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In homonuclear molecules, such as H2, the rovibrational levels close to the dissociation threshold do not
have definite symmetry with respect to the inversion of electronic variables. This effect—the gerade–ungerade
mixing—results from interactions between magnetic moments of electrons and protons. We calculate this mix-
ing on the level of adiabatic approximation and numerically solve the system of nuclear differential equations.
It turns out, that the corrections to the dissociation energy of rovibrational levels resulting from the mixing are
negligible in comparison with the present accuracy of experiments. As a co-product, the most accurate to date
clamped nuclei potential for the b 3Σ+

u state has been obtained.

PACS numbers: 31.30.GS, 31.15.aj, 31.15.vn, 31.50.Df

I. INTRODUCTION

The hydrogen molecule, due to its simplicity, can be accu-
rately calculated from first principles using the quantum elec-
trodynamic (QED) theory. At the current accuracy of about
0.001 cm−1, apart from nonadiabatic and relativistic effects,
theO(α3) and the dominating part ofO(α4) QED corrections
have to be included. The excellent agreement with recent ex-
perimental results for H2 [1, 2], D2 [1, 3] and HD [4, 5] indi-
cates a good understanding of all physically significant effects
and is a basis for a further improvement in theoretical descrip-
tion of the hydrogen molecule. At present, the main uncer-
tainty comes from the higher order nonadiabaticO(µ−3

n ), rel-
ativistic recoilO(α2/µn), and QEDO(α4) corrections. Once
these three terms are known, the accuracy of rovibrational lev-
els could be increased up to about 10−6 cm−1 (∼ 30 kHz),
provided that all other small effects are determined, in par-
ticular those due to the finite proton charge radius rp and the
gerade–ungerade mixing.

The correction due to rp can easily be calculated, but the
accurate value of rp is presently an issue. The result of the
recent determination of rp from the muonic hydrogen Lamb
shift [6] is 5% smaller than previous determinations from the
hydrogen spectrum and from the electron-proton scattering.
This 5% gives uncertainty in H2 dissociation energy of about
5 × 10−6 cm−1, thusxs the proton charge radius discrepancy
has to be resolved to be able to reach 10−6 cm−1 accuracy.

The correction resulting from gerade–ungerade mixing ap-
pears due to the interactions between the electron and the
proton magnetic moments. An experimental evidence of this
phenomenon has been reported for iodine [7] and cesium [8]
dimers and a detailed theoretical account of hyperfine inter-
actions in diatomic homonuclear molecules has been given in
[9]. The energy shift caused by such interactions in H2 can,
in principle, be as large as the hyperfine splitting in the hydro-
gen atom, which amounts to 1420 MHz ≈ 0.05 cm−1. Until
now however, the magnitude of this effect for the hydrogen
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molecule has been unknown and its determination is the pur-
pose of this work.

At the accuracy level of 10−6 cm−1 the predicted H2 spec-
trum is sensitive to uncertainties in fundamental constants.
In particular, the present uncertainty in the proton-to-electron
mass ratio, equal to 0.4 ppb, yields about 14 kHz uncertainty
for the ground state dissociation energy. This means, that the
proton-to-electron mass ratio can be determined from the H2

spectrum more accurately than it is known presently, if both
theory and experiment pass the threshold of 14 kHz uncer-
tainty. Experimentalists [10] have already considered such
level of precision, while from theoretical point of view, we
have not yet investigated in detail the feasibility of such an un-
certainty in H2. Certainly the most challenging is the accurate
calculation of O(α4) and estimation of O(α5) corrections.

II. WAVE FUNCTIONS AND HAMILTONIAN

In the adiabatic approximation, the total spatial wave func-
tion φ is approximated by a product of electronic and nuclear
functions

φ(~r, ~R) = φel(~r)χ(R)YLM (~n) (1)

with φel being the solution to the clamped nuclei Schrödinger
equation

Hel φel = E(~R)φel, (2)

YLM (~n) – a spherical harmonic with ~n = ~R/R. The nuclear
function χ fulfills the Born-Oppenheimer radial Schrödinger
equation[

− 1
2µn

1
R

∂2

∂R2
R+

L (L+ 1)
2µnR2

+ E(R)
]
χvL(R)

= EvL χvL(R), (3)

where µn is the ratio of the nuclear reduced mass to the elec-
tron mass, and atomic units are used throughout the paper.

In the nonrelativistic approximation the symmetry of the
inversion of electronic coordinates (~r1, ~r2) with respect to the
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geometrical center of the H2 molecule is conserved, and the
splitting δE of the clamped nuclei energies between the lowest
gerade and ungerade states vanishes exponentially for large
internuclear distances R [11, 12] (in atomic units)

δE(R) = Eu(R)−Eg(R) = R5/2 e−2R [1+O(1/
√
R)] . (4)

Since these states become asymptotically degenerate, a small
perturbation may significantly mix them, and gerade and
ungerade symmetry will not be preserved. To describe this
mixing, let us define the following two electronic spatial func-
tions

φg(~r1, ~r2; ~R) = φg(−~r1,−~r2, ~R) = φg(~r2, ~r1, ~R) (5)

for the gerade (X 1Σ+
g ) state, and

φu(~r1, ~r2; ~R) = −φu(−~r1,−~r2, ~R) = −φu(~r2, ~r1, ~R) (6)

for ungerade (b 3Σ+
u ) state. Both functions are assumed to be

solutions to the clamped nuclei Schrödinger equation (2) with
corresponding energies Eg and Eu. In the asymptotic region
they take the Heitler-London form [13]

φg(~r1, ~r2, ~R) =

[
φH(r1A)φH(r2B) + φH(r1B)φH(r2A)

]
√

2
(7)

φu(~r1, ~r2, ~R) =

[
φH(r1A)φH(r2B)− φH(r1B)φH(r2A)

]
√

2
(8)

where φH is the ground state atomic hydrogen function.
The leading relativistic corrections, as given by the Breit-

Pauli Hamiltonian, violate the inversion symmetry of electron
coordinates with respect to the geometrical center. As a result,
electronic states do not have a definite symmetry and rovibra-
tional energies are slightly shifted. One expects this shift to
be the most significant for states laying close to the dissoci-
ation threshold, where nuclei are far apart from each other.
Among all the relativistic corrections, the dominating one at
large internuclear distances results from the magnetic inter-
actions between all the four particles, electrons and protons,
represented by a and b, (e2 = 4π α)

δH = m2 α
∑
a>b

ea eb
4π

[
−2π

3
ga gb
mamb

~sa · ~sb δ(3)(rab)

+
ga gb

4mamb

sia s
j
b

r3ab

(
δij − 3

riab r
j
ab

r3ab

)]
. (9)

δH causes the gerade–ungerade mixing and also contributes
to the gerade–ungerade splitting of the clamped nuclei ener-
gies. In fact, the relativistic correction to this splitting goes
like R−3 (for J 6= 0) and, at large R, dominates over the non-
relativistic splitting, Eq. (4). To account for the splitting and
the mixing, we will include in the nuclear equation both the di-
agonal and off-diagonal matrix elements between gerade and
ungerade states.

III. MATRIX ELEMENTS FOR THE
GERADE–UNGERADE MIXING AND SPLITTING

Among all the spin interactions in Eq. (9), the proton-
proton and the local (Dirac δ) electron-electron interactions
can be neglected. The first one is very small and the sec-
ond one vanishes exponentially for large distances. We ne-
glect also the tensor electron-nucleus interaction, because it is
much smaller than the scalar interaction, which is proportional
to the Dirac δ. As a result of these approximations, δH is a
sum of the tensor electron-electron spin and the local electron-
nucleus interactions. In atomic units they take the form

δH = α2 s
i
1 s

j
2

r312

(
δij − 3

ri12 r
j
12

r212

)
+
∑
a,X

4π α2

3
gpm

mp
~sa · ~IX δ(3)(raX) (10)

= δH1 + δH2 , (11)

where a = 1, 2 labels electrons and X = A,B – nuclei. Let
us introduce the notation ~L for rotational angular momentum,
~S = ~s1 + ~s2 for the total electron spin, ~I = ~sA + ~sB for the
total nuclear spin, ~J = ~L+ ~S and ~F = ~J + ~I . We will use the
basis |L, S, J, I, F,mF 〉 in the evaluation of matrix elements.
Not all the values of angular momenta are allowed, due to the
Pauli exclusion principle. For the gerade state of H2 molecule
(S = 0), I = 0 for even L and I = 1 for odd L, for the
ungerade state (S = 1), I = 1 for even, and I = 0 for odd L.
Let us consider now the first component δH1 in Eq. (10) and
rewrite it in terms of the total electron spin

δH1 =
α2

2
Si Sj

r312

(
δij − 3

ri12 r
j
12

r212

)
. (12)

Its expectation value in the ungerade state is

δH1uu ≡ 〈φu|δH1|φu〉 = β(R)Si Sj (δij − 3ni nj) , (13)

where ni = Ri/R and

β(R) =
α2

4
b(R) , (14)

b(R) =
〈
φu

∣∣3(~r12 · ~n)2 − r212
r512

∣∣φu

〉
. (15)

For asymptotic internuclear distances the electron-electron
distance r12 can be replaced by R, thus b(R) ≈ 2/R3, and
δH1uu becomes much larger than the nonrelativistic splitting
δE .

Matrix elements of δH1uu in the basis |L, S, J,mJ〉 are di-
agonal in S and J , and do not vanish only for S = 1 and
∆L = 0,±2. Hence, we are left with only four types of ma-



3

trix elements:

〈〈L, 1, L+ 1|δH1uu|L, 1, L+ 1〉〉 =

β
2L (L− 2)

(2L+ 3)(2L− 1)
(16)

〈〈L, 1, L|δH1uu|L, 1, L〉〉 =

−β 2(2L(L+ 1)− 3)
(2L+ 3)(2L− 1)

(17)

〈〈L, 1, L− 1|δH1uu|L, 1, L− 1〉〉 =

β
2 (L+ 1)(L+ 3)
(2L+ 3)(2L− 1)

(18)

〈〈L− 1, 1, L|δH1uu|L+ 1, 1, L〉〉 =

−3β

√
L (L+ 1)
2L+ 1

, (19)

where we have introduced the double-braket notation

〈J,M |Q|J,M ′〉 = δMM ′ 〈〈J |Q|J〉〉 (20)

for a scalar operator Q.
The second term in Eq. (10), δH2, is at first rewritten as

δH2 =
π α2

3
gpm

mp

{
~S · ~I

[
δ(3)(r1A) + δ(3)(r1B) (21)

+δ(3)(r2A) + δ(3)(r2B)
]

+ (~s1 − ~s2) · (~IA − ~IB)[
δ(3)(r1A)− δ(3)(r1B)− δ(3)(r2A) + δ(3)(r2B)

]}
,

where A and B refer to the two nuclei. Although other terms
containing (~s1 ± ~s2) · (~IA ∓ ~IB) might also be present in
the above, they were omitted because their matrix elements
between φg and φu states vanish. The diagonal matrix element
of δH2 is

δH2uu ≡ 〈φu|δH2|φu〉 = γ(R) ~S · ~I , (22)

γ(R) =
π α2

3
gpm

mp
c(R) , (23)

c(R) = 〈φu|δ(3)(r1A) + δ(3)(r1B)

+δ(3)(r2A) + δ(3)(r2B)|φu〉 (24)

and the off-diagonal is

δH2gu ≡ 〈φg|δH2|φu〉 = γ′(R) (~s1 − ~s2) · (~IA − ~IB) ,(25)

γ′(R) =
π α2

3
gpm

mp
c′(R) , (26)

c′(R) = 〈φg|δ(3)(r1A)− δ(3)(r1B)

−δ(3)(r2A) + δ(3)(r2B)|φu〉 . (27)

In the asymptotic region, the matrix elements of the electron-
nucleus Dirac δ function approach the atomic hydrogen value,
thus

c(∞) = c′(∞) =
2
π
. (28)

Nonvanishing matrix elements in the angular momentum basis
|L, S, J, I, F,MF 〉 are

〈〈L, 1, L+ 1, 1, L|δH2uu|L, 1, L+ 1, 1, L〉〉 =

−γL+ 2
L+ 1

(29)

〈〈L, 1, L, 1, L|δH2uu|L, 1, L, 1, L〉〉 =

−γ 1
L(L+ 1)

(30)

〈〈L, 1, L− 1, 1, L|δH2uu|L, 1, L− 1, 1, L〉〉 =

−γL− 1
L

(31)

〈〈L, 1, L+ 1, 1, L|δH2uu|L, 1, L, 1, L〉〉 =

−γ L

L+ 1

√
2L+ 3
2L+ 1

(32)

〈〈L, 1, L, 1, L|δH2uu|L, 1, L− 1, 1, L〉〉 =

−γL+ 1
L

√
2L− 1
2L+ 1

(33)

〈〈L, 1, J, 1, L|δH2gu|L, 0, L, 0, L〉〉 =

−γ′
√

2J + 1
2L+ 1

(34)

〈〈L, 1, J, 0, J |δH2gu|L, 0, L, 1, J〉〉 = γ′. (35)

All these matrix elements depend implicitly on R and are
included in the clamped nuclei potential in the nuclear
Schrödinger equation.

IV. NUCLEAR EQUATIONS FOR THE
GERADE–UNGERADE MIXING

To take into account the states mixing, we employ the ma-
trix form of the equation 3[

− 1
2µn

1
R

∂2

∂R2
R+

L (L+ 1)
2µnR2

+Eg(R) + δEspin(R)− ẼvL
]
χ̃vL(R) = 0 , (36)

where δEspin(R) is a matrix formed from matrix elements of
δH , Eq. (10), in a pertinent basis. The dimension of the ma-
trix δEspin(R) is determined by the number of close lying lev-
els and it depends on the rotational quantum number L. The
principal question we ask is what is the value of the difference

δEgu = EvL − ẼvL , (37)

which we shall call the gerade–ungerade mixing correction to
the dissociation energy of a rovibrational level (v, L).

In what follows we consider three separate cases depending
on the quantum number L. We note in passing, that the L-
mixing in Eq. (19) can potentially play a role only for L = 0,
because in this case the diagonal spin-spin interaction repre-
sented by β is absent in δEspin(R).
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A. Case: L even and 6= 0

We span the nuclear wave function in the following basis

|L, 0, L, 0, L,M〉
|L, 1, L+ 1, 1, L,M〉
|L, 1, L, 1, L,M〉
|L, 1, L− 1, 1, L,M〉 .

(38)

The δEspin(R) matrix is now obtained using Eqs. (16)-(18)
and (29)-(35) and assumes the form

δEspin =


0 −γ′

r
2L+3
2L+1 −γ′ −γ′

r
2L−1
2L+1

−γ′
r

2L+3
2L+1 δE + β

2L (L−2)
(2L+3)(2L−1) − γ

L+2
L+1 −γ L

L+1

r
2L+3
2L+1 0

−γ′ −γ L
L+1

r
2L+3
2L+1 δE − β 2(2L(L+1)−3)

(2L+3)(2L−1) − γ
1

L(L+1) −γ L+1
L

r
2L−1
2L+1

−γ′
r

2L−1
2L+1 0 −γ L+1

L

r
2L−1
2L+1 δE + β

2 (L+1)(L+3)
(2L+3)(2L−1) − γ

L−1
L

 (39)

B. Case: L odd

The basis is

|L, 0, L, 1, J,M〉
|L, 1, J, 0, J,M〉 . (40)

δEspin(R) matrices for three different values of J = L +
1, L, L− 1 read

δEL+1
spin =

(
0 γ′

γ′ δE + β 2L (L−2)
(2L+3)(2L−1)

)
(41)

δELspin =

(
0 γ′

γ′ δE − β 2(2L(L+1)−3)
(2L+3)(2L−1)

)
(42)

δEL−1
spin =

(
0 γ′

γ′ δE + β 2 (L+1)(L+3)
(2L+3)(2L−1)

)
(43)

C. Case: L = 0

This is the only case where we include the L-mixing and
thus the basis is

|0, 0, 0, 0, 0, 0〉
|0, 1, 1, 1, 0, 0〉
|2, 1, 1, 1, 0, 0〉

(44)

and the δEspin(R) becomes

δEspin =

 0 −
√

3γ′ 0
−
√

3γ′ δE − 2 γ −
√

2β
0 −

√
2β δE + 3/(µnR

2)

 . (45)

The nuclear equation (36) with the matrices δEspin(R) pre-
sented above has been solved numerically as described in the
following section.

V. NUMERICAL PROCEDURES AND RESULTS

Very accurate clamped nuclei potential for the X 1Σ+
g state

has been reported recently in [12]. For the whole energy
curve, an accuracy of the order of 10−15 has been reached. It
is the most accurate result to date for H2 itself but also for any
molecular system with two or more electrons. Increasing the
accuracy to this level has been possible thanks to the discov-
ery of analytic formulas for two-center two-electron integrals
with exponential functions [14]. In this work, we report on an
analogous calculation for the b 3Σ+

u state. In order to achieve
the highest numerical accuracy, different basis sets are used,
depending on the internuclear distance R. For R < 12 bohr,
the James-Coolidge basis functions [15, 16] of the form

ψ{n}(~r1, ~r2) = (1± P̂12)(1± ı̂) e−α (r1A+r1B)−β (r2A+r2B)

×rn1
12 (r1A − r1B)n2 (r2A − r2B)n3

×(r1A + r1B)n4 (r2A + r2B)n5 (46)

have been employed. The antisymmetry projector (1 ± P̂12)
ensures singlet (+) or triplet (−) state, while the spatial pro-
jector (1 ± ı̂)—the gerade (+) or ungerade (−) symmetry.
Since in the actual numerical calculations, one can use only
a finite number of basis functions, one has to somehow select
the most appropriate finite subset of functions in Eq. (46). We
assume therefore, that the finite basis consists of all functions
with nonnegative integers ni such that

5∑
i=1

ni ≤ Ω (47)

with Ω = 3, . . . 18, and the final result is obtained by a nu-
merical extrapolation to Ω → ∞. For R < 1.2 bohr we used
the James-Coolidge basis with two different nonlinear param-
eters α 6= β, whereas for 1.2 ≤ R ≤ 12 bohr—with α = β.
The nonlinear parameters were optimized separately for each
internuclear distanceR, and then the exponential convergence
to a complete basis set as Ω→∞ has been observed.

To describe the molecule at 12 ≤ R ≤ 20 bohr, the gener-
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alized Heitler-London functions [13]

ψk(~r1, ~r2) = (1± P̂12)(1± ı̂) (48)

e−(r1A+r2B) rn1k
12 rn2k

1A rn3k
1B rn4k

2A rn5k
2B

with Ω up to 16 have been applied. These functions are the
most appropriate for large internuclear distances, and we have
checked that at R = 12 bohr the accuracy achieved with
generalized Heitler-London functions is close to that with the
symmetric James-Coolidge basis.

The region of R > 20 bohr is found to be numerically
insignificant, as δE vanishes exponentially at large R, see
Eq. (4). All the numerical results for R < 20 bohr, after ex-
trapolation to a complete basis set, are listed along with the
estimated error in Table I. This is the most accurate clamped
nuclei energy curve for the b 3Σ+

u state among all obtained so
far. Numerical calculations were performed in the quadrupole
precision, which nevertheless was not always sufficient. For
some values ofRwe observed numerical instabilities for high-
est values of Ω, these results had to be dropped, and thus nu-
merical extrapolation includes much larger uncertainties. For
small values of R we observed much slower numerical con-
vergence. It is related to the fact, that riA is then close to riB ,
and the one parameter selection of the finite basis set Eq. (47)
is not the most effective.

To evaluate the matrix elements in the functions β, γ, and
γ′ (see Eqs. (14), (24), and (27)), we employed exponentially
correlated Gaussian (ECG) functions [17, 18] of the form

ψk(~r1, ~r2) = (1± P̂12)(1± ı̂) (49)

× exp

− 2∑
i,j=1

Ak,ij(~ri − ~sk,i)(~rj − ~sk,j)

,
where the matrices Ak and vectors ~sk contain nonlinear pa-
rameters, 5 per basis function, to be variationally optimized.
For both, X 1Σ+

g and b 3Σ+
u states, 600-term bases were op-

timized with respect to Eg or Eu, for R spread over the range
(0, 12) bohr. For each R, the gerade {ψg,k}600k=1 and ungerade
{ψu,k}600k=1 basis sets were merged together to form 1200-term
expansions

∑600
k=1 (ck ψg,k + ck+600 ψu,k) for φg/u yielding

the Eg/u accurate to a fraction of microhartree. Next, using
these φg/u, we evaluated the electronic matrix elements of
δH , Eqs. (15), (24), and (27). Their numerical values are pre-
sented in Table II.

The regular radial Schrödinger equation (3) as well as the
coupled set of radial differential equations (36) have been

solved using Discrete Variable Representation (DVR) method
[19]. The discrete spectrum consists of 301 eigenvalues, each
corresponding to a bound rovibrational level (v, L) accommo-
dated by the Eg potential of H2. The gerade–ungerade mixing
corrections δEgu to the dissociation energy of all the levels are
listed in Table III. For a vast part of the levels the corrections
are of the order of 10−8 cm−1 or even smaller. Only for the
highest vibrational quantum numbers v ≥ 12, values two or-
ders of magnitude larger can be found. The largest correction
of ca. 6 · 10−6 cm−1 appears for the v = 14, L = 2 level. In
all cases, the corrections increase the dissociation energy, i.e.
lower the energy level.

Among the components of the Breit-Pauli Hamiltonian,
which are due to the magnetic interaction between all the par-
ticles, Eq. (9), the proton-proton interaction and the electron-
electron contact interaction have been a priori discarded, as
expected to be very small. It turns out, that the relativis-
tic corrections to gerade–ungerade splitting do not play any
role, either. The main contribution to the overall mixing ef-
fect comes from the off-diagonal matrix elements δH2gu ex-
pressed through the γ′(R), Eq. (27).

VI. CONCLUSION

We have shown that gerade–ungerade mixing gives cor-
rections to the most of rovibrational levels of hydrogen
molecule smaller than 10−6 cm−1. Since the present ac-
curacy of theoretical predictions for the dissociation energy
in the ground electronic state of the hydrogen molecule is
10−3− 10−4 cm−1 [1, 4], these corrections appear to be neg-
ligible. The mixing corrections become more significant only
for highly excited rovibrational states, where they approach
10−5 cm−1. It means, that further improvement in the preci-
sion of the dissociation energies can be obtained by the cal-
culation of the higher order nonadiabatic and QED effects,
assuming that the gerade–ungerade symmetry is conserved.
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TABLE I: The clamped nuclei energy Eu(R) of the b 3Σ+
u state of

H2 in atomic units.

R/au Eu(R) R/au Eu(R)
0.1 7.88820048023(54) 3.6 −0.988000298079213(12)
0.2 2.936760506575(82) 3.7 −0.989633582435914(12)
0.3 1.330347123362(18) 3.8 −0.9910585611760516(9)
0.4 0.5606817228129(49) 3.9 −0.992300031116625(14)
0.5 0.1234804880203(22) 4.0 −0.9933800668510541(6)
0.6 −0.1500998245246(19) 4.2 −0.995132117890052(4)
0.7 −0.3325581672547(26) 4.4 −0.996446550339835(4)
0.8 −0.4600921231595(33) 4.6 −0.997426637512202(3)
0.9 −0.5527036001896(36) 4.8 −0.998152794502693(1)
1.0 −0.6222644271165(35) 5.0 −0.9986872571548951(7)
1.1 −0.6761830053419(32) 5.2 −0.9990778944119540(7)
1.2 −0.7192364779960(12) 5.4 −0.9993612944728789(2)
1.3 −0.75456345204348(33) 5.6 −0.9995652465495600(3)
1.4 −0.78424467761929(72) 5.8 −0.9997107228203121(2)
1.5 −0.80966665343589(18) 6.0 −0.999813449850999(3)
1.6 −0.831760208300362(68) 6.5 −0.9999528356310057(3)
1.7 −0.851159923317480(27) 7.0 −1.000004005774949(3)
1.8 −0.8683100622950944(85) 7.5 −1.000018923410887(1)
1.9 −0.8835336279111071(53) 8.0 −1.000020221124853(3)
2.0 −0.8970763307631061(23) 8.5 −1.000017233424615(2)
2.1 −0.9091339626356802(92) 9.0 −1.000013517806560
2.2 −0.9198691283981695(17) 9.5 −1.000010246361593(1)
2.3 −0.929421350735748(16) 10.0 −1.000007673917731(3)
2.4 −0.9379131525207151(30) 10.5 −1.000005743973625(3)
2.5 −0.9454537520626225(47) 11.0 −1.000004322969006(11)
2.6 −0.9521413693513220(25) 11.5 −1.00000328140072(49)
2.7 −0.9580647377083453(7) 12.0 −1.000002515543228(2)
2.8 −0.9633041667983422(98) 13.0 −1.000001524303681(3)
2.9 −0.9679323537002679(23) 14.0 −1.000000959875243(1)
3.0 −0.9720150510265303(30) 15.0 −1.000000625324878
3.1 −0.9756116506534407(28) 16.0 −1.000000419565938
3.2 −0.9787757133393848(4) 17.0 −1.000000288823044
3.3 −0.9815554591177198(4) 18.0 −1.000000203340009
3.4 −0.9839942253211882(20) 19.0 −1.000000146028160
3.5 −0.9861308951634316(23) 20.0 −1.000000106740117
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TABLE II: The matrix elements for δEspin in atomic units. For c
and c′ the relative uncertainty is better than 10−3, whereas for b all
displayed digits are significant.

R/au b(R) c(R) c′(R)
0.00 0.03604 5.035 0.0
0.01 0.03604 4.929 0.004396
0.10 0.03632 4.000 0.04020
0.50 0.04275 1.708 0.1626
1.00 0.06232 0.8818 0.3242
1.30 0.07367 0.7345 0.4188
1.40 0.07588 0.7128 0.4450
1.50 0.07711 0.6989 0.4675
1.60 0.07739 0.6910 0.4867
1.70 0.07684 0.6866 0.5027
1.80 0.07557 0.6846 0.5157
2.00 0.07150 0.6833 0.5352
2.30 0.06336 0.6818 0.5539
2.50 0.05756 0.6795 0.5631
3.00 0.04412 0.6696 0.5824
3.50 0.03335 0.6585 0.6004
4.00 0.02521 0.6500 0.6156
4.50 0.01916 0.6439 0.6253
5.00 0.01470 0.6404 0.6309
5.50 0.01141 0.6383 0.6336
6.00 0.008969 0.6373 0.6351
7.00 0.005760 0.6365 0.6360
8.00 0.003887 0.6364 0.6363
9.00 0.002737 0.6363 0.6363

10.00 0.001998 0.6364 0.6364
11.00 0.001502 0.6364 0.6364
12.00 0.001157 0.6364 0.6364
∞ 0.0 2/π 2/π
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TABLE III: The gerade–ungerade mixing corrections δEgu to the dissociation energy of all the bound rovibrational levels of H2. The entries
are given in units of 10−8 cm−1.

v\L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1
1 1 0 1 0 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 5
2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 2 5
3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 2 5 2 6 2
4 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 1 5 2 6 2 7 3
5 3 1 3 1 3 1 3 1 3 1 3 1 4 1 4 1 5 2 5 2 6 2 8 3
6 3 1 3 1 3 1 4 1 4 1 4 1 5 2 5 2 6 2 7 3 10 4 14
7 4 1 4 1 4 1 5 2 5 2 5 2 6 2 7 3 9 3 12 5 17
8 5 2 5 2 6 2 6 2 7 2 7 3 9 3 11 4 14 6 21
9 7 2 7 2 8 3 8 3 9 3 11 4 14 5 18 7 28

10 10 3 11 4 11 4 13 4 15 5 18 7 25 10 40
11 16 5 17 6 18 6 21 8 26 10 37 16 65
12 30 10 31 11 36 13 45 18 66 30 138
13 74 25 81 30 104 42 170 90
14 438 159 583 280


