(t4 − t) ln |β0,1 β0,0|
]
, (5)

where

σ = σ0 + t2 σ2 + t4w2
1, (6)

σ0 = w2
1 (u+ w − x− y) (u− w + x− y) (u− w − x+ y) (u+ w + x+ y)

+16 (w x− u y) (ux− w y) (uw − x y) ,

σ2 = w4
1 − 2w2

1 (u2 + w2 + x2 + y2) + 16uw x y , (7)

βi,j =

√
σ − γi,j√
σ + γi,j

, (8)

γ0,0 = −t2w1 + w2
1 (u+ w − x− y) + w1 (u+ w − x− y)2 + 4 (ux y + w x y − uw x− uw y),

γ3,3 = −t2w1 + w2
1 (u+ w + x+ y) + w1 (u+ w + x+ y)2 + 4 (uw x+ uw y + ux y + w x y),

γ0,1 = 2 t2 x+ t (4x2 − w2
1)− 2x (u2 + w2 − x2 + y2) + 4uw y,

γ3,1 = −2 t2 x+ t (4x2 − w2
1) + 2 x (u2 + w2 − x2 + y2)− 4uw y, (9)

and

−t1 = u+ y + w + x,

−t2 = u− y + w − x,

−t3 = u+ y + w − x+ w1,

−t4 = u− y + w + x+ w1 . (10)

The integrand of Eq. (5) has a damping exponent for large values of t, which greatly

facilitates its numerical evaluation. The numerical approach to its evaluation is described

in Appendix A.

In order to calculate integrals with positive powers of interparticle distances, we make

use of the differential equation for the master integral f(r)[
w2

1

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]
f(r) = F (r), (11)
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with the inhomogeneous term given by

F (r) = w1

(
1

r2
+

2w1 + u+ w + x− y
r

)
e−r (u+w+w1+x−y)

+w1

(
1

r2
+

2w1 + u+ w − x+ y

r

)
e−r (u+w+w1−x+y)

−w1

(
1

r2
+
u+ w − x− y

r

)
e−r (u+w−x−y)

−w1

(
1

r2
+
u+ w + x+ y

r

)
e−r (u+w+x+y)

+

[
w2

1

2
(u− w + x− y) + 2uw (y − x) + 2 x y (w − u)

]
F1

+

[
w2

1

2
(u− w − x+ y) + 2uw (x− y) + 2 x y (w − u)

]
F2

+

[
w2

1

2
(u+ w + x+ y) + 2uw (x+ y) + 2 x y (u+ w)

]
F3

+

[
w2

1

2
(u+ w − x− y)− 2uw (x+ y) + 2 x y (u+ w)

]
F4 (12)

where

F1 = Ei[−r (w1 + 2u)] exp[r (u− w + x− y)]− Ei[−r (w1 + 2w)] exp[−r (u− w + x− y)] ,

F2 = Ei[−r (w1 + 2u)] exp[r (u− w − x+ y)]− Ei[−r (w1 + 2w)] exp[−r (u− w − x+ y)] ,

F3 = Ei[−2 r (u+ w)] exp[r (u+ w + x+ y)] +

{
Ei[2 r (x+ y)]− Ei[−r (w1 − 2x)] ,

−Ei[−r (w1 − 2 y)]− log

[
(w1 + 2u) (w1 + 2w) (x+ y)

(u+ w) (w1 − 2x) (w1 − 2 y)

]}
exp[−r (u+ w + x+ y)] ,

F4 = Ei[−2 r (u+ w)] exp[r (u+ w − x− y)] +

{
Ei[−2 r (x+ y)]− Ei[−r (w1 + 2x)]

−Ei[−r (w1 + 2 y)]− log

[
(w1 + 2u) (w1 + 2w) (x+ y)

(u+ w) (w1 + 2x) (w1 + 2 y)

]}
exp[−r (u+ w − x− y)] ,

(13)

and Ei is the exponential integral function. The function (5) is the solution of this differential

equation, which vanishes at small and large r.

From the differential equation (11) and similar differential equations for derivatives of f

over nonlinear parameters, one can obtain various recurrence relations for the higher order

derivatives of f(r). The complete set of differentiation formulas can be found in Ref. [11].
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In the present paper, we will need only the following relations,

∂f ′(r)

∂w
=

1

w2
1 − 4w2

(
−r f(r)

2

∂σ02
∂w
− 2 r w f ′′(r) +

−F1 − F2 + F3 + F4

2

)
,

∂f ′(r)

∂u
=

1

w2
1 − 4u2

(
−r f(r)

2

∂σ02
∂u
− 2 r u f ′′(r) +

F1 + F2 + F3 + F4

2

)
,

∂f ′(r)

∂x
=

1

w2
1 − 4x2

(
−r f(r)

2

∂σ02
∂x
− 2 r x f ′′(r) +

F1 − F2 + F3 − F4

2

)
,

∂f ′(r)

∂y
=

1

w2
1 − 4 y2

(
−r f(r)

2

∂σ02
∂y
− 2 r y f ′′(r) +

−F1 + F2 + F3 − F4

2

)
, (14)

where σ02 = (u + w − x − y) (u − w + x − y) (u − w − x + y) (u + w + x + y), and the

inhomogeneous terms Fi terms are given by Eq. (13) and f ′(r) means derivative with respect

to r. The derivative with respect to w1 can be easily obtained from the fact that function

r−2 f(r) is dimensionless, which entails that

w1
∂f(r)

∂w1

= −w ∂f(r)

∂w
− u ∂f(r)

∂u
− x ∂f(r)

∂x
− y ∂f(r)

∂y
+ r f ′(r)− 2 f(r) . (15)

Using the recurrence relations (14)-(15), we can express all derivatives of f(r) over the

nonlinear parameters in terms of the master integral f(r), its nth derivatives with respect to

r, f (n)(r), and its nth-fold integrals with respect to r, f (−n)(r). All f (±n)(r) can be evaluated

exactly in the same way as the master integral itself, by differentiation or integration of the

main formula (5).

III. ASYMPTOTIC EXPANSION

Calculation of the master integral and its derivatives can be greatly simplified in the case

when one of the nonlinear parameters is much larger than the others, by using the asymptotic

expansion over the large parameter. Such situation may occur when matrix elements of

singular operators are evaluated. In particular, the matrix element of the operator 1/r21A

is calculated in the present work by numerical integration over the corresponding nonlinear

parameter, 〈
1

r21A

〉
=

∫ ∞
0

dq

〈
e−q r1A

r1A

〉
. (16)

In order to calculate the matrix element of e−q r1A/r1A for large q, we need master integral

f(r;w1, y + q/2, x, u + q/2, w). If q is much larger than w1, y, x, u, and w, the dominating
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part of σ is σ0. So, the solution of the differential equation (11) can be represented as

f(r) =

[
w2

1

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]−1
F (r)

=
F (r)

σ0 r
− 1

σ0 r

[
w2

1

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r

]
F (r)

σ0 r
+ . . . . (17)

The leading term of this expansion is ∼ q−2, whereas each next term contains additional

factor of q−2. Terms of this expansion and their derivatives over the nonlinear parameters

can be obtained analytically,

f(r) =
1

2 r q2 (w − x)

[
Ei(−r (w1 + 2x)) e−r (u+w−x−y) − Ei(−r (w1 + 2w)) e−r (u−w+x−y)

+ ln

(
w1 + 2w

w1 + 2x

)
e−r (u+w−x−y)

]
+O(q−3) , (18)

where terms with e−q r were neglected.

IV. NONRELATIVISTIC HAMILTONIAN

The nonrelativistic Hamiltonian for the diatomic molecule in the Born-Oppenheimer ap-

proximation is given by

H = −∆2
1

2
− ∆2

2

2
− ZA
r1A
− ZB
r1B
− ZA
r2A
− ZB
r2B

+
1

r12
+
ZA ZB
r

, (19)

where ZA and ZB are the charge numbers of the nuclei A and B, respectively. The Hamil-

tonian is conveniently divided into the kinetic T and the potential V parts, H = T + V ,

where T is given by the first two terms in the right-hand-side of Eq. (19) whereas V is given

by the rest.

The matrix elements of the Hamiltonian with the wave functions

φi = e−w1i r12−ui (r1A+r1B)−wi (r2A+r2B)−yi (r1A−r1B)−xi (r2A−r2B) (20)

and the corresponding overlap integrals can be easily expressed in terms of the derivatives
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of the master integral over the nonlinear parameters. The result is

〈φl|T |φk〉 =
1

16w1

{
2 (u2l w1k − y2l w1k + u2k w1l − y2k w1l) r

2 [f(1, 0, 0, 0, 2)− f(1, 0, 2, 0, 0)]

+2 (w2
l w1k − x2l w1k + w2

k w1l − x2k w1l) r
2 [f(1, 0, 0, 2, 0)− f(1, 2, 0, 0, 0)]

+(2w2
l w1k + 2 y2l w1k + 2w2

k w1l + 2 y2k w1l − w1w1k w1l) f(1, 2, 0, 0, 2)

+(2u2l w1k + 2x2l w1k + 2u2k w1l + 2x2k w1l − w1w1k w1l) f(1, 0, 2, 2, 0)

−(2u2l w1k + 2w2
l w1k + 2u2k w1l + 2w2

k w1l − w1w1k w1l) f(1, 0, 0, 2, 2)

−(2 y2l w1k + 2x2l w1k + 2 y2k w1l + 2x2k w1l − w1w1k w1l) f(1, 2, 2, 0, 0)

+4 (ul w1k + uk w1l) [f(1, 0, 0, 1, 2)− f(1, 0, 2, 1, 0)]

+4 (wl w1k + wk w1l) [f(1, 0, 0, 2, 1)− f(1, 2, 0, 0, 1)]

+4 (yl w1k + yk w1l) [f(1, 1, 2, 0, 0)− f(1, 1, 0, 0, 2)]

+4 (xl w1k + xk w1l) [f(1, 2, 1, 0, 0)− f(1, 0, 1, 2, 0)]
}
,

〈φl|V |φk〉 =
1

16

{
f(0, 0, 0, 2, 2)− f(0, 0, 2, 2, 0)− f(0, 2, 0, 0, 2) + f(0, 2, 2, 0, 0)

+2 (ZA + ZB) [f(1, 0, 2, 1, 0) + f(1, 2, 0, 0, 1)− f(1, 0, 0, 1, 2)− f(1, 0, 0, 2, 1)]

+2 (ZA − ZB) [f(1, 0, 1, 2, 0) + f(1, 1, 0, 0, 2)− f(1, 1, 2, 0, 0)− f(1, 2, 1, 0, 0)]

+
ZA ZB
r

[f(1, 0, 0, 2, 2)− f(1, 0, 2, 2, 0)− f(1, 2, 0, 0, 2) + f(1, 2, 2, 0, 0)]
}
,

〈φl|φk〉 =
1

16

[
f(1, 0, 0, 2, 2)− f(1, 0, 2, 2, 0)− f(1, 2, 0, 0, 2) + f(1, 2, 2, 0, 0)

]
, (21)

where w1 ≡ w1k + w1l, and

f(n1, n2, n3, n4, n5) =

(
− ∂

∂w1

)n1
(
− ∂

∂y

)n2
(
− ∂

∂x

)n3
(
− ∂

∂u

)n4
(
− ∂

∂w

)n5

f(r) . (22)

The wave function of the ground electronic Σ+
g state of the H2 molecule is expressed in

terms of the basis wave functions φi (20) as follows

ψ =
∑
i

ci (1 + PAB) (1 + P12)φi , (23)

where PAB permutes the nuclei A and B, P12 interchanges the two electrons, and ci are

linear coefficients, obtained as components of the eigenvector of the Hamiltonian matrix. Our

numerical approach to the evaluation of the Hamiltonian matrix is described in Appendix B.
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TABLE I: Nonrelativistic energy of the ground electronic Σ+
g state of the H2 molecule for two

internuclear distances r, in a.u.

r = 1.4 r = 14.0

N E δE E δE

2 −1.173 468 555 −0.999 999 778 930

4 −1.174 125 505 −0.000 783 527 −1.000 000 480 057 −0.000 764 402 260

8 −1.174 373 774 −0.000 248 268 −1.000 000 942 482 −0.000 000 462 425

16 −1.174 469 553 −0.000 095 779 −1.000 000 955 376 −0.000 000 012 893

32 −1.174 474 880 −0.000 005 327 −1.000 000 958 807 −0.000 000 003 430

64 −1.174 475 260 −0.000 000 379 −1.000 000 959 559 −0.000 000 000 934

−1.174 475 714 220a −1.000 000 960 680 791b

a James-Coolidge basis with N ≈ 20000 [7];

b Explicitly correlated asymptotic basis with N ≈ 20000 [7].

TABLE II: Expectation value of the operators r−212 and r−21A for the ground electronic Σ+
g state of

the H2 molecule for two internuclear distances r, in a.u.

r = 1.4 r = 14.0

N 〈r−212 〉 〈r−21A〉 〈r−212 〉 〈r−21A〉

8 0.518 482 1.604 12 0.005 155 876 1.002 558 4

16 0.517 917 1.601 65 0.005 155 881 1.002 555 5

32 0.517 948 1.601 73 0.005 155 882 1.002 562 3

64 0.517 934 1.601 70 0.005 155 882 1.002 563 1

0.517 913a 1.597 56a

a Gaussian basis with N ≈ 1200 [8].

V. NUMERICAL RESULTS AND DISCUSSION

Table I presents numerical results for the nonrelativistic energy of the ground electronic

Σ+
g state of the H2 molecule obtained with the exponential correlated basis. Comparison

with previous results obtained with the James-Coolidge and asymptotic functions shows

that the exponential basis set yields reasonably accurate results with very small number of
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basis functions. Because it has the correct analytical properties of the true wave function

both at the coalescent points and in the asymptotic region, it works equally well at small

and at large internuclear distances. This is in contrast to the James-Coolidge and the

explicitly correlated asymptotic basis, which are effective, respectively, only at the small or

large internuclear distances.

The main drawback of the exponential correlated basis is that the calculations are gener-

ally more expensive than those with other basis functions, because of the numerical integra-

tion in the master integral and also because of numerical instabilities inherent in recurrence

relations, which call for extended-precision arithmetics. In our calculations, we used the

octuple-precision arithmetics and performed optimization of the nonlinear parameters with

an explicit check of numerical stability (i.e., only the numerically stable results were taken

into account during the optimization procedure).

Because of slowness of the numerical procedure, our calculations of the nonrelativistic

energy with the exponential correlated basis are much less accurate than the best calculations

with the James-Coolidge or ECG basis functions. However, our main purpose in developing

this basis set is their applicability for calculations of higher-order QED effects. The QED

effects of order mα6 for molecules are presently unknown, even the complete formulas for

them have not been derived so far. However, from the calculations for helium [13] we know

that these effects are described by highly singular operators. The basis of the explicitly

correlated exponential functions turned out to be the best choice for for helium atom, so we

think that it is an appropriate choice for solving this problem for molecules as well.

Calculation of matrix elements of singular operators (in particular, operators with inverse

powers of interparticle distance) with the exponential correlated basis are nontrivial because

no closed-form analytical formula were found for them. In the present work, we propose to

evaluate these operators by integration with respect to the corresponding nonlinear param-

eter, see Eq. (16). A numerical proof of principle of this method is given in Table II, which

presents the results of our test calculations of matrix elements of the operators 1/r212 and

1/r21A. Certainly, the same method can be applied to all operators involved in calculation

of the mα6 QED contribution, but the open issue is its numerical accuracy.
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VI. SUMMARY

In this paper we have developed a numerical procedure for calculating the nonrelativis-

tic energy of the H2 (or, in fact, any other diatomic) molecule with the fully correlated

basis of exponential functions. This basis is the most general two-electron two-center ba-

sis. Having the correct analytical properties both at coalescent points of ri = rj and at

asymptotic distances ri → ∞, this basis yields accurate and very compact representations

of the nonrelativistic wave function. We presented numerical results for the nonrelativistic

energy obtained with this basis and demonstrated that the matrix elements of the negative

powers of the interparticle distances can be calculated by numerical integration over the

corresponding nonlinear parameter.

The correlated exponential basis looks a promising tool for the evaluation of higher-order

QED effects in H2 and the other diatomic molecules. We hope that speed and stability of

our present numerical procedure can be improved further by calculating the master integral

and its derivatives with help of the Taylor expansion in r.
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Appendix A: Numerical evaluation of the master integral

For the numerical evaluation of the master integral by numerical integration, one needs to

eliminate all singularities on the integration path [9] in Eq. (5). For this one has to consider

all possible orderings of ti. Because of the symmetry 1↔ 2 and A↔ B of the wave function,

one can assume, without loosing the generality, that y ≤ |x|, so that t1 ≥ t2 and t3 ≥ t4.

This leaves us with six possible orderings of ti. The six corresponding representations of the

master integral f are:

f(r) =

(∫ t2

t1

ln |β0,0|+
∫ t3

t2

ln |β0,0 β3,3|+
∫ t4

t3

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)

et r

2
√
σ
dt

=

(∫ t3

t1

ln |β0,0| −
∫ t2

t3

ln |β0,2|+
∫ t4

t2

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)

et r

2
√
σ
dt

=

(∫ t3

t1

ln |β0,0| −
∫ t4

t3

ln |β0,2| −
∫ t2

t4

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)

et r

2
√
σ
dt

=

(
−
∫ t1

t3

ln |β0,0 β0,2| −
∫ t2

t1

ln |β0,2|+
∫ t4

t2

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)

et r

2
√
σ
dt

=

(
−
∫ t1

t3

ln |β0,0 β0,2| −
∫ t4

t1

ln |β0,2| −
∫ t2

t4

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)

et r

2
√
σ
dt

=

(
−
∫ t4

t3

ln |β0,0 β0,2| −
∫ t1

t4

ln |β2
0,0 β0,1 β0,2| −

∫ t2

t1

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)

et r

2
√
σ
dt .

(A1)

In order to eliminate singularities algebraically, the products and ratios of β can be combined

together by using the identity [14]

√
σ − γ√
σ + γ

γ′ −
√
σ

γ′ +
√
σ

=

√
σ − Γ√
σ + Γ

, (A2)

where

Γ =
σ + γ γ′

γ + γ′
. (A3)
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The evaluation of the logarithms in Eq. (A1) proceeds as follows

Re

[
1

2
√
σ

ln

(√
σ − γ√
σ + γ

)]
=



− 1
γ
, for σ = 0 ,

− 1√
σ

arctanh
(

γ√
σ

)
, for σ > 0, |γ| <

√
σ ,

− 1√
σ

arctanh
(√

σ
γ

)
, for σ > 0, |γ| >

√
σ ,

− 1√
−σ

[
arctan

(√
−σ
γ

)
+ k π

]
, for σ < 0 .

(A4)

In the last line, the phase prefactor k = 0,±1 is introduced, which is determined as follows.

On a part C of the integration path where σ is negative, the parameter γ may change a sign.

At this point, a phase factor ±π is introduced so as to make the integrand continuous. Since

γ changes sign twice on C, the correction term vanishes at the beginning and at the end of

C.

Numerical integration over t in the master integral is facilitated by the presence of an

exponent etr, which provides strong damping for large negative t. The integrand is gener-

ally a smooth function everywhere except for vicinities of points ti, around which it may

possess one or maximum two logarithmic singularities, which need to be taken care of. We

perform numerical integrations by subdividing the integration interval in several parts and

applying the extended Gauss-Legendre quadratures with logarithmic end-point singularity

(see Appendix of Ref. [15] for details), the standard Gauss-Legendre quadratures, and the

Gauss-Laguerre quadratures, depending on the properties of the integrand on the particular

sub-divided interval. Using an extended-precision arithmetics, we were able to perform the

integration in the master integral up to typically 30 (in worst cases, 20) digits of precision.

Appendix B: Numerical evaluation of the Hamiltonian matrix

For calculation of the Hamiltonian matrix, we need integrals f(n1, n2, n3, n4, n5) with

n1 = 0 and 1 and n2 . . . n5 = 0 . . . 2. Taking into account Eq. (15), we can reduce the set of

integrals to the case of n1 = 0 and n2 . . . n5 = 0 . . . 3. In order to calculate them, we first

evaluate the master integral f(r), its derivatives f (n)(r) with n = 1 . . . 5, and integrals f (−n)

with n = 1 . . . 10,

f (−n)(r) = −
∫ ∞
r

f (−n+1)(r) dr . (B1)

All f (n) with n = −10 . . . 5 are obtained directly from the integral representation for the

master integral (5) and calculated by performing the integration over t numerically. Alter-
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natively, one can also use the master differential equation (11) for f (−n)(r), but this will not

be stable for exchange integrals ~r1 ↔ ~r2 where σ ≈ 0, so we did not use this method.

Next, we apply the relations (14) to generate the set of derivatives over nonlinear param-

eters f (n)(0, n2, n3, n4, n5) with n2 + n3 + n4 + n5 = Ω and n = (−10 + 2Ω) . . . (5−Ω), with

Ω being increased from 1 to 5. Finally, the integrals with n1 = 1 are calculated by using

Eq. (15).

Applying relations (14) for calculation of f (n)(0, n2, n3, n4, n5), we need multiple deriva-

tives (and integrals over r) of the inhomogeneous terms Fi. The functions Fi are given by

relatively simple combinations of elementary functions and the exponential integrals [see

Eqs. (13)]. We find it convenient just to generate a table of explicit expressions for these

terms, by using following identities,

d

d r
Ei(a r) =

1

r
exp(a r) ,

−
∫ ∞
r

exp(a r) Ei(b r) =
1

a

[
exp(a r) Ei(b r)− Ei((a+ b) r)

]
. (B2)

Note that in the second identity, an integration over r produce an spurious singularity at

a = 0, which may lead to numerical instabilities for small a’s. Because of this, a series

expansion in a was used for the evaluation of inhomogeneous terms in the vicinity of the

instability points.
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