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Abstract

We present the Fortran package H2SOLV for an efficient computation
of the nonrelativistic energy levels and the wave functions of diatomic two-
electron molecules within the Born-Oppenheimer approximation. The wave
function is obtained as a linear combination of the explicitly correlated ex-
ponential (Ko los-Wolniewicz) functions. The computations of H2SOLV are
performed within the arbitrary-precision arithmetics, where the number of
working digits can be adjusted by the user. The key part of H2SOLV is the
implementation of the algorithm of an efficient computation of the two-center
two-electron integrals for arbitrary values of internuclear distances developed
by one of us (K. Pachucki, Phys. Rev. A 88 (2013) 022507). This have been
one of the long-standing problems of quantum chemistry. The code is par-
allelized, suitable for large-scale computations limited only by the computer
resources available and can produce highly accurate results. As an example,
we report several benchmark results obtained with H2SOLV, including the
energy value accurate to 18 decimal digits.
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1. Introduction

Rovibrational spectroscopy of simplest diatomic molecules, in particu-
lar, H2, HD and D2, demonstrated spectacular progress during the recent
years, achieving the fractional accuracy of energy level determinations of
few parts in 10−8 [1, 2, 3]. In order to match such accuracy in theoret-
ical calculations, one needs not only to accurately determine the nonrela-
tivistic energy levels within the Born-Oppenheimer approximation, but also
to account for the relativistic, quantum electrodynamics (QED), adiabatic
and non-adiabatic effects. The systematic treatment of these effects has re-
cently been performed within the nonrelativistic quantum electrodynamics
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(NRQED) expansion [4, 5] and the nonadiabatic perturbation theory [6].
Within these approaches, all corrections to the nonrelativistic energy are ob-
tained by perturbation expansion in the fine-structure constant α and the
electron-to-nucleus mass ratio m/M , as expectation values of various effec-
tive Hamiltonians with the nonrelativistic wave function. An accurate and
efficient numerical procedure for solving the nonrelativistic electronic Hamil-
tonian in the Born-Oppenheimer approximation is the basis underlying the
high-precision calculations [6, 4, 5].

Solution of the Schrödinger equation for the diatomic molecule has a long
history. It started in 1927 by the study of Heitler and London [9], who
were the first to prove theoretically that the hydrogen molecule is stable
against the dissociation into two hydrogen atoms. Several years later, James
and Coolidge obtained the first accurate theoretical value for the dissociation
energy of H2 with help of the exponential basis set that explicitly included the
interelectronic distance r12 [10]. Even more accurate results were obtained by
Ko los and Wolniewicz [11] who used a more general form of the exponential
basis set. The outstanding accuracy of their results remained unsurpassed
until very recently.

The Ko los and Wolniewicz basis, despite the obvious fact that it is the
most general and thus most powerful among the exponential basis sets used
in the literature, did not become popular up to now. The reason is the
notorious difficulty of the evaluation of the two-center radial integrals in
the Hamiltonian matrix with such basis functions. In their pioneering work,
Ko los and Wolniewicz [11, 12] calculated the integrals by using the Neumann
expansion of 1/r12 in the spherical oblate coordinates. This approach, later
used also by other authors [14], is plagued by serious technical problems
among which are the complexity of the expansion for high powers of r12 and
numerical instabilities.

A way towards an effective numerical evaluation of the two-center radial
integral of the general form was paved by one of us in Ref. [13]. This ap-
proach calculates the radial integrals by using the Taylor expansion in the
internuclear distance r. The expansion was shown to be absolutely conver-
gent for all positive values of r, thus making the method applicable even for
large internuclear distances.

In the present work, we develop the approach further and present the
results in the form of the H2SOLV code, which solves the two-electron two-
center Schrödinger equation by using an explicitly correlated basis set of
exponential Ko los-Wolniewicz functions. H2SOLV is the only code reported
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so far in the literature that is capable of computing two-center integrals with
arbitrary powers of interparticle distances, with the efficiency sufficient for
practical calculations. We report several benchmark results obtained with
H2SOLV, which are by several orders of magnitude more accurate than any
values published so far. The H2SOLV code thus solves the long standing
problem in quantum chemistry, that of the evaluation of the two-center ex-
change integrals with exponential functions with Coulomb interaction.

It should be noted that the other exponential basis sets used in the liter-
ature, such as the symmetric and asymmetric James-Coolidge basis [10, 17,
18], the symmetric H2 basis [18] and the symmetric H−H+ basis [19], are just
particular cases of the Ko los-Wolniewicz functions (with some restrictions on
the nonlinear parameters), so that all of them can be handled by H2SOLV.

2. Formulation of the problem

We consider the stationary Schrödinger equation for the two electrons in
the field of two infinitely heavy nuclei,

[Hel(r)− E(r)] Ψ(r1A, r1B, r2A, r2B, r12) = 0 , (1)

whereHel if the Hamiltonian of a diatomic molecule in the Born-Oppenheimer
approximation,

Hel(r) = −∇
2
1 +∇2

2

2
− ZA
r1A

− ZA
r2A

− ZB
r1B

− ZB
r2B

+
1

r12

+
ZAZB
r

, (2)

where the indices A and B label the nuclei, the indices 1 and 2 numerate the
electrons, and r ≡ rAB is the distance between the nuclei.

Considering the particular case of a Σ (J = 0) electronic state, the wave
function can be represented as

ΨI12 IAB
(r1A, r1B, r2A, r2B, r12) = ŜI12 ŜIAB

∑
n0...n4

cn0...n4 φn0...n4(r1A, r1B, r2A, r2B, r12) ,

(3)

where I12 is the parity with respect to the permutation of the two electrons
(r1 ↔ r2), IAB is the parity with respect to the permutation the two nu-
clei (rA ↔ rB), φn0...n4 are the basis radial functions and cn0...n4 are linear
coefficients. The operators ŜI12 and ŜIAB

enforce the desired symmetry of
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the electronic wave function with respect to the permutation r1 ↔ r2 and
rA ↔ rB,

ŜI = 1
2

(1̂± P̂ ) , for I = ±1 , (4)

ŜI = 1̂ , for I = 0 , (5)

where 1̂ is the unity operator and P̂ is the permutation operator (1 ↔ 2 or
A↔ B).

In the present work we use the basis radial functions φn0...n4 in the form
of the explicitly correlated exponential Ko los-Wolniewicz functions [11]

φn0n1n2n3n4(r1A, r1B, r2A, r2B, r12) = e−y (r1A−r1B)−x (r2A−r2B)−u (r1A+r1B)−w (r2A+r2B)

× rn0
12 (r1A − r1B)n1(r2A − r2B)n2 (r1A + r1B)n3 (r2A + r2B)n4

× r−n0−n1−n2−n3−n4−3 , (6)

where u,w, x and y are real nonlinear parameters.
The energy eigenvalue and the linear coefficients cn0...n4 of the eigenfunc-

tion are determined by solving the secular equation

det

[
〈n0 . . . n4|Hel|n′0 . . . n′4〉 − E 〈n0 . . . n4|n′0 . . . n′4〉

]
= 0 . (7)

The matrix elements in this equation can be expressed as a linear combination
of the basis integrals fk0 k1 k2 k3 k4(r) defined as follows

fk0 k1 k2 k3 k4(r) = r

∫
d3r1

4 π

∫
d3r2

4 π
rk012 (r1A − r1B)k1 (r2A − r2B)k2

× (r1A + r1B)k3 (r2A + r2B)k4
e−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B)

r12 r1A r1B r2A r2B

.

(8)

The explicit expression of the secular equation in terms of the basis integrals
fk0 k1 k2 k3 k4(r) is given in Appendix A.

In practical calculations, the expansion of the wave function over n0 . . . n4

in Eq. (3) is truncated. It is a common approach to introduce the rank of
the basis set Ω and restrict the expansion by the condition

n0 + n1 + n2 + n3 + n4 ≤ Ω . (9)
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The energy value and the wave function are thus becoming functions of the
rank of the basis, E = E(Ω) and Ψ = Ψ(Ω). By studying the convergence of
E(Ω) as Ω is increased, one obtains the estimation of the uncertainty of the
obtained energy value. It should be mentioned that the energy of a bound
state E(Ω) is negative and always decreases when Ω is increased. Thus, E(Ω)
always represents an upper bound for the exact energy level.

3. Calculation of basis integrals

In the previous section, we reduced the problem of the evaluation of the
secular matrix to the calculation of the basis integrals f(n0 n1 n2 n3 n4). This
is the most nontrivial part of the problem. It can be deduced from Eqs. (A.1)-
(A.5) that for the evaluation of the secular matrix we need only the basis
integrals with non-negative indices ni ≥ 0. Such integrals can be obtained
from the single master integral f0 0 0 0 0(r) ≡ f(r),

f(r) = r

∫
d3r1

4 π

∫
d3r2

4 π

e−w1 r12−u (r1A+r1B)−w (r2A+r2B)−y (r1A−r1B)−x (r2A−r2B)

r12 r1A r1B r2A r2B

(10)
by differentiation with respect to the nonlinear parameters,

fn0 n1 n2 n3 n4(r) =(
− ∂

∂w1

)n0
∣∣∣∣
w1=0

(
− ∂

∂y

)n1
(
− ∂

∂x

)n2
(
− ∂

∂u

)n3
(
− ∂

∂w

)n4

f(r) .

(11)

The above equation reduces the problem of the evaluation of basis integrals
to the calculation of the master integral and its partial derivatives over the
nonlinear parameters. It may be mentioned that the nonlinear parameter w1

plays only a supplementary role and is used to derive recursion relations in
powers of r12.

The calculation of the master two-center integral f(r) is a difficult and
long-standing problem. In the present work, we calculate the master two-
center integral and its derivatives by Taylor expansion in the internuclear
distance r, using the approach developed by one of us in Ref. [13]. With
explicit numerical calculations in Ref. [13] it was demonstrated that the Tay-
lor expansion method is not restricted to the region of small values of r but
works well also when r is significantly larger than 1 and for arbitrary large
powers of r12.
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The Taylor expansion of the basis integrals in r has the following general
form [13]:

fn0 n1 n2 n3 n4(r) =
∞∑
n=1

rn
[
(ln r + γE) f (1)

nn0 n1 n2 n3 n4
+ f (2)

nn0 n1 n2 n3 n4

]
, (12)

where γE is the Euler constant. The coefficients of the Taylor expansion
f

(1,2)
nn0 n1 n2 n3 n4 can be calculated by the recurrence formulas derived from the

differential equations for f(r); the method is described in details in Ref. [13].
The differential equations for the master integral f(r) are

(w2
1 − 4w2)

∂f ′(r)

∂w
= −r f(r)

2

∂σ02

∂w
− 2 r w f ′′(r) +

−F1 − F2 + F3 + F4

2
,

(w2
1 − 4u2)

∂f ′(r)

∂u
= −r f(r)

2

∂σ02

∂u
− 2 r u f ′′(r) +

F1 + F2 + F3 + F4

2
,

(w2
1 − 4x2)

∂f ′(r)

∂x
= −r f(r)

2

∂σ02

∂x
− 2 r x f ′′(r) +

F1 − F2 + F3 − F4

2
,

(w2
1 − 4 y2)

∂f ′(r)

∂y
= −r f(r)

2

∂σ02

∂y
− 2 r y f ′′(r) +

−F1 + F2 + F3 − F4

2
,

(13)

where f ′(r) = df(r)/dr, f ′′(r) = d2f(r)/dr2,

F1 = Ei[−r (w1 + 2u)] exp[r (u− w + x− y)]− Ei[−r (w1 + 2w)] exp[−r (u− w + x− y)] ,

F2 = Ei[−r (w1 + 2u)] exp[r (u− w − x+ y)]− Ei[−r (w1 + 2w)] exp[−r (u− w − x+ y)] ,

F3 = Ei[−2 r (u+ w)] exp[r (u+ w + x+ y)] +

{
Ei[2 r (x+ y)]− Ei[−r (w1 − 2x)]

−Ei[−r (w1 − 2 y)]− ln

[
(w1 + 2u) (w1 + 2w) (x+ y)

(u+ w) (w1 − 2x) (w1 − 2 y)

]}
exp[−r (u+ w + x+ y)] ,

F4 = Ei[−2 r (u+ w)] exp[r (u+ w − x− y)] +

{
Ei[−2 r (x+ y)]− Ei[−r (w1 + 2x)]

−Ei[−r (w1 + 2 y)]− ln

[
(w1 + 2u) (w1 + 2w) (x+ y)

(u+ w) (w1 + 2x) (w1 + 2 y)

]}
exp[−r (u+ w − x− y)] ,

(14)

and

σ02 = (u+w− x− y) (u−w+ x− y) (u−w− x+ y) (u+w+ x+ y) . (15)

7



From the dimensional analysis, one can derive that the function f satisfies
the following identity

w1
∂f(r)

∂w1

= −w ∂f(r)

∂w
−u ∂f(r)

∂u
−x ∂f(r)

∂x
−y ∂f(r)

∂y
+r f ′(r)−2 f(r) . (16)

The explicit expressions for the recurrence relations obtained from the above
differential equations are too long to be presented in the printed form. They
were derived by the symbolic computation in the Mathematica package and
stored directly in the Fortran form.

Despite the fact that the recurrence relations are quite long, the time
required for their computation grows only linearly with the increase of the
length of the Taylor series. Because of this it is possible to use these expres-
sions for computing basis integrals even in the cases when r is not small and
and the length of the Taylor expansion is large.

General recurrence relations derived from above differential equations
contain 1/x, 1/y, 1/w, 1/u and thus become numerically unstable for small
values of nonlinear parameters. Small values of w and u are not needed in
actual calculations, so the corresponding instability is not important. The
parameters x and y, however, might happen to be small. We were not able to
find reasonably compact recurrence relations that are stable for small values
of x and y. Instead, we obtain separate sets of recurrence relations for 3
special cases: (x = 0, y 6= 0), (x 6= 0, y = 0), and x = y = 0. The special-case
recurrences can be derived from the same set of differential equations (13).
In the actual calculations one has to avoid cases where x or y are nonzero
but small (typically < 0.01), this being the only drawback of the present
computational approach.

4. Description of the code

The H2SOLV code solves the two-electron two-center Schrödinger equa-
tion by using an explicitly correlated basis set of exponential Ko los-Wolniewicz
functions (6). The user should provide the nuclear charges ZA and ZB of the
two nuclei, the internuclear distance R (in a.u.), the parity with respect to the
permutation of the two electrons I12, the parity with respect to the permu-
tation the two nuclei IAB, and the nonlinear parameters of the wave function
y, x, u, and w. The code currently supports the Σ+ states (with zero total
angular momentum, J = 0). Generalizations to the higher electronic angular
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momentum Π and ∆ states are possible but not implemented. Normalizabil-
ity of the wave function requires u and w to be positive. Parameters x and
y are in principle arbitrary, but in practice their absolute value should not
exceed max(u,w). The cases where x and(or) y are small but nonzero have
to be excluded because of numerical instabilities. Typically, the condition
|x|, |y| 6∈ (ε, 0.01) is sufficient, where ε is the smallest positive machine value.
The cases of x = 0 and(or) y = 0 are handled by special sets of recurrence
relations and are numerically safe.

In the beginning of the calculation, the code checks the nonlinear param-
eter for the special cases, in order to avoid the linear dependence of the basis
set. The special cases are

1: x = y = 0 and u = w, the symmetric James-Coolidge basis,

2: x = y = 0 and u 6= w, the asymmetric James-Coolidge basis,

3: x = −y and u = w, the symmetric H2 basis,

4: x = y and u = w, the symmetric H−H+ basis.

If none of the above applies, the most general basis type (0: the Ko los-
Wolniewicz basis) is assumed.

Depending on the basis type, the restrictions on powers of interparticles
distances should be imposed. The first restriction is mod 2(n2 + n3) = 0, 1
and the second restriction is n2 > n3 or n2 = n3 and n4 ≥ n5. For example,
if the symmetric James-Coolidge (u = w, y = x = 0) basis is chosen, then
the gerade symmetry leads to the condition that n2 + n3 is even. Once the
restrictions are imposed, the code generates the basis with the powers of
interparticle distances restricted by

∑
i ni ≤ Ω, see Eq. (9). The complete

list of all restrictions applied in each particular case can be found in the code.
The user has the choice to let the code assign the restrictions automatically
or to specify them explicitly in the input parameters.

Once the set of all allowed combinations of ni is generated, the code allo-
cates memory and calculates the Taylor expansion coefficients by using the
recursion relations. After the Taylor expansion coefficients are computed and
stored, the code calculates the radial integrals by summing up the expansion
coefficients. After that the code calculates the Hamiltonian and the overlap
matrices. The linear coefficients of the wave function and the energy eigen-
value are determined by solving the secular equation by the inverse iteration
method using the user-supplied initial approximation to the energy. The
resulting eigenfunction is stored in the external file on the disk.
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5. Numerical issues

The common feature of nearly all explicitly correlated basis sets is that
calculations with them should be done in an extended precision. The main
reason is that the overlap matrices of such basis sets are almost singular, and
become increasingly singular as the size of the basis set is increased. This is
the case also for the basis set considered in the present work. We found that
in order to get reliable results with several thousands of basis functions, we
need to perform calculations with working precision of at least 60 decimal
digits.

In H2SOLV code, we perform all calculations with help of the arbitrary
precision arithmetic library MPFUN2015 written in Fortran 90 by David
Bailey [15]. MPFUN2015 is a thread-safe library, which allowed us to greatly
speed up calculations by using shared memory parallelization with OPENMP.
In our calculations we use the version v04 of MPFUN2015 based on the GNU
MPFR library [16], since it is several times faster than the pure Fortran
version. In fact this is the fastest thread-safe arbitrary precision arithmetic
library publicly available at present. The parallelization of the calculation
of integrals in H2SOLV is almost 100% efficient, so that the evaluation time
is inversely proportional to the number of available cores (threads). This
makes the evaluation of integrals very efficient, and for large basis sets the
code spends most of the time on the linear algebra, rather than on integrals.

An additional important feature of MPFUN2015 is that the number of
digits of working precision can be changed on the fly. While the maximal
number of digits of working precision is fixed during the compilation, the
actual number of digits can be decreased during the execution. In H2SOLV,
we take advantage of this opportunity, by using different number of digits
in the evaluation of integrals and in the linear algebra. For large basis sets,
the most time consuming part is the LDLT decomposition, so decreasing the
number of digits in this part may speed up the computations considerably.

6. Usage of the code

The input parameters for H2SOLV can be supplied either in the interac-
tive mode or, more conveniently, by creating an input text file and redirecting
the standard input (typically, ./h2solv <input file). Below is an example
of the input file for a calculation of the energy and the wave function of the
first excited electronic state of 1Σ+

g symmetry of the hydrogen molecule, for
the internuclear distance R = 6.0 a.u.
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1 ZA nuclear charge

1 ZB nuclear charge

1 IAB, A <-> B symmetry (=-1,0,1)

1 IE, r1 <-> r2 symmetry (=-1,1)

6.0 internuclear distance R

0 RESTRICT1, basis restriction type 1 (=-1..2; -1 for auto)

0 RESTRICT2, basis restriction type 2 (=-1..2; -1 for auto)

7 OMEGA, basis rank (=1..16)

140 NMAX, length of Taylor series (0 for the default)

60 NDIGITS, working precision for the linear algebra in digits

-0.694 approximate energy EN

-0.103 nonlinear parameter Y

-0.303 nonlinear parameter X

0.444 nonlinear parameter U

0.684 nonlinear parameter W

The left column of the input file contains the numerical values that are read
by the code, whereas the right column contains commentaries that are ig-
nored. The first two parameters ZA and ZB are the nuclear charges (positive,
integer). The next two parameters IAB and IE describe the symmetries with
respect to the permutation of nuclei and of electrons, respectively (1, sym-
metric; -1, antisymmetric; 0, no symmetry imposed). In the example, both
symmetries are set to 1, which corresponds to the gerade (IAB = 1) and
singlet (IE = 1) state.

R is the internuclear distance in atomic units (positive, real). RESTRICT1
and RESTRICT2 are the basis restrictions (integer, -1. . . 2). Their meaning is
explained by the following excerpt from h2solv.f:

c RESTRICT1 = -1 ! auto

c RESTRICT1 = 0 ! no restriction

c RESTRICT1 = 1 ! MOD(n2+n3,2) = 0

c RESTRICT1 = 2 ! MOD(n2+n3,2) = 1

c RESTRICT2 = -1 ! auto

c RESTRICT2 = 0 ! no restriction

c RESTRICT2 = 1 ! (n2.gt.n3).OR.((n2.eq.n3).AND.(n4.ge.n5))

c RESTRICT2 = 2 ! (n2.gt.n3).OR.((n2.eq.n3).AND.(n4.gt.n5))

If the restrictions are set to -1, the code will automatically impose mini-
mal restrictions needed in order to avoid linear dependencies of the basis
functions.

The rank of the basis Omega is the maximal value of the sum of powers
of all interparticle distances Ω, see Eq. (9), which determines the size of
the basis set. NMAX is the length of the Taylor series. If set to 0, the code
determines this parameter automatically as NMAX = 60 + 10*R. This choice
should be adequate for most practical applications, but it is recommended
to check the final results by varying NMAX. NDIGITS is the working precision
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for the linear algebra, in decimal digits (60 is sufficient for most cases). The
working precision for the evaluation of integrals (80 by default) is set up by
the parameter mpipl in the MPFUN library. (Naturally, NDIGITS should not
exceed mpipl.) An extension to a larger working precision is straightforward;
one needs just to increase the parameter mpipl in mpfunf.f90 and recompile
the code.

EN is the initial approximation to the energy. The code will compute the
eigenvalue of the Hamiltonian matrix which is closest to the initial approxi-
mation provided. In the example, the initial approximation EN = -0.694 is
closest to the first excited state (i.e., the second lowest-lying state) of this
symmetry, so this state is calculated.

The last four inputs variables Y, X, U, W are the nonlinear parameters
of the basis set, which can be chosen differently. For small internuclear
distances R ≤ 6 a.u., the James-Coolidge basis x = y = 0 works well [18].
For large distances R > 12, one may use generalized Heitler-London basis
(the electrons on the corresponding centers y = u and x = −w or both
electrons on the same center y = u and x = w, see Ref. [18] for details). In
the intermediate region of R, a reasonable starting choice of parameters is
y = 0 and x = w = 1/2. In order to achieve the best possible results for
a given size of the basis set (value of Ω), one needs to minimize the energy
with respect to these nonlinear parameters. However, in many situations it
is sufficient just to enlarge the size of the basis set with the recommended
values of nonlinear parameters.

The computation time of H2SOLV with the input example specified above
is about a minute on a dual processor Intel Xeon CPU E5-2680 v3 2.50GHz.
Below is the control output of this exemplary calculation.

==========================================

Nonrelativistic energy of H2-like molecule

General KOLOS-WOLNIEWICZ basis

Nuclear charge A: 1

Nuclear charge B: 1

A <-> B symmetry: GERADE

r1 <-> r2 symmetry: SYM

Internuclear distance: 6.0000

Work. prec. for integr.: 80

Work. prec. for lin. alg.: 60

Basis parameters:

Rank (OMEGA): 7
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Type 1 of restriction: 0

Type 2 of restriction: 0

Length of Taylor series: 140

Basis size: 792

Non-linear parameters:

Y = -1.030000000000000000e-1

X = -3.030000000000000000e-1

U = 4.440000000000000000e-1

W = 6.840000000000000000e-1

Resulting energy:

EN = -6.942666307257072980e-1

Beside the output in the standard output channel, the code creates the file
wf 7.dat (”7” corresponds to the value of Omega), which contains the wave
function. The computed wave function can be used for calculating expec-
tation values of various operators, as demonstrated by the exemplary code
example.f. The energy value obtained with 792 basis functions in the above
example, E = −0.694 266 6, can be compared with the benchmark result of
E = −0.694 267 038 209 [17], see Table 1.

We provide also a number of other input and output files of exemplary
calculations which illustrate the usage of the code with different variants
of the James-Coolidge basis and the generalized Heitler-London basis. The
results of these computational exercises can be compared with the benchmark
values collected in Table 1. The examples were chosen so as to keep the
computation time low, so the precision of the results obtained is not very
high, typically about 6 digits. Their accuracy can be enhanced significantly
by increasing the rank of the basis Ω. The typical precision of the energy
determination for basis sets with the rank Ω = 20 is 14-15 decimal digits
[18], which is by far the best accuracy reported in the literature so far for
diatomic molecules.

Table 1: Literature benchmark values for BO potential for the comparison with examplary
inputs for different types of the basis set.

Basis System State R Energy Reference
general H2 EF 6 -0.694 267 038 209 [17]
jc sym H2 Σ+

g 3 -1.057 326 268 873 [18]
jc asym H2 EF 3 -0.690 747 056 393 [17]
h2 sym H2 Σ+

g 6 -1.000 835 707 655 [18]
h-h+ HeH+ Σ+ 3 -2.904 314 561 859 [19]
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7. Benchmark results

As a demonstration of the potential of the H2SOLV code, we present
large-scale calculations of the long-range asymptotics of the exchange energy
of the hydrogen molecule ∆E, which is the difference between the lowest-lying
singlet and triplet levels. The exchange energy ∆E is exponentially decreas-
ing with the increase of the internuclear distance R and thus its large-R
asymptotics is difficult to be accessed in numerical calculations. In Table 2
we present our numerical results for the energy of the 1Σ+

g state of the H2

molecule and the exchange energy ∆E multiplied by the exponential pref-
actor, at R = 25 a.u. These results were obtained by H2SOLV with the
following input parameters: y = u = 0.52, −x = w = 0.52, MPIPL= 200,
NDIGITS= 100, NMAX= 450. The detailed numerical study of the large-R
asymptotics of the exchange energy of the H2 molecule is an important phys-
ical problem and will be presented elsewhere.

Table 2: Numerical values for the Born-Oppenheimer and exchange energies obtained with
the generalized Heitler-London functions at R = 25 a.u.

Ω N E(1Σ+
g ) e2R ∆E

17 13332 −1.000 000 027 470 268 507 696 150 4815.918
18 17017 −1.000 000 027 470 268 507 701 647 4816.266
19 21472 −1.000 000 027 470 268 507 703 947 4816.275
20 26818 −1.000 000 027 470 268 507 704 945 4816.490
21 33176 −1.000 000 027 470 268 507 705 394 4816.516
22 40690 −1.000 000 027 470 268 507 705 603 4816.527
∞

The advantage of the explicitly correlated exponential functions is that
the consecutive increments of the series of energies as a function of Ω converge
exponentially (as e−βΩ), thus allowing for a very accurate extrapolation to
the limit of Ω → ∞. As an example, by using a slightly adapted H2SOLV
code (the linear algebra performed with the proprietary HSL MP54 routine
and a double set of the non-linear parameters as in Ref. [18]), we were able
to obtained results for Ω as large as 25 (basis size 61 425). The extrapolated
result for the Bohr-Oppenheimer energy at R = 1.4011 is

E = −1.174 475 931 400 217 165(2) , (17)

which is two orders of magnitude more accurate than previous best literature
value.
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8. Summary

The Fortran package H2SOLV provides an efficient computation of the
nonrelativistic energies and the wave functions of diatomic two-electron mole-
cules in the Born-Oppenheimer approximation. The calculation is performed
with the explicitly correlated basis set of exponential (Ko los-Wolniewicz)
functions. This is one of the most general basis sets for the two-center two-
electron problem suitable for an accurate and compact representation of the
two-center wave function both for small as well as large internuclear distances.
The calculation is performed in the arbitrary-precision arithmetics, which
allows for large-scale computations limited only by the computer resources
available. The typical precision of the energy determination for basis sets
with the rank Ω = 20 (≈ 25,000 functions) is 14-15 decimal digits, which is
by far the best accuracy reported in the literature for diatomic molecules.
Already with the basis set of ≈ 1,000 functions, one typically gets energies
accurate to 6-7 digits, which is better than most of literature results.
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Appendix A. Matrix elements of the secular equation

The overlap integral of the two wave functions in Eq. (7) is obtained as

〈k0 . . . k4|l0 . . . l4〉 =
1

16

{
f(n0 + 1, n1, n2, n3 + 2, n4 + 2)

− f(n0 + 1, n1, n2 + 2, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2, n3, n4 + 2)

+ f(n0 + 1, n1 + 2, n2 + 2, n3, n4)
}
, (A.1)

where

f(n0, n1, n2, n3, n4) = fn0 n1 n2 n3 n4(r)/r
2+n0+n1+n2+n3+n4 , (A.2)
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and ni ≡ ki + li. The matrix element of the potential energy part of the
Hamiltonian (all terms on the right-hand side of Eq. (2) except for the gra-
dient terms) is given by

〈k0 . . . k4|V |l0 . . . l4〉 =
1

16 r

{
f(n0, n1, n2, n3 + 2, n4 + 2)

− f(n0, n1, n2 + 2, n3 + 2, n4)

− f(n0, n1 + 2, n2, n3, n4 + 2) + f(n0, n1 + 2, n2 + 2, n3, n4)

+ 2 (ZA + ZB)
[
−f(n0 + 1, n1, n2, n3 + 1, n4 + 2)

− f(n0 + 1, n1, n2, n3 + 2, n4 + 1) + f(n0 + 1, n1, n2 + 2, n3 + 1, n4)

+ f(n0 + 1, n1 + 2, n2, n3, n4 + 1)
]

+ 2 (ZA − ZB)
[
f(n0 + 1, n1, n2 + 1, n3 + 2, n4)

+ f(n0 + 1, n1 + 1, n2, n3, n4 + 2)− f(n0 + 1, n1 + 1, n2 + 2, n3, n4)

− f(n0 + 1, n1 + 2, n2 + 1, n3, n4)
]

+ ZA ZB
[
f(n0 + 1, n1, n2, n3 + 2, n4 + 2)

− f(n0 + 1, n1, n2 + 2, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2, n3, n4 + 2)

+ f(n0 + 1, n1 + 2, n2 + 2, n3, n4)
]}
. (A.3)

The matrix element of the kinetic energy part of the Hamiltonian (the terms
with gradient in Eq. (2)) is given by
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〈k0 . . . k4|T |l0 . . . l4〉 =
1

16 r2

{
k0 l0

[
f(n0 − 1, n1, n2, n3 + 2, n4 + 2) (A.4)

− f(n0 − 1, n1, n2 + 2, n3 + 2, n4)− f(n0 − 1, n1 + 2, n2, n3, n4 + 2)

+ f(n0 − 1, n1 + 2, n2 + 2, n3, n4)
]

− 2 (δk (l1 − 1) l1 + (k1 − 1) k1 δl) (f(n0 + 1, n2 − 2, n2, n3, n4 + 2)

− f(n0 + 1, n2 − 2, n2 + 2, n3, n4)) + 4 (yl δk l1 + yk k1 δl)

× (f(n0 + 1, n1 − 1, n2, n3, n4 + 2)− f(n0 + 1, n1 − 1, n2 + 2, n3, n4))

− 2 ((u2
l + w2

l ) δk + (u2
k + w2

k) δl) f(n0 + 1, n1, n2, n3 + 2, n4 + 2)

+ 2 (δk (l3 − 1) l3 + (k3 − 1) k3 δl) (f(n0 + 1, n1, n2, n3 − 2, n4 + 2)

− f(n0 + 1, n1, n2 + 2, n3 − 2, n4))− 4 (ul δk l3 + uk k3 δl)

× (f(n0 + 1, n1, n2, n3 − 1, n4 + 2)− f(n0 + 1, n1, n2 + 2, n3 − 1, n4))

+ 2 [δk (u2
l − y2

l + l1 (l1 + 1)− l3 (l3 + 1))

+ δl (u
2
k − y2

k + k1 (k1 + 1)− k3 (k3 + 1))]

× (f(n0 + 1, n1, n2, n3, n4 + 2)− f(n0 + 1, n1, n2 + 2, n3, n4))

+ 4 (ul δk (l3 + 1) + uk (k3 + 1) δl)

× (f(n0 + 1, n1, n2, n3 + 1, n4 + 2)− f(n0 + 1, n1, n2 + 2, n3 + 1, n4))

+ 2 ((u2
l + x2

l ) δk + (u2
k + x2

k) δl) f(n0 + 1, n1, n2 + 2, n3 + 2, n4)

− 4 (yl δk (l1 + 1) + yk (k1 + 1) δl)

× (f(n0 + 1, n1 + 1, n2, n3, n4 + 2)− f(n0 + 1, n1 + 1, n2 + 2, n3, n4))

− 2 (δk (l2 − 1) l2 + (k2 − 1) k2 δl)

× (f(n0 + 1, n1, n2 − 2, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2 − 2, n3, n4))

+ 4 (xl δk l2 + xk k2 δl)

× (f(n0 + 1, n1, n2 − 1, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2 − 1, n3, n4))

+ 2 (δk (l4 − 1) l4 + (k4 − 1) k4 δl)

× (f(n0 + 1, n1, n2, n3 + 2, n4 − 2)− f(n0 + 1, n1 + 2, n2, n3, n4 − 2))

− 4 (wl δk l4 + wk k4 δl)

× (f(n0 + 1, n1, n2, n3 + 2, n4 − 1)− f(n0 + 1, n1 + 2, n2, n3, n4 − 1))

+ 2 (δk (w2
l − x2

l + l2 (1 + l2)− l4 (1 + l4))

+ δl (w
2
k − x2

k + k2 (1 + k2)− k4 (1 + k4)))

× (f(n0 + 1, n1, n2, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2, n3, n4))

+ 4 (wl δk (1 + l4) + wk (1 + k4) δl)

× (f(n0 + 1, n1, n2, n3 + 2, n4 + 1)− f(n0 + 1, n1 + 2, n2, n3, n4 + 1))

+ 2 ((w2
l + y2

l ) δk + (w2
k + y2

k) δl) f(n0 + 1, n1 + 2, n2, n3, n4 + 2)

− 4 (xl δk (1 + l2) + xk (1 + k2) δl)

× (f(n0 + 1, n1, n2 + 1, n3 + 2, n4)− f(n0 + 1, n1 + 2, n2 + 1, n3, n4))

− 2 ((y2
l + x2

l ) δk + (y2
k + x2

k) δl) f(n0 + 1, n1 + 2, n2 + 2, n3, n4)
}
, (A.5)
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where δk = 1/2 for k0 + l0 = 0 and δk = k0/(k0 + l0) otherwise; δl = 1/2 for
k0 + l0 = 0 and δl = l0/(k0 + l0) otherwise; yk, xk, uk, wk are the nonlinear
parameters of the left-hand side wave function, yl, xl, ul, wl are the nonlinear
parameters of the right-hand side wave function.
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