Complete a” m Lamb shift of helium triplet states
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We have derived the complete formula for the a” m contribution to energy levels of an arbitrary
triplet state of the helium atom, performed numerical calculations for the 23S and 23P states, and
thus improved the theoretical accuracy of ionization energies of these states by more than an order
of magnitude. Using the nuclear charge radius extracted from the muonic helium Lamb shift, we
obtain the theoretical prediction in excellent agreement with the measured 23S — 23 P transition
energy [X. Zheng et al., Phys. Rev. Lett. 199, 263002 (2017)]. At the same time we observe
significant discrepancies with experiments for the 238 — 3*D and 2P — 33D transitions.

I. INTRODUCTION

High precision spectroscopic measurements in atoms
and molecules can be used for the determination of fun-
damental constants such as the Rydberg constant [1] and
the electron-nuclear mass ratio [2, 3]. They can also be
used for the determination of nuclear properties, among
them magnetic dipole and electric quadrupole moments.
In the present work we investigate the possibility of de-
termining the nuclear charge radius by means of atomic
spectroscopy.

The differences of the (squares of) nuclear charge
radii between different isotopes are routinely determined
nowadays from measurements of the isotope shifts of
transition frequencies [4-7]. Here we address a more am-
bitious task of determining the absolute value of the nu-
clear charge radius, specifically, that of the helium atom.
The main motivation of the spectroscopic determination
of nuclear radii is to make possible a comparison of differ-
ent methods, such as electron scattering and the muonic-
atom spectroscopy, and to search for possible deviations
that might signal the existence of unknown interactions
at the atomic scale.

The spectroscopic determination of the nuclear radius
has already been accomplished for the hydrogen atom.
Importantly, it was performed by two independent meth-
ods: from ordinary hydrogen [8-11] and from muonic hy-
drogen [12, 13]. At first the comparison of the two meth-
ods revealed a large discrepancy, which became known
as the proton size puzzle. This discrepancy seems to
be close to a resolution now [14] because several recent
spectroscopic and scattering experiments showed to be
consistent with the muonic hydrogen proton radius. As
a result, the comparison of ordinary and muonic hydro-
gen has provided improved values for the proton radius
and the Rydberg constant and forced a reconsideration
of systematic effects in hydrogen spectroscopy.

One may expect that a similar comparison performed
for other nuclei will also reveal interesting findings. An
important step towards such a comparison is the recent

muonic helium experiment [15], which determined the
charge radius of the helium-4 nucleus (the « particle)
with a 0.05% precision.

The goal of the present work is to improve the the-
oretical accuracy of the 235 — 23P transition energy in
atomic helium to a level sufficient for the determination of
the nuclear charge radius from the existing measurements
in ordinary helium. We achieve this by performing the
complete calculation of the o’ m QED effects. Unfortu-
nately, we also find that our calculation does not resolve
the previously reported discrepancy of theoretical pre-
dictions with experimental results for the 23S — 23D and
23 P — 23D transitions [16]. In view of this, we postpone
the determination of the a-particle charge radius until
these discrepancies are resolved. Henceforth, we present
our calculations of the complete o’ m QED effects and
obtain the improved theoretical predictions for atomic
helium energy levels using the quantum electrodynamic
theory.

II. PERTURBATIVE EXPANSION OF ATOMIC
ENERGY LEVELS

The basic assumption in bound-state quantum electro-
dynamics is the possibility of the expansion of the bound
state energy F in a power series of the fine-structure con-
stant a,
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where m/M is the electron-to-nucleus mass ratio and the
expansion coefficients (™) may contain finite powers of
Ina. The coefficients E®)(m/M) are further expanded
in powers of the m/M ratio,
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The leading expansion term Ey = F(29 is the nonrel-
ativistic energy, which is the eigenvalue of the nonrela-
tivistic Hamiltonian Hy. For the helium atom,

where r = |7} — 7|. Further expansion terms in Egs. (1)
and (2) can be expressed as expectation values of some
effective Hamiltonians with the nonrelativistic wave func-
tion. The derivation of the effective Hamiltonians is the
central problem, and this can be accomplished within the
approach of the nonrelativistic QED (NRQED), which is
employed here. While the leading-order terms are sim-
ple, the derivation becomes increasingly complicated for
high powers of a. The complete theory of helium energy
levels up to order a® m was reviewed in our former work
[17]. In the present work, we summarize the o m con-
tribution and perform its numerical calculations for the
23S and 23 P states. In this calculation we assume the in-
finitely heavy nucleus. The corresponding finite nuclear
mass corrections are much smaller than the uncertainty
due to the approximate calculation of the next order a® m
contribution, and therefore they are neglected.

III. a"m CONTRIBUTION

The o"m contribution E(7) is represented as a sum of
three terms,

EN =" +ED + B (4)
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where E(L7) is the low-energy part - specifically, the rela-

tivistic correction to the so-called Bethe logarithm; Eglh

is the part induced by the electron-electron and electron-
nucleus photon exchange; and Er(;)l is induced by the ra-
diative QED effects beyond those accounted for by E(L7).

Both E(E,Qh and Er(;)l have the same general structure,
being the sum of the first-order and second-order pertur-

bation corrections,

1
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Here, H® is the leading relativistic Breit Hamiltonian

(see Eq. (7) of Ref. [19]) and H®) is the QED o’m
Hamiltonian.

The relativistic correction to the Bethe logarithm was

derived and calculated numerically in Ref. [18], the

photon-exchange contribution was derived in Ref. [19],

and the radiative contribution was recently derived in
Ref. [20].

A. Relativistic correction to the Bethe logarithm

We start with the low-energy part in the leading QED
contribution. The leading nonrelativistic (dipole) low-

TABLE I. Relativistic corrections to the Bethe logarithm for
the 235 and 2°P (centroid) states of helium, in units of a7 m.

Term 235 23p
Er —45.1291 (35) —41.7175 (40)
Ero 335.8675 (36) 319.1601 (36)
ELs —1095.0439 (3) —1045.271 (8)

energy contribution of order a® m is given by
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where P = p1 + pa and A = Xa? is the high-momentum
cutoff. Epo(A) diverges when A — oo, due to the pres-
ence of terms proportional to A and In \. We obtain the
finite part of Erg by subtracting all these A\ dependent
terms. The result is by definition the low-energy ma®
contribution, also known as the Bethe logarithm.

The relativistic correction to the Bethe logarithm,

Eg), is obtained similarly. It consists of three parts,

Ef) =F1+En+Ers. (7)

The first part Fp, is a perturbation of the nonrelativis-
tic low-energy contribution Erg in Eq. (6) by the Breit
Hamiltonian H®, the second part Ep is induced by the
relativistic correction to the current operator P /m, and
the third term Er3 is the retardation correction. All of
these corrections are defined as remainders after dropping
A-divergent terms ~ A2, \,In ), and In? \. The divergent
terms are cancelled when combined with corresponding
terms from the other contributions in Eq. (4).

Numerical results for E7q, Ers and Ep3 are taken from
Ref. [18] and are summarized in Table I. Numerical un-
certainties are negligible in comparison to uncertainties
due to higher order corrections.

B. Photon-exchange contribution

The contribution EC(Qh is induced by the electron-
electron and electron-nucleus photon exchanges, i.e., in
its definition we exclude all diagrams with photons emit-
ted and absorbed by the same electron. We split this

contribution into the first-order and second-order parts,
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and evaluation and are summarized in Table IV. The first 50
7 of these operators were defined in Refs. [21-23], whereas

S{ih = ——=. (10) the remaining 14 operators are exclusive for the a7 m con-

6m v tribution. The final expression for the photon-exchange

. contribution is
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The above expression was obtained by slightly simplifying our former result in Ref. [19] with help of the following
expectation value identity
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The expression (9) for E5, is finite but numerically un- where EO is the nonrelativistic energy of ¢ and V' = —%—
stable. We thus regularize it as E + ;. Hp, is equivalent to H™® in the sense that their
1 expectation values on ¢ are the same.
exc exch (E HO)
b A _ _z } (13 C. The radiative contribution
+67r [Qg( Q53 — Q7) + Q1o Q59| ,(13)
where the regularized Breit operator Hp is acting on ket- The radiative correction Er(;)i consists of the one-loop
state |¢) as self-energy, the one-loop vacuum polarization, the two-

loop correction, and the three-loop correction,
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where E(4) = <H (4)> is the Breit correction to the energy. The above formula for E&) is obtained by simplifying our

former result in Ref. [20] with help of the identity (12). The second-order part Ej is
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Here, the operators H”®*) and H”(®) are obtained, respectively, as the a* and a® parts of the spin-dependent Breit
Hamiltonian with anomalous magnetic moment (see, e.g., Eq. (1) of Ref. [24]),

Hy = H'® 4+ H"®) 4+ O(k?) = Hg + Ho + Hp, (18)
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where k = a/2r is anomalous magnetic moment correction. Hp is defined in Eq. (14), and Hp, is
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Introducing the short-hand notations
Qa = Hg, (23)
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we evaluate the second-order corrections as follows. After tracing out spins, we obtain for the 235, state
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A similar result holds for the 23P centroid,
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where we assumed the normalization (23P?23P?) = 1. This completes the description of the first term in Eq. (15)
which is the electron self-energy contribution.
The second term in Eq. (15) is the one-loop vacuum polarization correction, for which we obtained [20]
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with Finally, the two-loop and three-loop radiative cor-



rections are obtained from the known hydrogenic re-
sults, keeping only the part proportional to the electron-
nucleus contact interaction, whereas the electron-electron
contact interaction terms vanish because the nonrela-
tivistic wave function is antisymmetric with respect to
the exchange 7 <> 7. Therefore, the two-loop correc-
tion is

ZQ

7

Efac)12 = ﬁ Ql Bso (29)
where the coefficient Bgg is known only numerically,

Bso = —21.55447(13) [25]. Similarly, the three-loop ra-
diative correction is given by [25]
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where aqg = Y02, 1/(2"n*) = 0.517479061....
completes our evaluation of the a” m contribution.

This

IV. ESTIMATION OF o®m EFFECTS

For the estimation of the radiative a®m effects in he-
lium, we employ the known hydrogenic results and pre-
tend that they are proportional to the electron-nucleus
contact interaction. Specifically, we use the results for
the hydrogenic 2s state of He™ [25]
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where the subscripts “SE” and “VP” denote the self-
energy and vacuum-polarization contributions, respec-
tively. The three-loop contribution is small [26] and thus
is neglected. The approximate a®m corrections to the
ionization energies of the 23S and 23P states of helium
are obtained from the corresponding hydrogenic 2s con-
tributions by
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Specifically, we get contributions of 0.158(52) MHz and
—0.048(16) MHz for the ionization energies of the 23S
and 23P states, correspondingly. We estimated the un-
certainties to be 1/3 of the corresponding numerical val-
ues; this estimate can be improved further once the a’m
contribution is verified.

V. FINITE NUCLEAR SIZE EFFECT

The last significant correction is due to the finite nu-
clear size, namely (in relativistic units)

By = 2% 7« < 25(3)(7’a)> R? [1 - (Za)2 ln(mRZoz)} ,
' (31)

where R is the root-mean-square nuclear charge radius,
and the expectation value of the Dirac § functions is as-
sumed to include the finite nuclear mass effects.

We note that Eq. (34) includes relativistic effects in the
form of the leading logarithmic correction. Higher-order
corrections to Eq. (34) were investigated for hydrogen-
like atoms in Ref. [27]. Crude scaling shows that for
helium they are negligible at the current level of precision
and thus are neglected.

VI. NUMERICAL METHOD

The spatial part of the helium wave function is ex-
panded in a basis set of exponential functions of the form
[28, 29]

Gi(r1, o, 7) = €"MTIETO L (p ), (35)
&i(T17T2,T) = 7?1 Giairliﬁimi&r + (’I"l g ’I"Q) s (36)

for the S and P states, correspondingly. The calculation
of matrix elements of the nonrelativistic Hamiltonian is
performed with help of the formula
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The results for integrals with any additional powers of r
in the numerator can be obtained by differentiation with
respect to the corresponding parameter «, 3, or 4.

Matrix elements of relativistic corrections involve in-
tegrals with additional inverse powers of r1, 9, and r.
Formulas for such integrals can be obtained by integrat-
ing Eq. (37) with respect to the corresponding nonlinear
parameter. This leads to the appearance of logarithmic
and dilogarithmic functions; specifically,
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TABLE II. Second-order corrections for the 235 state; the prime on the sum means exclusion of the reference state.

Intermediate 235
state
> B E En (’S|Hy|n3S) (n®S|HR|’S) ’S 203.050 945
S 5tm (S|HS, [nS) (S| HR|'S) 39 —0.030 546
2sr ¥, mtp (S|QE [P (n*P7|Q% |'S) 3pe —0.003 868
Yse 3, 55 (S|QE|n'PY) (n'P7|QLI%S) 'pe —0.000195
fsr 3, g (n*DV|Q)S)? 3pe —0.001225

TABLE III. Second-order corrections for the 2°P state (centroid). Normalization is according to (P|P") = (D"|DY) =
(FIF| Fiiky = 1.

Intermediate 2°%p
state
S otm (P Hg [n®PT) (n*P*| Hp|*P*) pe 190.798 218 (3)
> 5t En( PUHE), [n*PY) (n®P*|HR|'P") spe 0.000 059 (2)
sr 30, 5t CP i€ QG |n*PFY (n®P i ™ Q |'P™) pe —0.008 025
Ysn > m< P Q3 |n*D¥Y (n®D'™| QL |*P™) ok —0.000 555
Yor 3, 5o (P i€ Q2 |n'PF) (n'P! i ™ Qe |'P™) 'pe ~0.028515
ifsm 3, g2p (CP|Q2|n'DY) (n'D"™ QL |'P™) 'D° —0.000 106
sm 30 gig (WP QP PF)? 3pe ~0.002429
2for Y, motp (n*D i QY|P 3pe —0.000015
sr 3, gt (WFR QY|P spe ~0.000 495

e—ari—pfra=or 1 [x2 1 a+ a+9 a+d
3 3 2 : _ ; _
167 Q/drl/dr2 r2ror? 2,8[ + In ([3 5>+L12(1 a—|—ﬁ>+L12<1 B—HS)]' (39)

Other integrals for relativistic corrections are obtained by differentiating the two basic formulas above.
In our calculation of the a” m contribution, we encounter operators involving In r +y, where v stands for the Euler’s
gamma constant. For the evaluation of these operators we obtained the following formulas
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where the last formula is valid for « > 5. The result for a < [ is obtained by an analytic continuation with help




of the identities

Lio(—z) + Lig(—27") = it (44)
Lis(—2) —Lis(—27") = — 7%ln(z) - é In®(z). (45)

In our calculation, we have derived explicit formulas for
the expectation values of all ); operators, and they in-
volve the combination of the above expressions with the
additional rational function of «, 3, and §.

VII. RESULTS

Table I presents our numerical results for the relativis-
tic corrections to the Bethe logarithm, obtained previ-
ously in Ref. [18]. Numerical values of the second-order
corrections are summarized in Table II for the 239 state
and in Table III for the 23P centroid. The uncertainties
present for some of the matrix elements are negligible at
the level of uncalculated higher-order contributions. Ex-
pectation values of various first-order operators are listed
in Table IV. The matrix elements ; with ¢ < 50 have
already been evaluated in our previous investigations (see
Tables T and IT of Ref. [22]), whereas the operators with
i > 50 are first encountered in the present work. The
numerical uncertainties for ();’s are smaller than the last
digit shown.

Table V summarizes our calculation of the a’m con-
tributions to the energies of the 23S and 23P states of
helium. In order to obtain contributions to the ionization
energy, we need to subtract the corresponding corrections
for the 15 state of the He™ ion, listed in the last column

of the table. The hydrogenic formulas for Eég (He™) and
EI(j) (He™) are obtained from Refs. [30, 31] as follows
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where 8 = B + B2 + B3 = 27.25990948 and Z = 2.
The sum Eég (He™) + E£7) (He™) does not depend on the
cutoff parameter A. In order to be consistent with our
present calculations for atomic He, one should set the
cutoff parameter as A — o?.

We note a strong cancellation between the He and
Het corrections, which reflects the fact that the dom-

inant contribution to the 235 and 23P energies comes

from the 1s electron. The resulting a’m correction to
the ionization energy is in agreement with our previous
approximate predictions [17] based on the known He™
Lamb shift.

Table VI summarizes all known theoretical contribu-
tions to the ionization energies of the 235 and 2P states
of helium. The contributions up to order a®m corre-
spond to those from our review [17], with the updated
value of the Rydberg constant [33]. The finite nuclear
size correction is calculated with the charge radius ob-
tained from the recent measurement of the muonic he-
lium Lamb shift [15]. We find that the effects of order
a”m and o® m shift the 235 — 23 P transition frequency
by —8.447 MHz and 0.206 (54) MHz, respectively.

Table VII compares our final theoretical predic-
tions with experimental results. There are three ac-
curately measured transitions in He that involve the
23S and 23P states. The theoretical transition en-
ergy F(23S — 23P)iheo = 276736495.620 (54) MHz is
in very good agreement with the experimental result
E(23S — 23P)eyp = 276736495.6000 (14) MHz from
Ref. [32], while for the other two transitions, 23S — 33D
and 23P) — 33Dy, theory and experiment disagree by
about 0.5 MHz.

VIII. DISCUSSION

The theoretical energies contain the nuclear charge ra-
dius R as a parameter, through the finite nuclear size
correction given by Eq. (34). By comparing the theoret-
ical predictions with high-precision experimental results
(particularly, the 23S — 23 P transition energy [32]), one
can determine R. The present theoretical accuracy is
in principle sufficient for a determination of the nuclear
radius with an accuracy of about 1%. However, the unex-
plained discrepancy between theory and experiment for
the 238 — 33D and 23P — 32D transitions does not allow
us to do this.

Disagreements between theory and experiment for
transitions involving D states have already been reported
previously [16, 17, 37]. The present calculation reduces
the discrepancy for triplet states from 1 MHz to 0.5 MHz.
However, the theoretical uncertainty due to uncalculated
higher-order effects is now reduced by an order of mag-
nitude, so the relative discrepancy with experiment in-
creased drastically, reaching 150 for the 23Py — 32D,
transition.

Bearing in mind the two different measurements, both
of which show similar deviations from theory, we con-
clude that the most plausible explanation of the discrep-
ancy would be some unknown theoretical contribution
shifting the 23S and 23P states by approximately the
same value. For this reason we postpone the determi-
nation of the a-particle charge radius by means of the
atomic spectroscopy until this unknown correction or a
mistake in our calculations is identified.
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TABLE V. N}lmerical results for individual contributions to
E™ for the 23S and 2°P (centroid) states of helium, in units
of a"m if not specified explicitly.

Term 238 23p He™ (15)
B —804.306 (5) —767.828 (10) —785.107
E{) —379.061 —359.257 —367.554
ED —36.094 —34.381 —34.716
ED, —72.471 —69.096 —69.885
ED, 0.223 0.213 0.215
ED —10.639 —9.950 0.000
EM —1302.348 (5) —1240.301 (10) —1257.046
E™ [MHz] —177.320(1) —168.872(1) —171.152
He — He™ [MHz] —6.168 (1) 2.280 (1)

Prev. theory [17] —5.2(1.3) 2.9(0.7)
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TABLE VI. Breakdown of theoretical contributions to the ionization (centroid) energies of the 23S and 2P states of ‘He,
in MHz. Rooc = 3.2898419602508(64) x 10'® Hz [33], M/m. = 7294.299 54142 (24) [33], 1/a = 137.035999 206 (11) [34],
R = 1.67824(83) fm [15]. NS denotes the finite nuclear size correction; NP stands for the nuclear polarizability correction.
The uncertainty of the theoretical o contribution comes from the Rydberg constant; the uncertainty of the finite nuclear size

correction comes from the nuclear radius.

(m/M)° (m/M)! (m/M)? (m/M)° Sum
235 :
o? —1152953922.384 (2) 164 775.354 —30.620 0.006  —1152789177.644 (2)
a? —57629.312 4.284 —0.001 —57625.029
a® 3999.431 —0.800 3998.632
a® 65.235 —0.030 65.205
a’ —6.168 (1) —6.168 (1)
a® 0.158 (52) 0.158 (52)
NS 2.616 (3) 2.616 (3)
NP —0.001 —0.001
Total —1152842742.231 (52)
Theory 2017 [17] —1152842741.4 (1.3)
2P
a? —876 178 284.857 (2) 61871.895 —25.840 0.006 —876 116 438.795 (2)
ot 11436.878 11.053 0.002 11447.932
a® —1234.732 —0.614 —1235.346
al —21.833 —0.001 —21.835
a’ 2.280 (1) 2.280 (1)
a® —0.048 (16) —0.048 (16)
NS —0.799 (1) —0.799 (1)
NP 0.000 0.000
Total

Theory 2017 [17]

—876106 246.611 (16)
—876106 246.0 (7)

TABLE VII. Comparison of experimental results for various transitions with theoretical predictions, in MHz.

Transition Theory Experiment Difference
225-33D; 786 823 849.540 (52)° 786 823 850.002 (56) [35] —0.462 (76)
23 Py-3D, 510059 754.863 (16)** 510059 755.352 (28) [36] —0.489 (32)
28p-238 276736 495.620 (54) 276736 495.6000 (14) [32] 0.020 (54)

“ using theoretical energy E(3%D1) = 366 018 892.691 (23) from Ref. [37],
b using theoretical results for the 2% P fine structure from Ref. [38].



