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We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass
effects and determine magnetic moments of deuteron and triton using the known NMR spectra of
HD and HT molecules. The results µd = 0.857 438 234 6(53) µN and µt = 2.978 962 471(10) µN are
more accurate and in a good agreement with the currently accepted values.
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When a molecule is placed in a homogeneous magnetic

field ~B, its nuclei experience the field that is shielded

by the surrounding electrons (1 − σ̂) ~B. The magnitude
of the shielding factor σ, typically of the order 10−5,
depends on the relative distance between nuclei, which
means that nuclear magnetic resonance (NMR) can be
used as a tool for obtaining information on the structure
of complicated molecules. However, when the molecular
structure can be calculated, high-precision NMR spec-
tra can be used to determine the relative magnitude of
nuclear magnetic moments [1]. Namely, the ratio of nu-
clear magnetic moments is proportional to the ratio of
measured frequencies that flip the nuclear spins

µA (1− σA)

µB (1− σB)
=
fA
fB

IA
IB

. (1)

The accuracy to which µB is known can be transferred
to µA provided that one knows with sufficient precision
the σA − σB difference. Here, we report on results of
the calculation of this shielding difference for HD and
HT molecules. Employing these results we determine
the magnetic moment of deuteron and triton using re-
cent high accuracy measurements of the proton magnetic
moment [2] and the ratio of spin flip frequencies [3–6].

Magnetic shielding of the nuclear magnetic moment
due to the surrounding electrons has been first consid-
ered by Ramsey in [7] with the help of the nonrelativistic
Hamiltonian in the external magnetic field. His result for
the isotropic shielding factor is
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where α is the fine structure constant, ~xb is the posi-
tion of the electron b with respect to the nucleus, ~pb is
its momentum, H is the molecular Hamiltonian in the
Born-Oppenheimer (BO) approximation, φ is the elec-
tronic BO wave function, and R is the distance between
nuclei. An immediate conclusion that can be drawn from
this formula is that the shielding of proton and deuteron
(triton) in the HD (HT) molecule is the same. Upon aver-
aging with the nuclear function χ, σ(0) = 〈χ|σ(0)(R)|χ〉,

the difference in the shielding still vanishes, not only for
the ground state but also for any excited state. Clearly
one has to go beyond the BO approximation and also in-
clude finite nuclear mass effects in the coupling to the ex-
ternal magnetic field. There have been several attempts
to calculate the shielding difference in HD (HT), and they
are all incorrect or incomplete. Neronov and Barzakh in
1977 [4] derived the formula and obtained the result of

δσ(HD) ≡ σd(HD)− σp(HD) = 15.0 · 10−9

δσ(HT) ≡ σt(HT)− σp(HT) = 20.4 · 10−9 (3)

but they started with the incomplete Hamiltonian, i.e.
their formula (4) does not include the nuclear spin-orbit
interaction (see gA − 1 terms in Eq. (4) below). Later,
the calculations by Jaszuński et al. [8] simulated nona-
diabatic effects by an artificial charge difference. Their
result of δσ(HD) = 9 ·10−9, although of the correct mag-
nitude, is not well substantiated from the physical point
of view, nor is it complete. Finally, in the most recent
calculations, Golubev and Shchepkin [9] used more real-
istic treatment of nonadiabatic effects, but their result of
δσ(HD) = 9 · 10−9 was also incomplete. Undoubtedly,
the coupling of electron motion to the nuclear motion is
partially responsible for the difference δσ, but this is not
the whole effect.

A derivation of the finite nuclear mass correction to the
shielding closely follows that of Ref. [7, 10] and starts
with the Hamiltonian for electrons and nuclei, which
includes coupling to the external electromagnetic field
and all possible nucleus A spin-orbit interactions, i.e.
(h̄ = c = 1)
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where ~π = ~p− e ~A, ~A is an external magnetic vector po-
tential, gA is a g-factor of the nucleus A, which is related
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to the magnetic moment by µA = eA gA IA/(2mA), and
V is a Coulomb interaction between electrons and nuclei.
In order to derive a formula for the shielding constant,
including the finite nuclear mass corrections, we perform
two unitary transformations ϕ,

H̃ = e−i ϕH ei ϕ + ∂tϕ. (5)

The first transformation places the gauge origin at the
moving nucleus A. We assume that the molecule is neu-
tral and that the magnetic field is homogeneous and there
is no electric field, so
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where ~A = ~A(~rA), and ~xa = ~ra − ~rA. The transformed
momenta are

e−i ϕ1 πja e
i ϕ1 = pja +

ea
2

(~xa × ~B)j , (7)

e−i ϕ1 πjB e
i ϕ1 = pjB +
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2

(~xB × ~B)j , (8)

e−i ϕ1 πjA e
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1

2
( ~D × ~B)j , (9)

where ~D =
∑
a e ~xa+eB ~xB is the electric dipole moment

operator. We can now assume that the total momentum

vanishes, thus ~pA = −~pB −
∑
a ~pa and the independent

position variables are ~xa and ~xB . Consider now the elec-
tronic Schrödinger equation(∑

a

~p 2
a

2m
+ V − E

)
φ = 0 , (10)

and the next transformation ϕ2 of the form
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which simplifies the nuclear kinetic energy, see Eq. (18)
below. The electron momenta are changed to

p′ia = e−i ϕ2 pia e
i ϕ2 = pia −
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and the potential
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where we omitted higher order terms in the electron nu-
cleus mass ratio. The new Hamiltonian H̃ after both
transformations with ~pel =

∑
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∑
a ~xa be-
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From this Hamiltonian one derives the shielding defined
by

Heff = − eA
2mA

gA ~IA (1− σ̂(~R)) ~B . (15)

Let us consider firstly the nonrelativistic Hamiltonian
Hnrel = H +Hn, where
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with mn = mAmB/(mA + mB) being the nuclear re-
duced mass. We assume the Born-Oppenheimer approx-
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imation and include Hn perturbatively using nonadia-
batic perturbation theory (NAPT) [11]. In the zeroth
order, the shielding is given by Eq. (2). The leading
nonadiabatic correction to the shielding σ̂(1) is linear in
the electron-nuclear mass ratio, and we split it into four

parts [10]: σ(1) = σn + σd + σs + σl. The explicit for-
mulae for the isotropic shielding in H2 and isotopomers:

eA = eB = −e, with ~R = ~rAB = ~rA − ~rB = −~xB are
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where ~P = −i ~∇R, and 〈φ|
↔
∆R |ψ〉 = −〈~∇Rφ|~∇Rψ〉.

The result in Ref. [10] contains a mistake in σd, which
we correct here.

In the numerical evaluation of Eqs. (19-22), the ground
state wave function is represented with the explicitly cor-
related Gaussian functions of the form

φΣ+ = e−a1A r
2
1A−a1B r21B−a2A r

2
2A−a2B r22B−a12 r

2
12 . (23)

The resolvent 1/(E −H) includes the sum of Σ− and Π
states, which are represented as

φΣ− = ~R · (~r1A × ~r2A)φΣ+ (24)

~φΠ = ~R× ~r1A φΣ+ . (25)

All of the above matrix elements are in electronic vari-
ables, so the derivatives with respect to the internuclear
distance have to be obtained in advance. For this purpose
we use the fact that total angular momentum vanishes on
φ, so

~R× ~∇R|φ〉 = −
(∑

b

~xb × ~∇b
)
|φ〉, (26)

and from the R-derivative of the Schrödinger equation in
the BO approximation we get

~∇R|φ〉 =
1

(E −H)′
~∇R(V )|φ〉 . (27)

Since we calculate only the shielding difference, all of the
terms with the reduced mass, including the most diffi-
cult ∆R, are omitted. Calculations are performed us-
ing 128 and 256 basis function for each symmetry with

global optimization of all nonlinear parameters. Numer-
ical results in the range R ∈ 〈0, 6〉 a.u. are presented in
Table I. Although the results for R > 3 are not in prin-
ciple needed, we use them for testing against the known
separated atoms limit, which is

σ(1)(R =∞) = −α
2

3

m

M

(
1 +

gA − 1

gA

)
. (28)

On the other hand, at small R we observe 1/R behavior,
which is not an artifact but a result of the shielding of
the nucleus A by the nucleus B, see Fig. 1. Our results
at R = 1.4 a.u. in comparison to the known previous
calculations are presented in Table II

The total isotropic magnetic shielding σ is obtained
by averaging with the nuclear wave function χ, σ =
〈χ|σ(0)(R) + σ(1)(R)|χ〉, where χ is a solution of the nu-
clear radial equation with the BO potential augmented
by adiabatic correction. Since the measurement [3] was
performed at T = 300 K we include contributions from
the excited rotational states up to J = 9 according to
Boltzmann distribution. The averaged result for the
(Ramsey) shielding factor of the H2 and isotopomers is
σ(0) = 26.335 17(20) · 10−6. However, σ(0) does not in-
clude relativistic corrections that are of the relative order
of α2 ∼ 10−4. The related estimate from Ref. [8] is much
smaller than the relativistic correction to the shielding of
the individual hydrogen atoms, so it is possibly incorrect.
The shielding differences in HD and HT are presented in
Table III. Their uncertainties come from the unknown
higher order nonadiabatic corrections. From these dif-
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TABLE I: Shielding as a function of the internuclear distance
R. Results to be multiplied by 10−6. The numerical uncer-
tainty of σ(0) is (20), while of δσ is (2) on last digits.

R[a.u.] σ(0) δσ(HD) δσ(HT)
0.00 59.936 77 ∞ ∞
0.10 58.308 74 0.053 997 0.069 030
0.20 54.933 43 0.030 630 0.038 311
0.40 47.435 08 0.020 577 0.025 604
0.60 41.035 38 0.018 685 0.023 329
0.80 36.014 57 0.018 680 0.023 243
1.00 32.118 10 0.019 197 0.023 663
1.10 30.504 37 0.019 486 0.023 874
1.20 29.074 46 0.019 759 0.024 044
1.30 27.804 09 0.019 991 0.024 153
1.40 26.672 56 0.020 181 0.024 201
1.50 25.662 62 0.020 324 0.024 186
1.60 24.759 25 0.020 416 0.024 107
1.70 23.949 94 0.020 464 0.023 973
1.80 23.224 07 0.020 469 0.023 792
1.90 22.572 23 0.020 436 0.023 569
2.00 21.986 84 0.020 367 0.023 308
2.10 21.461 05 0.020 261 0.023 015
2.20 20.988 70 0.020 131 0.022 700
2.30 20.565 01 0.019 973 0.022 362
2.40 20.185 30 0.019 792 0.022 010
2.50 19.845 67 0.019 587 0.021 643
2.60 19.542 83 0.019 361 0.021 265
2.70 19.273 36 0.019 117 0.020 880
2.80 19.034 52 0.018 855 0.020 488
2.90 18.823 95 0.018 570 0.020 085
3.00 18.638 83 0.018 280 0.019 688
3.20 18.337 14 0.017 652 0.018 886
3.40 18.113 34 0.016 989 0.018 092
3.60 17.952 68 0.016 308 0.017 322
3.80 17.842 09 0.015 640 0.016 598
4.00 17.769 75 0.015 002 0.015 930
4.20 17.725 68 0.014 405 0.015 320
4.40 17.701 48 0.013 866 0.014 780
4.60 17.690 67 0.013 394 0.014 311
4.80 17.688 47 0.012 976 0.013 899
5.00 17.691 28 0.012 632 0.013 557
5.20 17.696 74 0.012 344 0.013 270
5.40 17.703 34 0.012 099 0.013 023
5.60 17.710 10 0.011 889 0.012 810
5.80 17.716 48 0.011 724 0.012 638
6.00 17.722 24 0.011 584 0.012 489
∞ 17.750 45 0.010 753 0.011 326

TABLE II: Extrapolation to a complete basis and comparison
with the previous calculations of the isotropic nonrelativistic
BO shielding in HD (HT) at R = 1.4 a.u. Results to be
multiplied by 10−6.

size/ref. σ
(0)

el
δσ(HD) δσ(HT)

128 26.673 193 0.020 188 2 0.024 214 5
256 26.672 556 0.020 181 2 0.024 201 0
512 26.672 422 0.020 179 9 0.024 199 6
∞ 26.672 387(35) 0.020 179 6(3) 0.024 199 4(2)

[12] (1995) 26.813 9
[13] (1996) 26.680
[8] (2011) 26.677 111

ferences and from Eq. (1) we obtain the magnetic mo-
ments of deuteron and triton, see Table III. The ratio
of shielded magnetic moments for HD is the average of
two independent and consistent measurements [4, 5] and
[3]. The obtained result for µd is more accurate and in
good agreement with the presently accepted value, which
was obtained from an unpublished experimental result by
Philips et al. (1984), see [14] for details. Regarding µt,

FIG. 1: The difference δσ(HD, R) in ppm of the shielding
constant between the deuteron and the proton in HD as a
function of the internuclear distance R. The horizontal line
is a separated atoms limit, while the dotted line is the 1/R
asymptotics that comes from the direct interaction between
nuclei.
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TABLE III: Determination of the deuteron and the triton
magnetic moments. µp(HD) denotes the shielded magnetic
moment of the proton in HD molecule. The relative un-
certainty 10−3 of δσ comes from the neglected higher order
m/mn corrections and relativistic effects are expected to be
even 10 times smaller.

value Ref.
µp 2.792 847 350(9) µN [2]

δσ(HD, T = 300K) 0.020 20(2) · 10−6 this work
µp(HD)/µd(HD) 3.257 199 514(21) [3]

3.257 199 531(29) [5]
3.257 199 520(17) averaged

µd = µd(HD)/µp(HD) (1 + δσ)µp 0.857 438 234 6(53)µN this work
0.857 438 230 8(72)µN [14]

δσ(HT, T = 300K) 0.024 14(2) · 10−6 this work
µt(HT)/µp(HT) 1.066 639 893 3(7) [6]
µt = µt(HT)/µp(HT) (1 + δσ) 2.978 962 471(10)µN this work

2.978 962 448(38)µN [14]

the CODATA [14] value is based on the earlier, less ac-
curate work [5], while we use a more recent one [6] and
correct the value for δσ, which leads to even smaller un-
certainty of µt. We should note however, that the result
of [6] needs confirmation as the pressure dependence has
not been studied there, and because of the lack of infor-
mation on temperature we assumed T = 300 K.

In summary, we have determined improved values for
the deuteron and triton magnetic moments. This demon-
strates that NMR spectroscopy combined with precise
calculations of the shielding factor may lead to the most
accurate determination of nuclear magnetic moments.
Moreover, one may consider improving the determina-
tion of magnetic moments of other light nuclei, such as
3He, since the shielding factor for molecular hydrogen
can be calculated including nonadiabatic and relativistic
effects as has been already done for 3He atom [15].
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