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We present a detailed investigation of the leading-order mα5 QED correction with inclusion of the
finite-nuclear-mass effects. Previously, this correction had been calculated within an expansion in
the electron-nucleus mass ratio m/M up to the first order. In this work, we derive formulas for the
mα5 QED contribution that are valid up to the second order in m/M , and perform its calculation
for the 3He−4He isotope shift, leading to an improved determination of the nuclear charge-radius
difference.

I. INTRODUCTION

The comparison of nuclear charge radii obtained from
muonic and electronic atoms provides valuable low-
energy tests of precision atomic spectroscopy and of the
underlying fundamental interaction theory. The ongoing
and planned measurements in muonic atoms [1] and ad-
vances in high-precision laser spectroscopy of electronic
atoms offer complementary pathways to test QED at un-
precedented levels. Combined with increasingly accu-
rate nuclear-structure calculations, the synergy between
muonic and electronic systems is expected to deepen our
understanding of nuclear structure, ultimately providing
more stringent probes of potential physics beyond the
Standard Model.

Any persistent discrepancies between nuclear charge
radii derived from muonic and electronic-atom spec-
troscopy may hint at missing physics or deficiencies in ex-
isting theoretical frameworks. Several such discrepancies
have been widely discussed in the past years, but none
of them has proven to be unsolvable within the standard
model of fundamental interactions. In particular, the
long-standing proton radius conundrum [2] has now been
resolved in favor of the µH value [3], not through the dis-
covery of new interactions, but rather through improved
measurements in electronic hydrogen [4–6]. A similar
discrepancy was reported for the charge-radius differ-
ence between the helion and alpha particles, as deter-
mined from muonic and electronic helium spectroscopy
[7, 8]. However, this problem was also resolved recently,
by identifying a previously overlooked hyperfine-mixing
correction in the theory of electronic helium [9, 10].

In our previous studies [10, 11] we performed a com-
prehensive analysis of the 3He-4He isotope shift, estab-
lishing the theoretical framework for the determination
of the nuclear-charge radius difference. Motivated by
the expected experimental progress [12], we now extend
our previous work by calculating the second-order QED
nuclear recoil correction and thus removing the second-
largest uncertainty in the theoretical isotope shift in he-
lium.

II. LEADING QED IN TWO-BODY SYSTEMS

Before passing to helium, we address first the leading
QED contribution of order mα5 for two-body systems
consisting of a lepton and a nucleus, i.e., hydrogen-like
electronic and muonic atoms. We will consider the cen-
troid energies, thus neglecting the spin-orbit and tensor
spin-spin interactions which contribute only to the fine
and hyperfine structure. The mα5 QED correction to the
energy of a state with angular orbital momentum l > 0
has a simple form [13]

E(5) = − 7 (Z α)5

6π

µ3

m1 m2

〈
1

(µZ α r)3

〉
(1)

− 2α

3π

(
1

m1
+

Z

m2

)2 〈
p⃗ (H − E) ln

[
2 (H − E)

µ(Z α)2

]
p⃗

〉
,

where the indices 1 and 2 refer to the lepton and the
nucleus, respectively, µ = m1 m2/(m1 + m2), Z is the

nuclear charge number, r = |r⃗| = |r⃗1 − r⃗2|, p⃗ = −i∇⃗, the
nonrelativistic Hamiltonian H is

H =
p⃗ 2

2µ
− Z α

r
, (2)

and E is the reference-state eigenvalue of H. Eq. (1)
is valid for arbitrary masses m1 and m2, and the only
approximation involved is the neglect of the nuclear po-
larizability, which is considered separately.
We note that Eq. (1) accounts for both the electron

and the nucleus self-energy, the latter given by the term
proportional to (Z/m2)

2 in the second line. The inclusion
of the nuclear self-energy, which is relatively straightfor-
ward for the l > 0 states, becomes problematic for the
l = 0 states, because it also contributes to the nuclear
charge radius and the nuclear magnetic moment. For
this reason, we consider the case of the l = 0 states sep-
arately and in more detail.
Namely, for the l = 0 states, E(5) acquires extra con-

tact interactions. Assuming a point-like spin-1/2 nucleus,
one obtains [13]
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where s⃗1 and s⃗2 are the spin operators of the lepton and the nucleus, respectively. In the above expression, terms
proportional to (Z α)n originate from the two-photon exchange, those proportional to α (Z α)n come from the electron
self-energy and vacuum polarization, and those proportional to Z2 α (Z α)n are induced by the (point-size) nucleus
self-energy and vacuum polarization. The expectation value of r−3 for l = 0 states is understood as follows

(µZ α)3
〈

1

(µZ α r)3

〉
= 4π lim

ϵ→0

[∫
dr

ϕ2(r)

r
θ(µZ α r − ϵ) + ϕ2(0) ln(ϵ)

]
, (4)

where ϕ(r) is the reference-state wave function.
Let us now rewrite E(5) to the form that could be generalized to an n-body system. The Bethe logarithm can be
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Furthermore, we note that although E(5) given by Eq. (3) contains the reduced mass µ, it is in fact independent of
µ. Specifically, the parameter µ can be replaced by any other mass scale while keeping m1 and m2 unchanged. This
can be demonstrated by the following identity
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and by cancellation of lnµ among all terms in Eq. (3). For our purpose, it will be convenient to set the mass scale to
µ′ = m1. Similarly, the Z-dependence under the logarithms also cancels out. Therefore, we rewrite Eq. (3) as
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We now extend our consideration to the case of an arbitrary-spin nucleus with finite size, and drop all terms ∝ s⃗1 ·s⃗2,
which contribute to the hyperfine splitting but not to the centroid energy. The part of the above formula induced
by the two-photon exchange ∼ (Z α)2 was derived for the spin-1/2 nucleus; it takes a different form for the spin-0
and spin-1 nuclei [14], but this difference is only of order O(m3

1/m
3
2). For this reason, we neglect O(m3

1/m
3
2) terms in

the two-photon exchange contribution. Another problematic set of effects includes the nuclear self-energy (induced
by the self-energy loop on the nucleus line) and the nuclear vacuum polarization, since they also contribute to the
nuclear charge radius and magnetic moment. These effects have been examined in the literature [15], and a consistent
treatment for light electronic and muonic atoms has been formulated [14]. Following this approach, we retain only the
logarithmic part of the nuclear self-energy. Its nonlogarithmic part is absorbed into the finite nuclear size corrections,
discussed in Sec. V. The nuclear vacuum polarization, on the other hand, is included into the total hadronic vacuum
polarization, which cancels out in the isotope shift.
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TABLE I. Expansion of the mα5 QED correction in the mass ratio for low-lying states of helium, in kHz.

Isotope State (m/M)0 (m/M)1 (m/M)2 Σ
3He 11S 40 506 157.888 −13 730.356 17.505 40 492 445.037

21S 2755 760.767 −831.835 1.153 2754 930.085
23S 3999 431.448 −1 061.422 1.394 3998 371.420
21P 38 769.061 624.288 −0.401 39 392.949
23P −1234 731.550 −815.082 −0.139 −1235 546.771

4He 11S 40 506 157.888 −10 345.128 10.093 40 495 822.854
21S 2755 760.767 −626.746 0.665 2755 134.687
23S 3999 431.448 −799.728 0.805 3998 632.526
21P 38 769.061 470.369 −0.227 39 239.204
23P −1234 731.550 −614.123 −0.083 −1235 345.756

We thus obtain for centroid energy of hydrogenic systems with an arbitrary-spin nucleus
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III. LEADING QED IN HELIUM ATOM

We now turn to generalizing the formulas for the mα5 QED correction obtained in the previous section to the case
of the helium atom; further extending them to other light atomic systems is straightforward. In the nonrecoil limit,
the expression for the mα5 QED correction is well known [16]. The first-order recoil correction in m/M was worked
out in Ref. [17]. Here, we obtain formulas the mα5 QED correction that include the nuclear recoil effects up to the
second order in the electron-nucleus mass ratio, (m/M)2. As before, we omit terms of order (m/M)3 and higher, as
well as contributions depending on nuclear spin. The finite nuclear size effects will be addressed in the next sections;
for now, we assume the nucleus to be point-like.

For this generalization of the mα5 QED correction, we use Eq. (7) for the electron-electron terms and Eq. (8) for
the electron-nucleus terms, and assume that there are no three-body terms beyond the Bethe logarithm. The result
is
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where m is the electron mass, M is the nuclear mass, the indices 1 and 2 numerate the two electrons, r12 = |r⃗1 − r⃗2|,
the three-particle nonrelativistic Hamiltonian for helium is

H =
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2
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and the definition of the Bethe logarithm β in Eq. (9) agrees with that by V. Korobov in Ref. [18]. The expectation
values in Eqs. (10)-(13) are assumed to be evaluated with the eigenstates of the three-particle Hamiltonian (14); thus,
they include the finite nuclear mass effects.

We have performed numerical calculations of the recoil corrections to all operators in Eqs. (10)–(13), except for
the Bethe logarithm. High-precision numerical values for the Bethe logarithm, including the corresponding recoil
corrections of orderm/M and (m/M)2, were taken from the work of V. Korobov [18]. Our computations of expectation
values of various operators were carried out perturbatively in m/M , following the numerical approach described in
our previous studies [11, 19]. Specifically, the expectation value of an arbitrary operator Q was expanded in m/M ,
and terms up to order (m/M)2 were retained,

⟨Q⟩ = ⟨Q⟩0 +
m

M
2 ⟨Q 1

(E0 −H0)′
δMH⟩0 +

(m

M

)2

2
〈
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1
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1

(E0 −H0)′
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〉
0

+
(m

M

)2 〈
δMH

1

(E0 −H0)′
(Q− ⟨Q⟩0)

1

(E0 −H0)′
δMH

〉
0
, (15)

where the subscript “0” in H0, E0, and ⟨. . .⟩0 denotes the infinite-nuclear mass limit, and δMH = P⃗ 2/2 ≡ (p⃗1+ p⃗2)
2/2.

TABLE II. Pure QED contributions to the 3He–4He isotope
shift of the 21S–23S centroid transition frequencies, for the
point nucleus, in kHz. Physical constants are from Ref. [3].

(m/M)1 (m/M)2 (m/M)3 Sum

α2 −8 026 758.512 −4 958.331 5.070 −8 031 711.773
α4 −2 496.229 2.076 −2 494.153
α5 56.605 −0.101 56.504
α6 2.732 2.732
α7 −0.210(105) −0.210(105)

Eqed −8 034 146.901(105)

Our numerical results obtained for the nonrecoil,
leading-order recoil, and second-order recoil corrections
of order mα5 are summarized in Table I for the low-lying
states of 3He and 4He. The nonrecoil and first-order re-
coil results agree with our earlier work [20], while the
second-order recoil results are obtained here for the first
time.

Table II presents the individual QED contributions to
the 3He–4He isotope shift of the 21S–23S centroid en-
ergies. Most contributions are taken from our previous
work [10]. The new result obtained in this study is the
mα5(m/M)2 correction, which contributes −0.101 kHz
to the isotope shift of the 21S–23S transition. This value
is twice as large as our earlier estimate of ±47 Hz in
Ref. [10]. We note that all recoil effects of order mα2

and mα4, as well as the m/M recoil correction of order
mα5 listed in Table II, were recently confirmed by inde-
pendent recalculation in Ref. [9].

The dominant uncertainty in the pure QED correction
now arises from the unevaluated QED effects of order
mα7, estimated to be ±0.105 kHz. A complete calcula-
tion of these contributions is challenging and unlikely to
be accomplished in the near future.

TABLE III. Hyperfine mixing contributions to the 3He−4He
isotope shift of the 21S–23S centroid transition frequencies,
in kHz.

(m/M)2 (m/M)3 Sum

Elo
mix 80.765 −0.075 80.690

δErel
mix 0.137 0.137

δEexc
mix −1.770 −1.770

Emix 79.056

IV. HYPERFINE MIXING EFFECTS

Among other effects, the hyperfine mixing contribution
to the 21S–23S transition energy in 3He requires partic-
ular attention because it is enhanced by the small energy
separation between the 21S and 23S levels, as first noted
by Sternheim [21]. This hyperfine mixing correction Emix

is given by

Emix = ⟨Hhfs
1

(E −H)′
Hhfs⟩ , (16)

where Hhfs is the leading-order effective Hamiltonian re-
sponsible for the hyperfine structure, see Ref. [10] for
details.
The leading-order contribution is due to the mixing

between the 23S1 and 21S0 states and is given by

Elo
mix =

∣∣⟨23S|Hhfs|21S⟩0
∣∣2

E0(21S)− E0(23S)
, (17)

where the superscript “0” indicates the nonrecoil limit.
The leading-order term was taken into account already
in our earlier works [11, 20].
The recoil correction to Elo

mix accounts for the finite
nuclear mass in the matrix element of Hhfs and in the
energy denominator. For its calculation we use our result
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TABLE IV. Nuclear polarizability and higher-order nuclear
size corrections to the 3He–4He isotope shift of the 21S–23S
transition, in kHz.

Contribution (m/M)0 (m/M)1 Sum

Epol 0.198(20) 0.198(20)

E
(5)
fns 0.045 0.004 0.049

E
(6)
fns −0.461 0.003 −0.458

E
(6)
radfns 0.054 0.054
Σ −0.157(20)

for the matrix element of the Fermi contact interaction
for 3He

4π ⟨23S|δ3(r1)− δ3(r2)|21S⟩ = 29.118 9786 , (18)

which exactly includes the finite nuclear mass. For com-
parison, this matrix element in the infinite nuclear mass
limit is

4π ⟨23S|δ3(r1)− δ3(r2)|21S⟩0 = 29.134 978 . (19)

The relativistic correction to Elo
mix comes from the rel-

ativistic shift of the 23S–21S energy difference, as well
as the electron anomalous magnetic moment (amm) and
the nuclear-structure corrections,

δErel
mix = Elo

mix

[
(1 + κ+ δnuc)

2 − δErel

δE
− 1

]
, (20)

where κ is the electron amm, δnuc is the nuclear-structure
contribution taken from Ref. [22], and δErel is the rela-
tivistic correction to δE = E0(2

1S) − E0(2
3S), see also

Ref. [23].
The next important correction Eexc

mix is due to the hy-
perfine mixing with the n > 2 excited states. Its signif-
icance was first pointed out in Ref. [9]. In our previous
work [10] we verified it and accurately calculated this
correction. Table III summarizes our numerical results
obtained for individual hyperfine-mixing corrections.

V. NUCLEAR SIZE EFFECTS

The leading finite nuclear size (fns) correction to an
energy level is of order mα4 and is given by

E
(4)
fns [

AHe] =
2π

3
Z α4 mϕ2(0)

r2C
̸λ2

≡ CA r2C , (21)

where ϕ2(0) =
∑

a⟨δ3(ra)⟩, rC is the root-mean-square
charge radius of the nucleus, λ̸ = 386.159 fm is the re-
duced Compton wavelength of the electron, A is the iso-
tope mass number, and the expectation value of the δ-
function includes finite nuclear mass effects.

As we pointed out in our previous work [10], because
of the mass dependence, the coefficient CA in the above

equation depends (weakly) on the isotope A. For this
reason, we write the fns contribution to the 3He–4He iso-
tope shift as [10]

E
(4)
fns [

3He−4He] = C3 r
2
3 − C4 r

2
4

= C
[
r23 − r24

]
+D

[
r23 + r24

]
, (22)

where rA ≡ rC(
AHe), and the last line is the definition

of the coefficients C and D.
There are numerous higher-order fns corrections, inves-

tigated in detail in Refs. [24–27]. Specifically, the mα5

nonrecoil fns correction is given by

E
(5,0)
fns = − π

3
ϕ2(0) (Z α)2 mr3F , (23)

where rF is the Friar radius, which for the exponential
(dipole) parametrization of the nuclear-charge distribu-
tion is given by rF = 1.558 965 rC . The recoil mα5 fns
correction for the exponential nuclear-charge distribution
is given by [25]

E
(5,1)
fns =− ϕ2(0)

M m
(Z α)2

(
−43

12
+ ln 12− 2 lnmrC

)
m2r2C .

(24)

The next-order in α correction E
(6,0)
fns is known only for

hydrogenic systems and is state dependent [24]. Since a
large part of this correction scales with ϕ2(0), we gener-
alize it to many-electron systems by using the hydrogenic
result for n = 1,

E
(6,0)
fns ≈− (Z α)3 r2C

2π

3
ϕ2(0)

[
ln(mrC Z α)− 0.413 384

]
.

(25)

The recoil fns correction E
(6,1)
fns in the dipole parametriza-

tion is given by [26]

E
(6,1)
fns = − π

M
(Z α)3 ϕ2(0) rC 0.962 211 . (26)

Finally, the radiative fns correction is [13]

E
(6,0)
radfns = α (Z α)2

ϕ2(0)

m2

2π

3
(mrC)

2 (4 ln 2− 5) . (27)

Further fns corrections are of higher orders in the mass
ratio and/or the fine structure constant α. They are
negligibly small for helium [27].
Apart of the nuclear size, one must also to account for

the nuclear polarizability correction Epol. The leading-
order nuclear polarizability of order mα5 comes from the
two photon exchange and was calculated in Refs. [28, 29].
Table IV summarizes our numerical results for the

higher-order fns and nuclear polarizability corrections for
the 3He–4He isotope shift of the 21S–23S transition. The
fns corrections were calculated with the following values
of the nuclear charge radii: rC(

3He) = 1.678 6(12) fm and
rC(

4He) = 1.970 07(94) fm [14]. Numerical values of the
coefficients C and D in Eq. (22) are listed in Table V.
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VI. CHARGE RADII DIFFERENCE

We are now in a position to determine the difference
of the mean square charge radii of the helium isotopes,
δr2 = r2C(

3He) − r2C(
4He). Table V summarizes all ex-

perimental and theoretical input required for this deter-
mination. The 21S–23S transition energy in 4He was
measured in Ref. [30]. To obtain the corresponding cen-
troid energy in 3He, we combine the 21SF=1/2–23SF=3/2

transition energy measured in Ref. [8] with the known ex-
perimental hyperfine-structure interval of the 23SF=3/2

state [31, 32]. The experimental centroid-energy isotope
shift is combined with the QED theory predictions sum-
marized in Tables II-IV. The remainder is attributed to
the leading-order fns contribution given by Eq. (21), from
which the charge radii difference δr2 is determined. We
note that although the higher-order fns corrections sum-
marized in Table IV depend on the nuclear charge radii,
these corrections are sufficiently small that the uncertain-
ties of the existing values of the nuclear-charge radii do
not contribute at the level of our interest.

Our result for the mean square charge radius difference,
δr2 = 1.0679 (13) fm2, agrees within 1.3σ with the value
of 1.0636 (31) fm2 derived from the muonic helium [7]. It
should be mentioned that in our previous work [10] there
was a mistake in evaluation of the uncertainty of δr2.
Consequently, the uncertainty of ±0.0007 fm2 printed in
Ref. [10] should be replaced by ±0.0014 fm2.

VII. SUMMARY

We have derived a formula for the second-order re-
coil correction to the leading QED contribution, and per-

formed a calculation for the helium atom. This calcula-
tion removed the second-largest theoretical uncertainty
in the isotope shift of the 21S–23S transition. Using
the updated QED theory together with the available ex-
perimental transition energies, we determined the mean-
square charge radius difference δr2 between the helium
isotopes. Our result agrees with the value derived from
muonic helium [7] at the 1.3σ level, while being 2.4 times
more precise. The small deviation from the muonic-
helium value may stem from nuclear-polarizability ef-
fects, which limit the theoretical accuracy in the muonic
helium Lamb shift.

An important advantage of determining δr2 from elec-
tronic helium, as compared with muonic helium, is its
lower sensitivity to nuclear polarizability effects. As a
consequence, the uncertainty of the electronic δr2 value
arising from the nuclear polarizability is just 0.0001 fm2,
whereas in the muonic helium it is 30 times larger.

At present, the limiting factor in the determination of
δr2 from the electronic helium is the experimental accu-
racy [8, 30]. In the future, upcoming experiments aim
to improve the precision of the 21S–23S transition en-
ergy to about 50 Hz [12], which would reduce the total
uncertainty in δr2 to 0.0005 fm2.
Once this is accomplished, any further improvement in

the accuracy of δr2 would require a complete calculation
of the mα7 QED recoil effect. This would be a significant
challenge, as these effects are currently unknown even for
hydrogenic systems. Nevertheless, such a calculation is
possible at least in principle, in contrast to major further
advances in the theory of nuclear polarizability, which
limits the δr2 determination in muonic helium.
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