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The exchange energy, i.e. the splitting ∆E between gerade and ungerade states in the hydrogen molecule has proven
very difficult in numerical calculation at large internuclear distances R, while known results are sparse and highly
inaccurate. On the other hand, there are conflicting analytical results in the literature concerning its asymptotics. In
this work we develop a flexible and efficient numerical approach using explicitly correlated exponential functions and
demonstrate highly accurate exchange energies for internuclear distances as large as 57.5 au. This approach may find
further applications in calculations of inter-atomic interactions. In particular, our results support the asymptotics form
∆E ∼ R5/2e−2R, but with the leading coefficient being 2σ away from the analytically derived value.

I. INTRODUCTION

The calculations of molecular properties like rovibrational
energies and various relativistic effects are routinely per-
formed at small internuclear distances R. Numerical re-
sults with standard available quantum mechanical codes are
not guaranteed to be accurate for large R, especially for ex-
ponentially small quantities. While the use of exponential
functions with explicit electron correlations has become the
natural choice for an approach with correct wave function
asymptotics, no efficient method to perform corresponding
integrals has been developed. Namely, the original calcu-
lations of Kołos and Roothaan1 with exponential functions
were an extension of earlier developments by Podolanski2 and
Rüdenberg3. Their method was based on Neumann expansion
of the 1/r12 term in spheroidal coordinates, which has a very
slow numerical convergence. In spite of this, a few years later
Kołos and Wolniewicz4 were able to obtain very accurate, for
the time, Born-Oppenheimer energies. This was a remark-
able breakthrough in the field of precision molecular structure.
Thus far, however, no accurate results for exchange energy
have been obtained for large internuclear distances. For this
reason the discrepancies between conflicting analytic results
have not yet been resolved.

Before going into detail, let us introduce the notion of
the exchange energy. The hydrogen molecule, assuming
clamped nuclei, is described by the electronic wave function,
which can be symmetric or antisymmetric with respect to
the exchange of electrons and with respect to inversion
through the geometrical center. For a large internuclear
separation the symmetry of the wave function does not
matter, and one has two separate hydrogen atoms. It means
that the difference between symmetric and antisymmetric
state energies has to be exponentially small. Indeed, this
splitting behaves as e−2R, but the question remains con-
cerning the prefactor. If we assume that the wave function
is just a product of two properly symmetrized hydrogen
orbitals, the so-called Heitler-London wave function5, then
the splitting is of the form given by Eq. (5), which is known
to be invalid, even with regard to its sign6. It means that,
even for large internuclear distances, one cannot assume that
the electronic wave function is a symmetrized product of
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hydrogenic ones. Therefore, the asymptotics of the exchange
energy and the functional form of the wave function that
reproduces this asymptotic behavior is an interesting problem.

There are conflicting results among analytic calculations of
the exchange energy for the leading term, and there are no
conclusive results for subleading ones. The problem seems
to be so difficult that no successful attempts to resolve these
discrepancies have been reported so far. In this work, we de-
velop a numerical approach to calculate the exchange energy
at large internuclear distances with well controlled numerical
accuracy. To achieve this, we employed a large basis of expo-
nential functions of the generalized Heitler-London form with
an arbitrary polynomial in all interparticle distances. We have
previously developed an efficient recursive approach to cal-
culate integrals with two-center exponential functions7, and
demonstrated its advantages by the most accurate calcula-
tion of Born-Oppenheimer (BO) energies for the hydrogen
molecule. In this work we use an efficient parallel version
of linear algebra8,9 in an arbitrary precision arithmetic to fully
control the precision of the exchange energy. For example,
about 230-digit arithmetic is utilized at the largest internuclear
separations of 57.5 au to obtain six significant digits of the
exchange energy out of 50 digits for the total energy. To our
knowledge, there is no better approach available that will give
the exchange energy with full control of the numerical preci-
sion. In fact, the widely used Symmetry Adapted Perturbation
Theory (SAPT) method10, which aims to extract the exchange
energy contribution in a perturbative manner, has patholog-
ically slow convergence11,12 for large internuclear distances,
and its results are far from accurate.

II. FORMULATION OF THE PROBLEM

Let us consider a stationary Schrödinger equation for two
electrons with positions given by ~r1 and ~r2 in the H2 molecule
in the BO approximation with internuclear separation R,

HΨg(~r1 , ~r2) = Eg(R)Ψg(~r1 , ~r2), (1)

HΨu(~r1 , ~r2) = Eu(R)Ψu(~r1 , ~r2), (2)

where subscripts g and u denote gerade and ungerade symme-
try under the inversion with respect to the geometrical center.
They correspond to the ground electronic states with a total
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spin S = 0 and S = 1. H in the above equation is the nonrel-
ativistic Hamiltonian of the hydrogen molecule with clamped
nuclei,

H = −∇
2
1

2
−∇

2
2

2
− 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+

1

r12
+

1

R
. (3)

Within the BO approximation, one considers only the elec-
tronic part of the wave function of the system, and thus R
serves as a parameter for electronic energies. The difference
between these energies

∆E = Eu − Eg (4)

is the energy splitting, and half of this splitting with the minus
sign, J = −∆E/2, was the exchange energy according to
the definition used in previous works. In this work we always
refer to ∆E and convert results of the previous works from
J to ∆E. Consequently, we use the exchange energy as a
synonym of the energy splitting.

The pioneering theory of Heitler and London5 was one
of the first attempts to explain chemical bonding13 on the
grounds of the freshly established foundations of quantum
mechanics. Their method was based on approximation of the
wave functions corresponding to the lowest energy states of
H2 with symmetrized and antisymmetrized products of the ex-
act hydrogen atom solutions. This approach was pursued in
the same year by Sugiura14 who derived Born-Oppenheimer
energies of the lowest gerade and ungerade states as a func-
tion of R. The asymptotic value for the energy splitting based
on Sugiura14 reads,

∆EHL(R) = 2

[
28

45
− 2

15
(lnR+ γE)

]
R3 exp(−2R)

+O
(
R2 exp(−2R)

)
, (5)

where γE = 0.577 215... is the Euler-Mascheroni constant.
The Heitler-London approach appeared plausible because

it provided a reasonable mechanism of chemical bond forma-
tion and its comparison with the results of ab-initio numerical
calculations1 obtained later was satisfactory. Nevertheless, its
long-range asymptotics is inherently flawed based on mathe-
matical grounds. Analysis of Eq. (5) reveals that the asymp-
totic behavior of ∆E in Heitler-London theory becomes un-
acceptable, due to the logarithmic term being dominant as
R→∞. As a consequence, for sufficiently largeR (≈ 60 au)
the energy splitting becomes negative. The negative sign of
∆EHL(R) contradicts the well-established theorem on Sturm-
Liouville operators with homogeneous boundary conditions
stating that the lowest energy eigenstate should be nodeless in
the coordinate space.

Many years later, it was recognized that the Heitler-London
approach underestimates electron correlations6, and the log-
arithmic term in Eq. (5) could be identified with a potential
coming from the exchange charge distribution. This line of
reasoning led to conjectures (see Refs.15–17) that the correct
asymptotics might be in the same form as Heitler-London if
only the logarithmic term is appropriately suppressed (e.g. via
proper treatment of electron correlations). Indeed, Burrows et

al.17, on the grounds of algebraic perturbation theory18, have
derived their formula for the long-range asymptotics of the
splitting

∆EBDC(R) = R3e−2R

(
γBDC +O

(
1

R

))
, (6)

with γBDC = 0.301 672..., a result similar to the Heitler-
London result given by Eq. (5) aside from the unphysical log-
arithmic term.

A completely different line of reasoning was introduced by
Gor’kov and Pitaevskii19, followed only a few months later
by a very similar method by Herring and Flicker20. They
both used a kind of quasiclassical approximation for the wave
function to derive its asymptotic form, and with the help of a
surface integral summarized by Eq. (9), they obtained the ex-
change energy. A mistake in the numerical coefficient of the
leading term in the former was indicated and corrected in the
latter paper20, and their final result is

∆EHF = γHFR
5/2 exp(−2R) +O

(
R2 exp(−2R)

)
, (7)

with the leading order coefficient

γHF = 1.636 572 063 . . . (8)

Accounting for the asymptotic wave function requires careful
analysis of various regions of the 6-dimensional space (see
for instance Ref.20). With the increasing internuclear dis-
tance the exact wave function approaches a symmetrized or
antisymmetrized product of two isolated hydrogen atom so-
lutions. Nonetheless, the exact way in which this limit is ap-
proached is of paramount importance for the asymptotics of
exchange energy, as has been thoroughly discussed with the
case of Heitler-London theory in Ref.6. In comparison to an-
alytic approaches for H+

2
21–24, examination of asymptotic en-

ergy splitting in H2 is substantially more challenging due to
electron-electron correlation, and it is prone to mistakes, as
made evident by the presence of conflicting results in the lit-
erature16,17,19,20, compare Eqs. (6) and (7).

III. DERIVATION OF THE LEADING ASYMPTOTICS

To our knowledge, all of the analytic derivations pre-
sented in Refs.15–20,25,26 ultimately rely on the Surface Inte-
gral Method (SIM), also referred to in the literature as the
Smirnov27 or Holstein-Herring28 method. Here we follow the
work of Gor’kov and Pitaevskii19 to present the SIM and the
derivation of the asymptotic exchange energy in Eq. (7). This
derivation lacks mathematical rigor but nevertheless helped
us to understand the crucial behavior of the asymptotic wave
function. Moreover, their asymptotics is confirmed by our nu-
merical calculations, which is only twice the uncertainty (2σ)
away from their analytical value.

Let us assume that nuclei are on the z-axis with z = a,−a,
(R = 2 a), and let Ω be half of the 6-dimensional space with
z2 ≥ z1, and Σ is a boundary of Ω, namely 5-dimensional
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space with z1 = z2. Consider the following integral

(Eg − Eu)

∫
Ω

d3r1 d
3r2 Ψg Ψu

=
1

2

∫
Ω

d3r1 d
3r2

[
Ψg (∆1 + ∆2) Ψu −Ψu (∆1 + ∆2) Ψg

]
=

∫
Ω

d3r1 d
3r2

~∇1

[
Ψg

~∇1 Ψu −Ψu
~∇1 Ψg

]
=

∮
Σ

d~S
[
Ψg

~∇1 Ψu −Ψu
~∇1 Ψg

]
. (9)

which allows us to express the energy splitting in terms of a
surface integral with Ψg and Ψu functions. Let us introduce a
combination of these functions

Ψ1 =
1√
2

(Ψg + Ψu), (10)

Ψ2 =
1√
2

(Ψg −Ψu), (11)

with the respective phase chosen in a manner such that Ψ1,2

are real and correspond to an electron localized at a specific
nucleus, namely

Ψ1 ≈
1

π
e−|~r1+~a|−|~r2−~a|, for ~r1 → −~a; ~r2 → ~a (12)

Ψ2 ≈
1

π
e−|~r1−~a|−|~r2+~a|, for ~r1 → ~a; ~r2 → −~a (13)

and the Ψg/u functions are normalized to 1. The left-hand
side of Eq. (9) can be transformed to∫

Ω

d3r1 d
3r2 ΨgΨu =

1

2

∫
Ω

d3r1 d
3r2

[
Ψ2
g + Ψ2

u − (Ψg −Ψu)2
]

=
1

2
−
∫

Ω

d3r1 d
3r2 Ψ2

2 (14)

and the right hand side to∮
Σ

d~S
[
Ψg

~∇1 Ψu −Ψu
~∇1 Ψg

]
=

∮
Σ

d~S
[
Ψ2

~∇1 Ψ1 −Ψ1
~∇1 Ψ2

]
. (15)

As a result, one obtains

Eg − Eu =
2
∮

Σ
d~S
[
Ψ2

~∇1 Ψ1 −Ψ1
~∇1 Ψ2

]
1− 2

∫
Ω
dV Ψ2

2

. (16)

The second term in the denominator is exponentially small,
and thus can be safely neglected. By virtue of Eq. (16), the

knowledge of the wave function and its derivative on Σ is suf-
ficient to retrieve the energy splitting. The advantage of this
method manifests itself especially in the regime of large in-
ternuclear distance, where exact wave functions of singlet and
triplet states are close to the appropriately symmetrized and
antisymmetrized products of the isolated hydrogen atom solu-
tions.

Below we closely follow the procedure of Ref.19 and correct
several misprints there. Let us assume the following ansatz of
the wave functions Ψ1/2

Ψ1(~r1, ~r2) =
χ1(~r1, ~r2)

π
e−|~r1+~a|−|~r2−~a|, (17)

Ψ2(~r1, ~r2) =
χ2(~r1, ~r2)

π
e−|~r1−~a|−|~r2+~a|, (18)

where the functions χ1/2 change slowly in comparison to the
exponential terms. Let us consider the region of z1 ≈ a, z2 ≈
−a and ρ1, ρ2 ∼

√
a where the exponentials become

e−|~r1+~a|−|~r2−~a|

∼ exp
{
−2 a− z1 + z2 −

ρ2
1

2 (a+ z1)
− ρ2

2

2 (a− z2)

}
,

(19)

and ρi is the perpendicular distance of i-th electron from the
internuclear axis. From the Schrödinger equation one obtains
for χ1[
∂

∂z1
− ∂

∂z2
+

1

2 a
− 1

a− z1
− 1

a+ z2
+

1

|~r1 − ~r2|

]
χ1 = 0,

(20)

where higher order O(1/
√
a) terms are neglected. Introduc-

ing z1 = (ξ + η)/2 and z2 = (ξ − η)/2, this equation takes
the form[
∂

∂η
− 1

2 a− ξ − η
− 1

2 a+ ξ − η
+

1

2
√
η2 + ρ2

12

+
1

4 a

]
χ1 = 0,

(21)

and the general solution is

χ1 = C(ξ, ρ12) e−
η
4 a

√√
η2 + ρ2

12 − η
(2 a− ξ − η) (2 a+ ξ − η)

, (22)

up to the unknown function C(ξ, ρ12). This function, which
is not a rigorous argument, is determined from the condition
that whenever ~r1 ≈ −~a or ~r2 ≈ ~a the wave function Ψ1

should be just exponential, and thus χ1 = 1 in this region.
This argument can be justified because for ~r1 ≈ −~a, the sec-
ond electron interacts dominantly with its nucleus. From this
condition one obtains
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Ψ1(~r1, ~r2) =
2 a (2 a− |z1 + z2|)
π (a− z1)(a+ z1)

exp

(
−2 a− z1 + z2 −

ρ2
1

2 (a+ z1)
− ρ2

2

2 (a− z2)

)
×

√ √
(z1 − z2)2 + ρ2

12 + z2 − z1√
(2 a− |z1 + z2|)2 + ρ2

12 + 2 a− |z1 + z2|
exp

(
−1

2
+
z2 − z1 + |z1 + z2|

4 a

)
. (23)

The function Ψ2 is obtained by the replacement ~r1 ↔ ~r2. The
appearance of ρ12 in the wave functions Ψ1 is in crucial dis-
tinction to the Heitler-London wave function and ensures the
correct sign of the leading order asymptotics for all distances,
as pointed out in Ref.29. Ψ1, however, is not differentiable
at z1 + z2 = 0 and this is one of the reasons we were not
able to fully accept this derivation. A similar problem appears
in a later derivation of Herring and Flicker20 and this lack of
analyticity at z1 +z2 = 0 was somehow ignored in all the pre-
vious works. One may even ask, why this nonanalytic wave
function should give the right asymptotics, and here we show
that, indeed, γ R5/2 e−2R behavior is in agreement with our
numerical calculations, although γ is 2σ away.

Let us now return to Eq. (16) to obtain the energy splitting
from the above Ψi. Because χ1/2 is slowly changing in com-
parison to dominant exponentials, their derivative can be ne-
glected, and the splitting becomes

Eg − Eu = − 8

∫ a

0

dz d2ρ1d
2ρ2 Ψ2 Ψ1

∣∣∣∣
z1=z2=z

, (24)

where

Ψ2 Ψ1

∣∣∣∣
z1=z2=z>0

=
(2a)2 ρ12 e

−4a−1

π2(a− z)(a+ z)2
e
z
a+

a(ρ21+ρ22)

z2−a2 , (25)

where only the leading terms in the limit of a large a are re-
tained. Integrals over ~ρ1, ~ρ2 yield∫

d2ρ1d2ρ2 ρ12e
−α(ρ21+ρ22) = π2

√
π

2
α−5/2. (26)

As a result one is left with the one-dimensional z-integral

Eg − Eu = −32e−4a−1

√
π

2a

∫ a

0

dz ez/a(a− z)3/2(a+ z)1/2,

(27)

which after change of a variable q = 1− z/a yields

Eg − Eu = − 16
√

2πa5/2e−4a

∫ 1

0

dq e−qq3/2(2− q)1/2.

(28)

After noting that a = R
2 , this result

γ = 4
√
π

∫ 1

0

dq e−q q3/2 (2− q)1/2 (29)

coincides with Eq. (19) of Ref.20. The numerical value γ =
γHF from Eq. (8) will be verified in the next Sections by direct
numerical calculations of the exchange energy.

IV. VARIATIONAL APPROACH

In the simplest implementation of the variational approach
one solves the Schrödinger equation by representing the wave
function as a linear combination of some basis functions
and finds linear coefficients without optimization of nonlinear
ones. Because we are interested in the large R asymptotics of
the exchange energy, the only viable option is to employ an
exponential basis. This ensures the short-range cusp condi-
tions30 and correct long-range asymptotic behavior of the trial
wave function. Consequently, the basis of trial functions is
chosen in the following form

φ =
∑
{ni}

c{ni}(1± PAB) (1± P12) e−r1A−r2B

×rn1
12 η

n2
1 ηn3

2 ξn4
1 ξn5

2 , (30)

where

ηi = riA − riB , ξi = riA + riB , (31)

and where PAB and P12 represent operators enforcing sym-
metry with respect to the permutation rA ↔ rB and r1 ↔ r2.
Only one type of exponent is used in the wave function, be-
cause the ionic structures like H+H−, which correspond to a
different choice of the exponent e−r1A−r1B , are subdominant
in our problem, as was already discussed in Ref.6, and thus
they can be omitted.

It is tempting to assume that the sum over non-negative inte-
ger indices ni is chosen such that for the so-called shell num-
ber Ω

5∑
i=1

ni ≤ Ω, (32)

because it gives a good numerical convergence for the total
binding energy. However, the main problem here is the very
low numerical convergence of the exchange energy at large
internuclear distances R with the increasing size of the basis
as given by Ω. It was the main reason that previous numerical
attempts were not very successful.

We notice that for R → ∞, the main contribution to the
numerator of the surface integral in Eq. (16) comes from the
integration over the neighborhood of the internuclear axis. We
thus anticipate that the crucial behavior of the wave function
is encoded in η1,2. Consequently, a basis is constructed using
three independent shell parameters, such that the sum of pow-
ers of η1,2, ξ1,2, and r12 are controlled by corresponding shell
numbers ΩA, ΩB , and ΩC

n2 + n3 ≤ ΩA, n4 + n5 ≤ ΩB , n1 ≤ ΩC , (33)
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and numerical convergence is attained independently in each
shell parameter.

Matrix elements of the nonrelativistic Hamiltonian in this
basis can be expressed in terms of direct and exchange inte-
grals of the form

f{ni}(R) = R

∫
d3r1

4π

∫
d3r2

4π

e−w1 r12−y η1−x η2−u ξ1−w ξ2

r1A r1B r2A r2B

× r(n1−1)
12 ηn2

1 ηn3
2 ξn4

1 ξn5
2 , (34)

with non-negative integers ni. When all ni = 0 f is called the
master integral, see Ref.7

f(R) = R

∫
d3r1

4π

∫
d3r2

4π

e−w1 r12−y η1−x η2−u ξ1−w ξ2

r12 r1A r2A r1B r2B
.

(35)

All integrals fn1n2n3n4n5
(r) can be constructed through dif-

ferentiation of the master integral with respect to the nonlinear
parameters and can be reformulated into stable recurrence re-
lations7, providing a way to obtain all the integrals required to
build matrix elements. Details on the computation of neces-
sary integrals and matrix elements can be found in our previ-
ous works in Refs.7,31,32.

Having constructed the Hamiltonian and overlap matrices,
the energy and linear coefficients cn0...n4

are determined by
the secular equation,

det
[〈
n1 . . . n5

∣∣H∣∣n′1 . . . n′5〉− E 〈n1 . . . n5

∣∣n′1 . . . n′5〉] = 0.
(36)

It has to be solved separately forEg andEu. Consequently, to
retrieve an exponentially small difference between eigenval-
ues for large internuclear distances, employment of extended-
precision arithmetic is inevitable.

The generalized eigenproblem in Eq. (36) is solved with the
help of the Shifted Inverse Power Method. At each iteration
the linear system has to be solved to refine the initial eigen-
value estimation, which is done via calculation of the exact
Cholesky factor of theH−ES matrix, whereH is the Hamil-
tonian and S the overlap matrix. A significant drawback of the
applied basis is the fact that those matrices are dense, far from
diagonally dominant and near-singular, especially for large
R. This specific structure of matrices in the explicitly cor-
related exponential basis does not allow for straightforward
application of iterative (e.g. Krylov-like) methods. Computa-
tion of the exact inverse Cholesky factor proved to be a suit-
able approach, providing cubic convergence. A crucial ad-
vantage of this method is that the Cholesky factor has to be
computed only once and can be reused in every iteration. The
main drawback of performing full Cholesky factorization is
its algorithmic complexity. It requires n3/3 arithmetic oper-
ations in arbitrary precision, which eventually become a bot-
tleneck of the whole calculation. Total computation time can
be significantly reduced when Cholesky factorization is par-
allelized. We found that our implementation of procedure
HSL_MP54 for dense Cholesky factorization from the HSL li-
brary8,9 adopted to arbitrary precision performed best in terms
of performance and accuracy.

Relying on our previous calculations of the Born-
Oppenheimer potential for H2

33 and anticipating that varia-
tional calculations will follow one of the analytic results for
the leading asymptotics of energy splitting, ∆EBCD(R) ∼
R3e−2R or ∆EHF(R) ∼ R5/2e−2R with the coefficient of
order of unity, the accuracy goal in decimal digits can be esti-
mated as dlog10 (∆E)e+ n. It is the number of correct digits
in Eg and Eu required to obtain the difference between them
on n last significant digits. In the extreme case of the internu-
clear distanceR = 57.5 au, approximately 50 correct digits in
the final numerical value of Eg and Eu are required. Conse-
quently, solving generalized eigenvalue problems for Eg and
Eu requires incorporation of arbitrary precision software. We
have found the MPFR library34 to be robust and provide the
best performance among all the publicly available arbitrary-
precision software.

V. NUMERICAL RESULTS

It is crucial to properly choose the Ω parameters of the ba-
sis, in order to obtain sufficiently accurate exchange energy. If
we assume ΩB = ΩC = 0, i.e. we allow only for a nontrivial
dependence in η1 and η2, the energy splitting has a very low
numerical convergence in ΩA, and thus this shell parameter
has to be sufficiently large to saturate the splitting. An essen-
tial feature of exponential function basis, other than the de-
sired analytical behavior, is its exponential convergence to the
complete basis set (CBS) limit, i.e. the log of differences of
energies calculated for subsequent values of Ω are very well
fitted to the linear function. By virtue of this property, ex-
trapolation to the CBS limit is straightforward and reliable.
Interestingly, we observe analogous behavior for the energy
splittings, which entails,

∆E (ΩA)−∆E (ΩA − 1)

∆E (ΩA − 1)−∆E (ΩA − 2)
= const . (37)

Consequently, extrapolation to the CBS limit can be per-
formed by linear regression of the logarithm of energy split-
ting increments,

log (∆E (ΩA)−∆E (ΩA − 1)) = α− β ΩA. (38)

The obtained coefficient β varies from 0.121(2) for R =
20.0, ΩA = 40 down to 0.0366(2) for R = 57.5, ΩA = 145.

At the largest considered nuclear distance of 57.5 au satura-
tion was achieved with ΩA as large as 145. This explains why
previous numerical attempts were not successful. In fact, the
only correct results were obtained in a previous work by one
of us (KP) in Ref.33, but those calculations were performed
only for internuclear distances up to R = 20 au.

In contrast, numerical convergence in ΩC is very fast. We
performed calculations with increasing values of ΩA and ΩC
shell parameters, but with ΩB = 0 up to R = 57.5. At first,
saturation is achieved in the ΩA parameter, and subsequently
ΩC is raised. Although such a basis has a multiplicative struc-
ture, a value as small as ΩC = 4 was sufficient to achieve the
claimed numerical precision. Extrapolation is analogous as
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TABLE I. Dependence of energy splitting ∆E = Eu −Eg scaled by factor R−5/2e2R on shell parameters at different internuclear distances
R [au]. The first column presents ∆E as obtained with ΩB = 0,ΩC = 0, i.e. with no explicit correlation in the basis. The second is ∆,
the difference in energy splitting between ΩB = ΩC = 0 basis and ΩC 6= 0 basis, and the third column is its value as extrapolated in ΩC ,
still with ΩB fixed at zero. The fourth column shows a correction δ to ∆E due to ΩB 6= 0, and the last column is the total energy splitting.
Uncertainty of ∆E(ΩB = 0,ΩC = 0), ∆ and δ come from extrapolation in ΩA, ΩC , and ΩB , respectively, and were obtained as described
in the text.

R ∆E(ΩB = 0,ΩC = 0) ∆ ∆E(ΩB = 0) δ ∆E

20.0 1.418 595 21(9) 0.138 969 8(18) 1.557 565 0(18) −0.006 16(27) 1.551 41(27)

22.5 1.409 067 90(8) 0.140 756 3(20) 1.549 824 2(20) −0.004 76(22) 1.545 06(22)

25.0 1.402 295 96(8) 0.142 648 3(22) 1.544 944 3(22) −0.003 69(18) 1.541 25(18)

27.5 1.397 382 94(7) 0.144 560 8(24) 1.541 943 7(24) −0.002 86(15) 1.539 09(15)

30.0 1.393 761 45(5) 0.146 451 2(26) 1.540 212 6(26) −0.002 21(12) 1.538 00(12)

32.5 1.391 067 28(5) 0.148 290 4(28) 1.539 357 7(28) −0.001 711(97) 1.537 646(97)

35.0 1.389 047 31(5) 0.150 069 3(30) 1.539 116 6(30) −0.001 324(79) 1.537 792(79)

37.5 1.387 530 09(5) 0.151 780 1(32) 1.539 310 2(32) −0.001 025(64) 1.538 285(64)

40.0 1.386 391 69(5) 0.153 422 3(34) 1.539 814 0(34) −0.000 794(51) 1.539 020(51)

42.5 1.385 542 54(5) 0.154 995 7(35) 1.540 538 2(35) −0.000 614(41) 1.539 924(41)

45.0 1.384 916 73(4) 0.156 503 7(37) 1.541 420 4(37) −0.000 476(33) 1.540 945(33)

47.5 1.384 464 91(3) 0.157 947 4(39) 1.542 412 3(39) −0.000 368(27) 1.542 044(27)

50.0 1.384 149 48(3) 0.159 332 5(41) 1.543 482 0(41) −0.000 285(21) 1.543 197(21)

52.5 1.383 941 70(2) 0.160 660 9(44) 1.544 602 6(44) −0.000 221(17) 1.544 382(18)

55.0 1.383 819 27(2) 0.161 931 6(45) 1.545 750 9(45) −0.000 171(14) 1.545 580(15)

57.5 1.383 764 60(2) 0.163 109(31) 1.546 874(31) −0.000 132(11) 1.546 742(33)

described above for the basis with ΩC = 0. Corresponding
numerical results for bases with saturation in ΩA and ΩC are
presented in the fourth column of Table I. The only exception
is the case of R = 57.5 au, for which only ΩC = 3 was tech-
nically feasible, which is reflected in higher uncertainty due
to extrapolation in the ΩC parameter. The limiting factor was
the available computer memory of 2TB, which was exhausted
by recursive derivation of integrals with extended-precision
arithmetic.

The numerical convergence in ΩB is relatively slow, but
the crucial point is that the numerical significance of the basis
functions with n4 + n5 > 0 becomes exponentially small in
the limit of large internuclear distance R. Therefore, we cal-
culate δ = R−5/2e2R [∆E −∆E (ΩB = 0)] using the single
shell parameter Ω as in Eq. (32) for all values of internuclear
distances up to R = 35, which was the upper limit set by the
available computer memory. The resulting δ, as a function of
R, is very well fitted to the exponential functions of the form
α e−β R with α = −0.0477(8) and β = 0.1025(9), and we
use this fit to obtain extrapolated δ for internuclear distances
R > 35 au, as shown in Table I. This demonstrates that the
correct asymptotics of the exchange energy can be obtained
using basis functions with n4 + n5 = 0 only. Nevertheless,
the influence of functions with n4 + n5 > 0 is included in
order to obtain a complete numerical result for the exchange
energy at individual values of R.

The final results for the splitting, presented in the last col-
umn of Table I, are obtained as a sum of ∆E(ΩB = 0) and δ.
In view of the limitations of the available computer memory
and reasonable computation times, we were able to perform

calculations in ΩB = 0 basis for R up to 57.5 au. To illustrate
the computational cost of these calculations, at R = 57.5 au,
the largest internuclear distance presented, ΩA = 145, was re-
quired for saturation, which amounts to solving a dense eigen-
problem in approximately 230 decimal-digit precision with
basis size N ∼ 27500.

VI. NUMERICAL FIT OF THE ASYMPTOTIC EXPANSION

A brief analysis of numerical results gathered in Table I and
depicted in Fig. 1 reveals that even after rescaling by a factor
of R−5/2e2R numerical data are still distant from γ in Eq.
(8). Nevertheless, around R = 35 au monotonicity changes
and convergence of R−5/2 e2R ∆E(R) to the constant γ can
be observed. In order to provide comprehensive analysis by
performing a numerical fit, an important conclusion from the
Herring-Flicker work20 should be recalled, i.e. that the next
asymptotic term should be of the relative order 1/

√
R, not

1/R. This conclusion is also supported by the derivation of
Gor’kov and Pitaevskii presented in Sec. III. The consid-
ered relatively wide region of internuclear distances enforces
accounting for at least 3 or 4 terms of asymptotic series to
properly model the observed dependence. The result for the
leading term depends on the length of the fitting expansion,
but converges to the same value with an increasing number of
points used for fitting, see Fig. 2. Taking this into account, and
the number of terms in the asymptotic series, we can estimate
the leading coefficient to be 1.663(14), which is 2σ away from
the Herring-Flicker value in Eq. (8), where we use the conven-
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R (au)

n

E

R 
5/2

e
 –2R

FIG. 1. Rescaled energy splitting R−5/2 e2R ∆E, fitted to numer-
ical points in Table I in the range R = 20 − 57.5 au, Herring and
Flicker20 asymptotics is the red horizontal dotted line, fitted γ is blue
dashed line and light blue shaded region represents values within the
uncertainty σ = 0.014 of γ. Results for R ∈ (6, 19) au are taken
from Ref.33 for completeness but were not used for fitting. Values
of higher order coefficients are presented without any uncertainties
because they strongly depend on the length of the expansion. They
are shown to represent the actual fitting function.

tion that the number in parentheses is the uncertainty denoted
in the text by σ. This uncertainty is obtained by studying fits
of various lengths to variable numbers of points and is cho-
sen very conservatively. Because the original calculations in

γ

N

γ

γ

γ

γ

FIG. 2. Dependence of the leading coefficient in a fit to the rescaled
energy splitting R−5/2 e2R ∆E, as a function of the number of last
numerical data points used for fitting. Error bars represent standard
deviation of the leading coefficient resulting from linear regression.

Refs.19,20 lack mathematical rigour and the asymptotic wave
function is non-differentiable at z1 = −z2, the value of the
asymptotics might be not fully correct.

Nonetheless, by assuming correctness of the Herring-

Flicker value, which amounts to fixing γ = γHF, and subse-
quent fitting in powers of 1/

√
R, a coefficient for the next-to-

leading,R2e−2R, term can be estimated as−0.66(7), which is
significant, as conjectured by Hirschfelder and Meath35. This
value is in disagreement with the work of Andreev26, in which
the next non-vanishing term is claimed to be R3/2 e−2R.

1/ R

n

E

R 
5/2

e
 –2R

FIG. 3. Rescaled energy splitting R−5/2 e2R ∆E, fitted to numeri-
cal points in Table I in the range R = 20 − 57.5 au, the same as in
Fig. 1, but represented as a function of 1/

√
R.

It is perhaps more convenient to present numerical results
and the fit as a function of 1/

√
R, see Fig. 3. Then it becomes

more evident, that the calculated numerical values are suffi-
cient to obtain the leading coefficient, and the polynomial fit
should consist of at least 3 or 4 terms to properly model the
numerical data.

Curiously, in the aforementioned ΩB = ΩC = 0 basis, the
rescaled exchange splitting R−5/2e2R∆E quickly and mono-
tonically converges as a function of R, to a constant value of
γ0 = 1.3835(2). Therefore, even in a basis with no powers of
r12, leading asymptotic behavior could be achieved, although
with the slightly smaller coefficient γ0. Inclusion of higher
powers of r12 brings this constant close to γHF, but even for
the largest distances considered in the calculations, numerical
points are still distant from the asymptotic constant, as pre-
sented in Fig. 1.

Considering the result of Ref.17, their leading asymptotics
seems to be in significant disagreement with our numerical
data, see Fig. 4. This asymptotics, even with inclusion of
a few higher order terms, cannot match our numerical data.
Nevertheless, if one assumes the leading asymptotics of the
form R3 e−2R, although with the unknown coefficient, the re-
sults of the fit of a polynomial in 1/R strongly depend on
the length of the fitting series and the number of points used
for fitting. The obtained coefficients are abnormally large
and have an alternating sign. This is an indication of im-
proper choice of fitting function. If, nevetheless, one assumes
R3e−2R asymptotics and fits a similar polynomial in 1/

√
R
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as in Fig. 1 to the rescaled energy, one obtains

R−5/2 e2R ∆E = 0.000 06(83)R1/2 + 1.662− 1.212R−1/2

+ 1.632R−1 − 7.070R−3/2 . (39)

The leading coefficient is consistent with 0, what is in dis-
agreement with γBDC from Ref.17. This disagreement is even
more pronounced when numerical results are confronted with
the asymptotics of Ref.17 in Fig. 4.

1/R

E

R
3
e

 –2R

FIG. 4. Rescaled energy splitting R−3 e2R ∆E fitted to numerical
points in Table I in the range R = 20 − 57.5 au, the same as in
Fig. 1, but presented as a function of 1/R. Burrows-Dalgarno-Cohen
asymptotics17 is the dash-dotted orange line.

VII. CONCLUSIONS

The high numerical accuracy for the exchange energy is
achieved owing not only to the correct asymptotic behavior
of explicitly correlated exponential functions, but also due to
the specific choice of the basis functions suggested by the
significance of the internuclear axis neighborhood. Regard-
less of the relatively limited range of internuclear distances
at R ≤ 57.5 au, due to this high numerical accuracy, we
were able to resolve the long-standing discrepancy between
long-range asymptotics. Our results are in agreement with
γ R5/2 e−2R asymptotics, although our numerically fitted γ
is 2σ away from the Herring-Flicker value γHF. Notably, fits
of different lengths converge to the same γ, as shown in Fig.
2, while the fit to R3 e−2R asymptotics gives a very small co-
efficient, consistent with 0 and in strong disagreement with
γBDC. This disagreement becomes more evident when the
asymptotics from Ref.17 is confronted with our numerical re-
sults in Fig. 4.

To conclude, our numerical results revise the recent analytic
derivations of the large-distance asymptotics and will provide
a valuable benchmark for various calculations of interatomic
interactions.
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