One-loop binding corrections to the electron g factor
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We calculate the one-loop electron self-energy correction of order c (Z a)® to the bound electron g factor.
Our result is in agreement with the extrapolated numerical value and paves the way for the calculation of the

analogous, but as yet unknown two-loop correction.

PACS numbers:

I. INTRODUCTION

The g factor of a bound electron is the coupling constant
of the spin to an external, homogeneous magnetic field. In
natural units 4 = ¢ = ¢y = 1, it is defined by the relation
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where J F is the energy shift of the electron due to the interac-
tion with the magnetic field é m is the mass of the electron,
and e is the electron charge (e < 0). It was found long ago [1]
that in a relativistic (Dirac) theory, the g factor of a bound
electron differs from the value ¢ = 2 due to the so-called
binding corrections. For an n.S state, they are given by
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where F is the Dirac energy. In addition, there are many
QED corrections, and the dominant one comes from the so-
called electron self-energy. When expanded in powers of Z «
the one-loop electron self-energy correction reads (for the n.S
state)
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where byo(15) = —10.236 524 32 [2, 3], bso = 23.6(5) [4],
and higher order coefficients remains unknown. What is ap-
proximately known, however, is the sum of b5y and higher-
orders terms for individual nuclear charges from all-order nu-
merical calculations [4-7]. The subject of this work is the one-
loop electron self-energy correction of the order of « (Z «)®,
namely the coefficient bso. Although it has been obtained by
extrapolation of numerical results, we aim to calculate it di-
rectly, in order to find out the best approach for the analogous
two-loop contribution, which currently is the main source of
the uncertainty of theoretical predictions. Due to extremely
accurate measurements in hydrogenlike carbon [8], the bound

electron g factor is presently used for the most accurate deter-
mination of the electron mass [9], and in the future it can be
used for determination of the fine structure constant [10] and
for precision tests of the Standard Model.

II. o (Za)® CORRECTION TO THE LAMB SHIFT

Before turning to the g factor we present a simple deriva-
tion of the analogous correction to the Lamb shift as proof of
concept because the computational approach for the g factor
will be very similar. The one—loop electron self-energy con-
tribution to the Lamb shift is

d*k 1 - 1
Esg =€ | ——— — (" ’
SE € /(27’(’)4’Lk2 <¢|’Y ?‘-ﬁ-k—’yov_m,yl |¢>7
4)
where V' = —Z a/r. The (Z a)® contribution is obtained
from the hard two-Coulomb exchange
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and where t = (m,0,0,0), tq = 0, ¢> = —g2. Equation
(5) as it stands is divergent at small ¢2. One subtracts leading
terms in small ¢ 2 which correspond to lower order contribu-
tions to the Lamb shift, so f(7?) ~ ¢2, and
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function f can be expressed in terms of its imaginary part f4
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The correction to energy in terms of f“ becomes
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The imaginary part f4 is much easier to evaluate because it
does not involve any infrared or ultraviolet divergences in k
and has much simpler analytic form than the f itself. The
calculations go as follows. Traces are performed with Feyn-
Calc package [11]. The resulting expression is a linear com-
bination of fractions with the numerator containing powers of
k2,¢?, kt, and k ¢, while gt vanishes. Any k in the numerator
can be reduced with the denominator with the help of
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The resulting expression is a linear combination of
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with integer n, m, { > 0. Next, the powers n, m, [ are reduced
to 1 or 0 using integration by parts identities
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with p = k, ¢, t. The resulting expression contains the integral
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and simpler integrals without any of these denominators. Ana-
Iytic expressions for all such integrals can be taken from [12],
but it is much easier to calculate the imaginary part using
Feynman parameters. For example, the imaginary part of the
J-integral is

JA(p?) = % [arctan(p) - 0(p—-2) arceos(;ﬂ . (15)
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Using J# and simpler formula for other integrals the result
for f4 is
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The one dimensional integration in Eq. (10) leads to
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Finally, the result for the o (Z a)® electron self-energy contri-
bution to the Lamb shift
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is in agreement with the well-known value [9, 13]. The same
integration technique is used in the next paragraph for the
evaluation of the analogous correction to the g factor.

ML «(Za)® CORRECTION TO THE g FACTOR

The one-loop correction to the g factor is similar to Eq. (4)
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where v is the electron wave function which includes pertur-
bation due to external magnetic field A, and p0 includes the
corresponding energy shift
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The (Z «)® contribution is given in analogy to the Lamb shift,
by the hard two-Coulomb exchange
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and by the expansion in A and in the momentum carried by of the magnetic field
A. The expansion of 1 in A is not very trivial. Since only the
low momenta of the wave function ¢ contribute to (Z a)® we i
apply the Foldy-Wouthyusen transformation in the presence S=-5—79-7, (22)



and the wave function can be represented as

@ I .. e Lz\|¢
—(r-— _© 7B
0 2m7ﬁ+8m20 0/’
23

where ¢ is the spinor wave function which corresponds to the
transformed Hamiltonian
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We are now ready to perform an expansion in A of Eq. (21),
and split 6 £®) in four parts
SE®) = B, + By + Es + Ey . (25)

F1 comes from the last term in Eq. (23)
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E5 comes from perturbation of ¢ due to the last term in the
transformed Hamiltonian (24)

the above matrix element is
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and g» becomes
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and where T; are defined in Eq. (7) with ¢t = (E,0,0,0). The
corresponding correction to the g factor is
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where p? /2 is replaced by 1/r. Since
1 5‘ The last term E,; comes from the expansion of §E(®) in
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where by dots we denote all other diagrams. In addition, we
perform an expansion in the momentum ¢ transferred by A
and obtain
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The corresponding correction to the g factor is
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The total o (Z «)® contribution to the bound electron g factor
is the sum of individual corrections, namely
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The numerical value for the coefficient multiplied by 7 is
bso = 23.282005, in agreement with Yerokhin’s very recent
result of 23.6(5) [4]. However, what is not in agreement is the
difference for b50(25) — b50(15), which according to our cal-
culations vanishes, but Yerokhin er al. [4] give 0.12(5). All
the assumptions in performing the fit in Ref. [4] were correct,
so this small discrepancy needs further investigation.

IV. SUMMARY

We have calculated the one-loop electron self-energy con-
tribution of order o (Z ) to the bound electron g factor, and
found that it is state independent. The principal result, how-

ever, is a presentation of the computational approach, which
can be extended to the yet unknown two-loop correction. This
correction is presently the main source of theoretical uncer-
tainty. The extension of the direct one-loop numerical calcula-
tion to the two-loop case is presently out of reach. In contrast,
the analytic approach with an expansion in Z « is technically
as difficult as the two-loop self-energy correction to the Lamb
shift, which has been known for some time [13].
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